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Abstract – By combining a transmission line system
(TLS) and a reverberation chamber (RC), a hybrid elec-
tromagnetic compatibility (EMC) testing facility is de-
signed and constructed. Generally, the lowest usable fre-
quency (LUF) of an RC is limited by its dimension,
which limits the application of RCs for EMC testing at
low frequencies. Therefore, to improve the field unifor-
mity (FU) of an RC at frequencies lower than the LUF, a
TLS is integrated into the RC. After optimizing the load
resistance, length, and width of the TLS, the resonant fre-
quency and electric field spikes of the hybrid system are
eliminated. The FU of the E-field in the system is greatly
improved in the frequency range of 0-30 MHz. More-
over, using an oscillating wall stirrer in the RC, the FU
satisfies the standard (IEC 61000-4-21) above 80 MHz.
Results show that combining the TLS and the RC test-
ing system could be widely used for EMC testing in the
frequency range of 0-30 MHz and 80 MHz-6 GHz.

Index Terms – electromagnetic compatibility, field
uniformity, reverberation chamber, transmission line
system.

I. INTRODUCTION
Nowadays, nearly all electronic products should

comply with electromagnetic compatibility (EMC) stan-
dards [1–2]. Ideally, products should be tested in a uni-
form and well-described facility in the frequency range
of interest. If the field is not uniform enough in the test-
ing area, the E-field fluctuation could be large and the

accuracy of testing results may not be guaranteed. Thus,
a variety of well-developed techniques have been intro-
duced into the EMC testing industry, such as anechoic
chambers, reverberation chambers (RC) [3], and trans-
mission line systems [4–6].

An RC is an electrically large shielded cavity, which
tunes the boundary conditions to create a statistically
uniform, isotropic, and randomly polarized field [7-10].
Utilizing different kinds of stirring methods, such as
source stirring [11], mechanical stirring [12–13], and fre-
quency stirring [14], RCs have been widely applied to
EMC testing. The lowest usable frequency (LUF) of an
RC is affected by its first resonance frequency limited
by the dimension of an RC [8]. For an RC with dimen-
sions of 12.7 m × 10.8 m × 6.3 m, the LUF is about
80 MHz. How to extend the usable frequency range at
the lower bound has attracted researchers’ attention in
recent years [15–18].

Another important method for EMC testing is the
transmission line technique [19–21]. It can only generate
a transverse electromagnetic (TEM) mode in the testing
frequency range. When the frequency increases, higher
modes exist and the FU is deteriorated. Since an RC has a
LUF while a TLS has a highest usable frequency (HUF),
by combining these two facilities, the working frequency
range could be expanded in one facility.

In this paper, we integrate a TLS and an RC to real-
ize a hybrid EMC testing system in the frequency range
of 0 - 30 MHz and 80 MHz - 6 GHz. The designed
TLS generates testing fields below 30 MHz, and the RC
using a sliding wall generates testing fields at frequen-
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cies above 80 MHz. The paper is organized as follows:
section II presents the design and verification of the pro-
posed TLS. Measurement results of the FU in the RC are
shown in section III. Finally, section IV concludes the
paper.

II. DESIGN AND VERIFICATION OF THE
TLS

A stripline is realized by placing a transmission line
above and parallel to the ground plane. When one end
of the stripline is excited, the other end is connected
with broadband resistances, it transmits TEM waves at
working frequencies. The E-field generated by a stripline
is uniform at low frequencies. The designed stripline
and the geometry of the structure are demonstrated in
Figs. 1 (a) and (b). By optimizing the load resistance and
the cutoff frequency comprehensively, the structure di-
mensions are obtained as follows: L1= 3 m, L2= 5.5 m,
L3= 2.6 m and W1= 3 m. Furthermore, the characteris-
tics of the stripline in the open area test site (OATS) are
verified and good performance is obtained. In the oper-
ating frequency band, the voltage standing wave ratio
(VSWR) is less than 4, and the cutoff frequency is up
to 30 MHz, which satisfies the designed requirements.
Then the simulation model of the RC and the oscillating
wall is built as shown in Fig. 2 (a), the oscillating wall is
composed of four irregular horizontal plates, used as the
mechanical stirrer inside the RC.
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Fig. 3. From 0 to 30 MHz, the simulation results 
changing with the value of load in an RC, (a) E-
field for 1 W input power, (b) FU. 
 

Fig. 1. The designed strip line. (a) Geometry structure.
(b) Fabricated sample.
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Fig. 2. (a) The initial hybrid system. (b) The simulation
results of FU in an RC.

where Emax is the maximum value of E-field and Emin
is the minimum value of E-field in the testing area. The
simulation result is demonstrated in Fig. 2 (b), some FU
spikes over the frequency range of 20-30 MHz exist.

Generally, we can perturb the system to shift the res-
onance frequency of an RC and obtain a uniform field
in the usable frequency band. Two methods are given:
(a) change the position of the oscillating wall. The res-
onance frequency varies with the inner structures of the
RC; (b) reduce the Q-factor of the E-field at resonance
frequency until it can be ignored. During the simulation
process, the latter method is selected and the oscillating
wall is fixed at 100% state.

For the optimization of the designed stripline, the
load impedance is first discussed. Considering that high
field strength is applied during the EMC testing process,
distributed resistances are adopted, to avoid exceeding
the power tolerance of the resistances. We use a dis-
tributed loading network which is formed by many re-
sistances in series and in parallel. Ceramic resistors are
selected to ensure temperature and frequency stablity. In
Figs. 3 (a) and (b), the simulation results of E-field for
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1 W input power and the FU using different values of the
load resistances are analyzed. With the increase of the
single load resistance, the FU first tends to be flat and
then deteriorates along with the frequency varies. When
the value is about 110 Ω, the E-field and FU are the best.

Fig. 3. From 0 to 30 MHz, the simulation results chang-
ing with the value of load in an RC, (a) E-field for 1 W
input power and (b) FU.

Then, the E-field distribution of the hybrid system
at frequencies where the field resonances appear is ana-
lyzed. In Figs. 4 (a) and (b), the resonant frequency of
is about 20.6 MHz, resulting in a nonuniform E-field un-
der the stripline. In addition, from Figs. 4 (c) and (d), at
24.2 MHz, the sharp edges enhance the E-field below the
strip line, which affect the field uniformity significantly.
Thus the resonances need to be shifted or reduced at
some frequencies. To achieve this effect, we place three
horizontal metal rods in front of the oscillating wall. By
increasing the coupling between the metal rods and the
oscillating wall (where the E-field are in the same direc-
tion), the resonance can be reduced or shifted. It can be
observed from the simulation results in Fig. 5 (a) that
the FU around 20 MHz is reduced to below 6 dB. How-
ever, the FU deteriorates from 25 MHz to 30 MHz, which
needs to be further optimized.

To further reduce the resonance effect, some extra
structures are added to the hybrid system in Fig. 6 (a).
After analyzing the E-field again, we put 500 Ω loads at
both ends of the metal rods and added two vertical metal
wires into the system. The two metal wires terminated

Fig. 4. The E-field distribution on the 1 m plane at
20.6 MHz (a) t=0; (b) t= T

4 ; at 24.2 MHz; (c) t=0; (d)
t=T/4.

Fig. 5. The optimizing simulation results of FU in an RC
compared with the tolerance requirements combining (a)
metal rod, and (b) metal rod and metal wire.

with 500 Ω resistors on both sides are placed in front of
the oscillating wall. The resonance is reduced and the FU
is improved. The simulation results from Fig. 5 (b) show
that the FU spikes from 25 MHz to 30 MHz is reduced
to below 6 dB. The spike of E-field at about 20 MHz
could be ignored here, which would be eliminated by
tuning the position of the oscillating wall in the testing
process. Finally, the simulation results satisfied the test-
ing requirements.
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III. MEASUREMENTS OF THE HYBRID
SYSTEM

We test the FU of the hybrid system in two scenar-
ios: one utilizing the proposed TLS in an RC from 0 -
30 MHz, the other using the oscillating wall as a me-
chanical stirrer from 80 MHz to 6 GHz. The measure-
ment results demonstrate that the usable frequency range
of the hybrid system can be extended.

A. Measurement of FU from 0-30 MHz
As shown in Fig. 6 (b), the hybrid system is com-

posed of an RC, a stripline, a field probe, an oscillat-
ing wall, a signal generator, and a power amplifier. In
an ideal simulation process (the metal and the bound-
ary are perfect electrical conductors), the input power is
2500 W and 100 V/m field strength is generated. Dur-
ing the actual measurement,due to the loss of RF cables
and the cavity, a higher input power is used to meet the
requirements.
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Fig. 7. From 0 MHz to 30 MHz, the simulation and mea-
surement results of FU in the RC combining the TLS
compared with the tolerance requirements, (a) initial re-
sults, and (b) optimized results.

of the working volume under the TLS. We measure the
FU of the hybrid system as shown in Fig. 7 (a), the ini-
tial measurement results have slightly deviated from the
simulation results. In the frequency range of 1 MHz -
18 MHz, the simulated FU is higher than the measured
FU, due to the field probe positions of simulation being
sampled at a higher density than used in the measure-
ments. From 18 MHz to 30 MHz, some spikes of FU
appeared. The maximum FU of the stripline is 14.0 dB,
which does not satisfy the expected results.

The final measurement scenario in an RC with the
TLS is shown in Fig. 6. Additional metal rods are added
in the hybrid system. The optimized simulation and mea-
surement results are shown in Fig. 7 (b). Compared with
the initial results in Fig. 4, the FU is almost less than
6 dB over the whole frequency band. Considering the
frequency dependeny of the resistors, the measurement
result is not as ideal as the simulation result. The reasons
could be due to the difference between the simulation
model and the reality. In the simulation, the structure of
the stirrer inside the RC and is simplified as we do not
have the detailed drawings from the manufacturer. The
position of the stirrer in the simulation and reality may
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not be exactly the same. Since the RC is a high Q cavity,
the difference in the models could lead to very different
results. As we do not expect the same results between
simulation and measurement, as long as our approach
works well in both simulation and measurement, it could
be enough in practice and the measurement data is finally
used in EMC testings.

It is noted that only a few samples of FU exceeded
6 dB in the frequency range of 18 MHz - 23 MHz and
26 MHz - 28 MHz. To avoid the resonance and achieve
a lower FU, we need to tune the position of the oscillat-
ing wall (0%, 50%, and 100%) inside the RC to perform
mechanical stirring in the frequency range of 20 MHz-
30 MHz.

By shifting the resonant frequencies, the final results
shown in Fig. 8 can achieve a lower FU, which satisfied
the testing requirements in the entire working area. We
show that different positions of the oscillating wall could
avoid the spikes of FU and the hybrid system is proved
to be feasible.
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In Fig. 10, the FUs obtained from field probes are 

lower than the FU tolerance from 80 MHz to 6 GHz. 
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𝐸𝑦, and 𝐸𝑧) and the total FU are all less than 4 dB from 
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IV. CONCLUSION 
For EMC testing, by combining the TLS and the 

RC, the usable frequency band of the hybrid system has 

been extended. The stripline is designed in the 

frequency of 0 - 30 MHz which can generate a uniform 

E-field. Moreover, through optimizations, the stripline 

is integrated into the RC. Additional structures are 

added to tune the resonant frequencies and improve the 

uniformity of the E-field. The results show that the FU 

is below 6 dB within 0 - 30 MHz, and the resonances in 

the frequency range of 20 - 30 MHz can be avoided by 

tuning the structures inside the RC. 
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Fig. 10. The FU in the RC using oscillating wall com-
pared with the tolerance requirements from 80 MHz -
6 GHz.

IV. CONCLUSION
For EMC testing, by combining the TLS and the RC,

the usable frequency band of the hybrid system has been
extended. The stripline is designed in the frequency of
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0-30 MHz which can generate a uniform E-field. More-
over, through optimizations, the stripline is integrated
into the RC. Additional structures are added to tune the
resonant frequencies and improve the uniformity of the
E-field. The results show that the FU is below 6 dB
within 0-30 MHz, and the resonances in the frequency
range of 20-30 MHz can be avoided by tuning the struc-
tures inside the RC.
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