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Abstract — With the increase wireless communica-
tions, many wireless devices and equipment have been
invented for special applications, resulting in mutual
interference that might destroy the systems or distort
signal in-transmission. One of the effective methods to
reduce or eliminate interference is to devise a shield-
ing to block the unwanted interference in between the
approaching systems, circuits, devices, etc. Thus, shield-
ing and estimation of its effectiveness are very important
in order to protect the information devices from poten-
tial interference and to improve the performance of infor-
mation equipment. In this survey, we present the recent
developments of the shielding and shielding effective-
ness techniques and methods, and give a design for an
electromagnetic shielding structure.

Index Terms - electromagnetic shielding, shielding
effectiveness, shielding methods, shielding technique.

L. INTRODUCTION

With the increment of electronic devices and infor-
mation equipment, uncertain interference might give a
destroy or reduce the performance of electronic sys-
tems, chips, broads and devices, which can be classified
into electromagnetic pulses, lighting, natural or artifi-
cial strong electromagnetic interference [1410]]. In recent
years, much interference from wireless systems like 4G
and 5G will also affect other electromagnetic devices.
Fortunately, these systems don’t give out strong interfer-
ence, which is easy to filter out. With the development
of high power microwave equipment, strong electromag-
netic pulse or interference poses a huge threat to the gen-
eral operation of electronic equipment [11]. Thus, elec-
tromagnetic protection and electromagnetic shielding are
vital to reduce the loss caused by these threats.

To give protection from the potential interference,
many shielding techniques and shielding methods have
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been presented, including metal meshes [11], metal
plates [[12]], frequency selective surface (FSS) [13], metal
shells [14], and meta-materials [[1, [15]. Motivated by
these techniques, the shielding methods moves to low
cost or high performance for protecting the information
devices. Although these techniques or methods are use-
ful for providing desired shielding to protect informa-
tion devices from electromagnetic radiation that causes
harm to hardware systems, components or printed cir-
cuit boards, some of them are not effective for practi-
cal engineering applications. Thus, the shielding effec-
tiveness of these techniques and methods is required for
engineers to select a suitable solution for practical engi-
neering applications.

Recently, more attention has been paid to shield-
ing effectiveness to discuss how to choose a metal
mesh or different shielding structures for realization of
engineering applications [16H18]. Many shielding effec-
tiveness methods are presented, like the impedance cal-
culation using average field theory [18]. However, the
analysis models are not accurate enough for the differ-
ent size of the meshes to analyze the shielding effective-
ness [19520]. The equivalent transmission line method
[19520] was used for giving an analysis of the double-
layer metal meshes, but it failed to get a solution for a
wide band of frequency in its engineering to be accu-
rate. In addition, low simulation speed and large compu-
tation consumption made these methods difficult to get
quick results for different structures and sizes of shield-
ing [16]. Many effective computation methods were then
investigated for complex structures with multi-layers and
applications in wide frequency bands.

Additionally, many new structures for shielding
applications were also presented, like the frequency
selective surface (FSS) [13, 21]], LC coil [22], diode
grids [23]], magnetic shielding techniques [24425]. Also,
the related analysis methods are given for various appli-
cations to discuss the shielding effectiveness. To get
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the results, many analysis methods are also discussed
by considering the structure parameters using the
finite-difference time-domain method (FDTD) [26-27]]
and finite element method [28429]. Additionally, the
time-frequency domain shielding effectiveness analysis
of the shielding structures and the magnetic shielding
measurement with low frequency are also carried out to
improve the performance of the shielding.

In this review, the recent developments of the shield-
ing methods and shielding effectiveness analysis tech-
niques will be presented and investigated to illustrate the
performance of the shielding.

II. SHIELDING TECHNIQUES AND
METHODS
A. Metal meshes

As we know, shielding is to prevent undesired inter-
ference from the environment, in order to protect the
information devices. Thus, a great number of techniques
and methods have been put forward to provide a safety
measure to guarantee that the devices avoid microwave
radiation attacks [21H25]]. Furthermore, an electromag-
netic wave has a different skin effect when it is transmit-
ted from air to substrate. If it incidents into the metal, it
will be blocked and it is difficult to penetrate the met-
als that will provide a good shielding. Thus, metal or
metal shells [[14] are used to construct a shielding struc-
ture. However, these structures are heavy and will waste
metal materials, which also increases the cost for the
design of a shielding structure. In order to reduce the cost
and inherent performance of the metal shells in practical
engineering, metal meshes are proposed with different
analysis methods [10], shown in Fig. [T]

Using related techniques and methods, a variety of
metal meshes with single or multi-layers have been pre-
sented and their shielding effectiveness have been inves-
tigated using different methods.

B. Frequency selective surfaces (FSSs)

Recently, another effective shielding has been pro-
posed with a periodic array structure to provide a behav-
ior of spatial filtering, which is known as frequency
selective surface (FSS) [[13,121]]. As we all know, FSS can
be designed to have a band-stop characteristic to filter
or block unwanted frequency bands with a stable angle
characteristics. Thus, FSS has been used for shielding
to protect the sensitive electronics components enabling
them avoid electromagnetic interference (EMI) or radio
frequency interference (RFI) in consumer or industrial
electronic systems, as well as military and emergency
systems.

One of the designs of the FSSs is presented in Fig.[2]
where the cell of the FSS and the circuit extraction of
the FSS cell is also given [29]]. From the circuit anal-
ysis of the FSS, we can see the filter characteristics
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Fig. 1. Geometries of metal meshes [10]. (a) Planar
square metal mesh with holes. (b) Double-layered metal
plates. (c) Double-layered metal meshes. (d) Multi-
layered metal meshes.

clearly. Additionally, we found that the FSS can provide
an additional degree of freedom to precisely control the
frequency response. It can easily select the desired fre-
quency band and reject the unwanted band, which can
filter the incident electromagnetic wave via designing the
FSS geometry and arrangement of the FSS cells.

C. Braided shielding structures

As we know, cables are useful for information
devices not only in low frequency but also in high fre-
quency, and they can work in a wide frequency. Many
braided structures have been proposed and investigated
for cables [30-32]. Figure [3] shows a typical braided
structure. By using these braided shielding structures,
most of the low frequency interference can be filtered.

D. Coil shielding structures

The magnetic field can also be cancelled using
shielding coils excited by an auxiliary source, and many
coil shielding techniques are also presented and investi-
gated via optimizing the phase and magnitude of the cur-
rent in the coils to suppress the flux density. In addition,
the coil couplings can be weakened using metal plates.
Figure [ shows an improved reactive hybrid shielding
with an LC coil structure, where aluminum is designed
as the ring shape and placed to surround the LC coil [22].

In this improved reactive hybrid shielding struc-
ture with an LC coil, an application with the equivalent



Fig. 2. FSS shielding structure [21]]. (a) 3-D FSS cell. (b)
Circuit model of the FSS cell. (c) Equivalent circuit of
the FSS structure.

circuit for a WPT system with LC shielding coil is
also given in Fig. @ The conventional horizontal alu-
minum plate (HALP) is equivalent to a vehicle chassis
to improve the performance using a vertical aluminum
plate (VALP) [22]. In addtition, there are also shield-
ing methods using diode grids, metal plates with slots,
shielding for orbital angular momentum waves, materi-
als, and meta-materials.

I1I1. SHIELDING EFFECTIVENESS
ANALYSIS

With the developments of the shielding tech-
niques and the methods used in the shielding and the
electromagnetic computation methods, various shield-
ing effectiveness analysis methods have been proposed
and investigated for different applications, including the
finite-difference time-domain method (FDTD) [26-27],
the method of moments [28-H29], time domain integral
equation method [33]], transmission-line model method
[34], and time-frequency methods [33]].

A. Model analysis method

To obtain the performance of shielding effective-
ness, a lot of models have been presented and investi-
gated in detail. Recently, a model was used to get a rea-
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Fig. 3. Braided shielding structure [31]]. (a) Geometry
of planar braids with three wires per carrier, without
(W3C0) and with curvatures (W3C1 and W3C2). (b)
Geometry of dense braids with fire wires per carrier and
with curvatures (W5C1 and W5C2).

sonable approximation to evaluate the shielding effec-
tiveness of a rectangular enclosure filled with conductive
plates and the computation results were compared with
the finite element method (FEM) [12],[28129]. The model
is given in Fig.[5] The computation results obtained from
the model agree well with the FEM simulation, which
also help to verify the effectiveness and correctness of
the model [12].

B. Time-domain analysis of the shielding effectiveness

In this subsection, we introduce an improved half-
space FDTD method to replace the half-space Green’s
function, where generalized transition matrix (GTM)
method combined with Fourier transform is used to
get the reflection coefficient [35]. In the computations,
multi-direction and multi-polarization incident waves
are considered for the total-field/scattered-field (TF/SF)
given in Fig. [f] in the FDTD. Based on the modified
FDTD method, it is applied to a typical half-space com-
posite electromagnetic problem to get the time-domain
shielding effectiveness of the shielding enclosure. The
results show that the modified method without com-
plex half-space Green’s function has low complexity
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Fig. 4. Improved reactive hybrid shielding structure with
an LC coil [22]]. (a) Overall view of the improved reactive
hybrid shielding with an LC coil structure. (b)Equivalent
circuit of a reactive shielding system.
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Fig. 5. Model for shielding effectiveness analysis of a
rectangular enclosure filled with conductive plates [12]].
(a) Metal rectangular enclosure with metal plates. (b)
Equivalent circuit for getting the shielding effectiveness
via computations.

compared to the traditional half-space algorithms. In
addition, the proposed method can be used for different
models, incident conditions, and complex environments.

C. Time-frequency analysis methods

Time-domain analysis always considers electromag-
netic pulse (EMP) excitation, which has been used in
waveform and spectra [36]. As for shielding against
EMP, enclosures with small apertures are convention-
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Fig. 7. Schematic of excitation of a rectangular enclosure
with an aperture [36].

ally of applicable interest, and the image method lim-
its the application for a large number of dipole images.
Recently, for simply estimating time domain shielding
effectiveness data of metallic enclosures under EMP
excitation and further correlating these data to fre-
quency domain, an analysis between the time and fre-
quency domain for shielding effectiveness is presented
and investigated for analyzing the metal enclosures with
different apertures, where the analytical formulas for
estimating time domain SE data against EMP excitation
is also included and derived to analyze the metal enclo-
sures.

The improved method in Fig. [9] is implemented
based on the analysis of the transient process at the
aperture and an equivalent magnetic current source [36].
Also, only direct emission from the aperture is con-
sidered and the equivalent circuit model for frequency
domain shielding effectiveness data is used to get the
correlation between the time and frequency domain. The
simulations are presented to verify the analysis and the
simulation agrees well with the analysis.

IV. TIME-DOMAIN SHIELDING
EFFECTIVENESS MEASUREMENT
As we know, shielding effectiveness can be mea-
sured when a small shielding enclosure is made using
frequency-domain techniques under the standard of
IEEE 299.1. However, the high level of the shielding
effectiveness under a high power microwave or a
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(a) IEEE 299.1 frequency-domain shielding effective-
ness measurement method. (b) Time-domain shielding
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directed-energy weapon will reduce the measurement
dynamic range of the equipment for shielding effective-
ness measurement, which is caused by the cable loss in
the signal transmission during the shielding effective-
ness measurement [37]]. In this section, a time-domain
shielding effectiveness measurement method is reviewed
in order to achieve high accuracy for a high level shield-
ing effectiveness measurement.

For the frequency-domain shielding effectiveness
measurement method, the shielding effectiveness mea-
surement should use a wide dynamic range to get an
accurate measurement, where the wide dynamic range
is obtained by comparing it to the receiving powers
that are obtained before and after replacing a receiving
antenna inside an enclosure with a load [37]]. In this
case, the dynamic range is always reduced by coupling
from the cables. In the presence of the shielding effec-
tiveness measurement, continue wave is used to measure
the revived power, which will also be coupled into the
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measurement resulting in dynamic range reduction.
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Fig. 9. FSS shielding structure [38]]. (a) 3-D FSS cell. (b)
Circuit model of the FSS cell. (c) Equivalent circuit of
the FSS structure.

For the time-domain shielding effectiveness mea-
surement method, a modulated pulse is used as a trans-
miting signal in a nested reverberation chamber rather
than continue wave signal [37)]. When the pulse signal is
completely transmitted, the receiving signal is obtained
inside the shielding enclosure in the time domain, which
is defined as the enclosure response that is used to
calculate the shielding effectiveness enclosure. Thus, the
measured enclosure response is not affected by the trans-
mitting signal, and hence, the dynamic range for the
shielding effectiveness measurement will be unchanged.

V. AN EXAMPLE FOR DEVELOPING FSS
SHIELDING STRUCTURE

Since FSS is also useful for shielding effectiveness
and most of the FSS only provide a single frequency
band with planar structure, we designed a 3-D FSS to
mimic the size of the structure [38]]. The presented struc-
ture is given in Fig. [0 with equivalent circuit of the FSS
cell. The designed FSS is printed on a two-layered F4B
substrate. To use the FSS cell developed in Fig. [0} a dual-
band FSS is presented and given in Fig.[I0](a). The FSS
is investigated, fabricated and measured in a chamber.
The results shown in Fig. @ (b) demonstrate that the
FSS has good dual-band band-pass performance and the
rejected band is wide enough to block the interference
from 7GHz to 14GHz. In comparison with the simula-
tions, the band-pass band has been broadened and the
bandwidth for the first band-pass is narrowed. There is
some difference between the measurement and the sim-
ulation, which might be caused by the fabrication and
measurement errors. In addition, the FSS can still cover
a wide —10dB bandwidth when the incident angle is 40°
[38]. Also, in the future, the shielding could be applied in
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Fig. 10. Performance of the FSS. (a) 3-D FSS cell. (b)
Circuit model of the FSS cell. (c) Equivalent circuit of
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high-power microwave (HPM), electronics warfare, and
system isolation.

VI. CONCLUSION

In this investigation, recent developments of shield-
ing and shielding effectiveness techniques and meth-
ods are reviewed, and analyzed. An example for FSS
shielding structure is given, simulated, measured and dis-
cussed. From the developments of shielding structures,
shielding effectiveness analysis methods, and shield-
ing effectiveness measurements, we think the wide-band
shielding structures and shielding effectiveness analysis
and measurement with a high power pulse will be an
interesting topic for EMP, EMI, and EMC studies. The
proposed shielding structures and analysis method can
also be used in MIMO engineering systems [39146] to
analyze shielding effectiveness.
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