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Abstract – In order to implement wide band frequency
sweeping, the S-parameters can be fitted with an adaptive
rational interpolation based on Loewner matrix. How-
ever, the errors in the sampling data may lead to Frois-
sart doublets, which look like spikes in the curve. In this
paper, a novel technique is proposed to remove these
doublets. At first, the rational expression is converted
into the sum of partial fractions by solving two gener-
alized eigenvalue problems. After that, the partial frac-
tion term with the smallest imaginary part of the pole
and relatively large absolute value is considered to gener-
ate the doublets. Removing this term results in a smooth
rational polynomial, which is validated by the example
of a passive circuit simulated by finite element method
(FEM).

Index Terms – finite element method, Froissart doublets,
rational interpolation, S-parameter.

I. INTRODUCTION
Characterizing a passive electromagnetic structure

can be challenging. A commonly used approach is
obtaining the S-parameters through simulating the struc-
ture by frequency domain computational electromag-
netic (CEM) methods at first. Then, a rational interpo-
lation is utilized to fit the S-parameters over a wide
frequency band, which afterwards is processed by fast
Fourier transform to acquire the time domain response
of the structure.

Interpolation is widely employed in the analyses
of electromagnetic problems [1–7]. Of all the inter-
polation methods, many deal with rational interpola-
tion, such as vector fitting [8], Padé approximant [9,
10], minimal rational interpolation [11], adaptive ratio-
nal interpolation based on Loewner matrix (ARILM)
[12], etc. However, rational interpolation often suffers
from instability. Due to the roundoff error, it could

be difficult to compute rational polynomials in finite
precision arithmetic, especially for higher degree numer-
ators and denominators. On the other hand, the sampling
data at discrete frequencies obtained by CEM often con-
tains numerical errors, and the curve that goes through
these points is not exactly a rational polynomial. Subse-
quently, the interpolated rational polynomial may have
a spike-like spurious resonant point in the plot, which
is termed as Froissart doublets. Theoretically speaking,
Froissart doublets are a pair of points in a rational poly-
nomial, one a pole and the other a zero, which are adja-
cent to each other and cannot be canceled [13]. This
makes it difficult to obtain smooth functions with such
rational polynomials.

Among all the rational interpolation techniques,
ARILM is shown to be the most stable and efficient
one. It is insensitive to roundoff error, for the underlying
Loewner matrix is well-conditioned. However, ARILM
also suffers from the Froissart doublets, since only
approximated S-parameters rather than the precise ones
can be yielded by CEM. As an outgrowth of ARILM,
this paper focuses on how to determine and remove the
doublets in the rational interpolation efficiently.

There are many strategies to handle these doublets.
As a well-known rational interpolation technique, Padé
approximants are very fragile to roundoff errors in the
coefficients of the numerator and denominator poly-
nomials. It can be stabilized by a lower order Padé
approximant based on the SVD of the Toeplitz matrix
[14, 15], which performs hopping across a square block
of the Padé table to find the minimal degree denomina-
tor. However, this technique is inapplicable to ARILM.
Some have proposed to remove the doublets in Padé
approximants by reducing the roundoff errors with the
extended precision arithmetic. Unfortunately, this tech-
nique is much more time-consuming than the commonly
used double precision arithmetic [16–18]. Beckermann
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introduced three different parameters to monitor the
absence of Froissart doublets for a given general rational
function [13]. He further planned to remove the unde-
sirable doublets using the three parameters as penalties,
but such a work has remained unreported as yet. Nakat-
sukasa proposed the AAA algorithm to construct the
barycentric rational polynomial with the S-parameters at
certain sampling points and select the points greedily to
avoid exponential instabilities [19]. It identified spurious
poles by their residues with a very small threshold. Then
these doublets are removed by deleting the nearest sam-
pling points from the set of frequencies. This method is
truly applicable to ARILM, but it is obviously inefficient,
since acquiring a single sampling point by CEM may be
computationally expensive. Besides, removing the Frois-
sart doublets is of great practical significance to filter the
noise in the measured signals [15, 18 20–21]. But only
the numerically simulated signals will be addressed in
this paper.

This paper proposes a novel technique to remove
the doublets arising in the ARILM. At first, the S-
parameters of a passive circuit network are acquired
by finite element method (FEM). Next, the ARILM is
applied to capture the set of frequencies required to
perform wide frequency band sweeping. After that, the
obtained barycentric rational polynomial is converted
into a partial fraction expression. Then, the partial frac-
tion term with the smallest imaginary part of the pole and
relatively large absolute value is considered to generate
the doublets. Removing such a term leads to a smooth
rational polynomial.

II. RATIONAL INTERPOLATION BASED ON
LOEWNER MATRIX

Suppose there are 2p−1 data points obtained by
FEM:

f (si)= f i,(i = 1,2,3, · · · ,2p−1), (1)
where 0=s1< s2 < · · ·< s2p−1 = 1 are the normalized fre-
quencies, and f (s) is the unknown frequency response
function. All the points are partitioned into two groups:

f (λi)= wi (i = 1,2,3, · · · , p) , (2)

f (µ j)= v j( j = 1,2,3, · · · , p−1). (3)
With equation (2), f (s) can be expressed by the fol-

lowing barycentric rational polynomial:

fL (s) = Σ
p
i=1

αiwi

s−λi
/Σ

p
i=1

αi

s−λi
, (4)

where αi (i = 1, · · · , p) are unknown coefficients to be
determined by the following equation:

fL (µ j) = Σ
p
i=1

αiwi

µ j−λi
/Σ

p
i=1

αi

µ j−λi
= v j. (5)

Equation (5) leads to the condition:

Σ
p
i=1

v j−wi

µ j−λi
αi = 0, (6)

which is written in compact matrix form as:
v1−w1
µ1−λ1

· · · v1−wp
µ1−λp

... v j−wi
µ j−λi

...
vp−1−w1
µp−1−λ1

· · · vp−1−wp
µp−1−λp


 α1

...
αp

= 0. (7)

The system matrix on the left side is the so-called
Loewner matrix, and the unknown coefficients can be
readily evaluated by the SVD of the Loewner matrix.
And then the rational polynomial (4), termed as the
Loewner interpolation, goes through all the 2p − 1
points. Furthermore, an adaptive procedure is introduced
in [12] to perform the interpolation efficiently.

III. REMOVING FROISSART DOUBLETS IN
RATIONAL INTERPOLATION

A. Observe the Froissart doublets
If the S-parameters of a circuit are acquired by FEM

and interpolated by ARILM, often a smooth rational
polynomial can be obtained. However, sometimes, the
interpolated rational polynomial has a spike in the curve,
given the term Froissart doublets. Froissart doublets are
mainly owing to the numerical errors of the S-parameters
at the sampling frequencies. Let’s explain the cause of
the Froissart doublets with a simple partial fraction as:

f (s) =
1.0+ j2.0

s− (0.5+ j0.001)
,0≤ s≤ 1, (8)

which has a pole and a residual. Actually, the real part of
the pole represents the normalized resonant frequency,
while the imaginary part indicates the power loss of the
corresponding circuit. If the imaginary part of the pole is
very small, the circuit is close to lossless, and there will
be a resonance, which is characterized by a spike in the
curve as in Fig. 1.
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𝑝
𝑖=1 ∑

𝛼𝑖

𝑠−𝜆𝑖

𝑝
𝑖=1⁄ ,                   (4) 

where 𝛼𝑖(𝑖 = 1,⋯ , 𝑝) are unknown coefficients to be 

determined by the following equation 

𝑓𝐿(𝜇𝑗) = ∑
𝛼𝑖𝑤𝑖

𝜇𝑗−𝜆𝑖

𝑝
𝑖=1 ∑

𝛼𝑖

𝜇𝑗−𝜆𝑖

𝑝
𝑖=1⁄ = 𝑣𝑗.            (5) 

Equation (5) leads to the condition 

∑
𝑣𝑗−𝑤𝑖

𝜇𝑗−𝜆𝑖

𝑝
𝑖=1 𝛼𝑖 = 0,                         (6) 

which is written in compact matrix form as 

[
 
 
 
 

𝑣1−𝑤1

𝜇1−𝜆1
⋯

𝑣1−𝑤𝑝

𝜇1−𝜆𝑝

⋮
𝑣𝑗−𝑤𝑖

𝜇𝑗−𝜆𝑖
⋮

𝑣𝑝−1−𝑤1

𝜇𝑝−1−𝜆1
⋯

𝑣𝑝−1−𝑤𝑝

𝜇𝑝−1−𝜆𝑝]
 
 
 
 

[

𝛼1

⋮
𝛼𝑝

] = 0.          (7) 
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Fig. 1. A partial fraction with Froissart doublets.



YUAN, REN, LI, HUANG: REMOVING THE FROISSART DOUBLETS IN A RATIONAL INTERPOLATION BASED ON LOEWNER MATRIX 62

This partial fraction expression has an advantage
over the barycentric rational polynomial in that it indi-
cates the location of the spike. Therefore, the latter will
be converted into the sum of the former. Then, the resid-
ual and pole of every partial fraction term will be ana-
lyzed to find the connection among the spike, the poles,
and the residuals.

B. Convert the Loewner interpolation into the partial
fraction expression

Loewner interpolation can be rewritten as:

fL (s) = Σ
p
i=1

αiwi

s−λi
/Σ

p
i=1

αi

s−λi
, N/D. (9)

The zeros of N are also the zeros of fL (s) , while the
zeros of D are the poles of fL (s). The zeros of D can be
obtained by solving the following equation:

D = Σ
p
i=1

αi

s−λi
= 0. (10)

This equation is equivalent to a generalized eigen-
value problem:

0 α1 α2 · · · αp
1 λ1
1 λ2
...

. . .
1 λp




x0
x1
x2
...

xp+1

=

λ


0

1
1

. . .
1




x0
x1
x2
...

xp+1

 , (11)

which can be solved readily. Similarly, the zeros of N
can be attained by solving another generalized eigen-
value problem:

0 α1w1 α2w2 · · · αpwp
1 λ1
1 λ2
...

. . .
1 λp




x0
x1
x2
...

xp+1

=

λ


0

1
1

. . .
1




x0
x1
x2
...

xp+1

 . (12)

Once all the poles and residuals are obtained, for-
mula (9) can be converted into the pole-zero expression:

fL (s) = N/D = dΠ
p−1
i=1 (s− ci)/Π

p−1
i=1 (s−bi). (13)

The constant d can be determined by any one of the
sampling points, say (λ1,w1), as:

d = w1Π
p−1
i=1 (λ1−bi)/Π

p−1
i=1 (λ1−ai). (14)

Then, the pole-zero expression is rewritten as the
sum of partial fractions:

dΠ
p−1
i=1 (s− ci)/Π

p−1
i=1 (s−bi) = Σ

p−1
i=1

ai

s−bi
+a0, (15)

where both sides have the identical poles and only the
residuals ai remain unknown. Since the partial fraction
expression goes through the sampling points in (2), we
have:

1 1
λ1−b1

1
λ1−b2

· · · 1
λ1−bp−1

1 1
λ2−b1

1
λ2−b2

· · · 1
λ2−bp−1

...
. . .

1 1
λp−1−b1

1
λp−1−b2

1
λp−1−bp−1




a0
a1
a2
...

ap−1

=


w1
w2
w3
...

wp

 .
(16)

Finally, the residuals ai are attained, and the
barycentric rational polynomial (4) is converted into the
partial fraction expression:

fL (s) = Σ
p
i=1

αiwi

s−λi
/Σ

p
i=1

αi

s−λi
= Σ

p−1
i=1

ai

s−bi
+a0.

(17)

C. Find and remove Froissart doublets
As discussed before, the Froissart doublets may be

introduced by a partial fraction term, whose pole has a
very small imaginary part. Therefore, we check every
partial fraction term in (17) to determine which one may
cause the doublets. As for the kth term, we divide (17)
into two parts:

fL (s)=
[

ak

s−bk

]
+

Σ
p−1

i= 1
i6=k

ai

s−bi
+a0

, fk (s)+ fR (s) ,

(18)
where the poles are denoted by bi=bix+ jbiy,
and ε is a threshold to judge the doublets. If
bky=mini=1,···,p−1 (|biy|) and | f k (bkx) |>| f R (bkx)|×ε ,
there are doublets located at bkx.

In order to remove the doublets, we delete the kth

term in the partial fraction expression. In other words,
fL (s) is approximated by fR (s). And then, the original
sampling points are replaced with those computed by
fR (s):

fR (si) = f ∗i , (i = 1,2,3, · · · ,2p−1). (19)
Finally, we construct another Loewner interpolation

with these (2p−1) new sampling points:

f ∗L (s) = Σ
p
i=1

α∗i w∗i
s−λi

/Σ
p
i=1

α∗i
s−λi

, (20)

which will be smooth and have no Froissart doublets.

IV. NUMERICAL RESULTS
Figure 2 shows a passive circuit with 26 ports, which

is simulated by FEM to obtain the S-parameters over a
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Fig. 2. The 26-port passive circuit being simulated.

very wide frequency band from 0.1 GHz to 250 GHz.
We use ARILM to accomplish the wide band frequency
sweeping, which starts with 3 sampling points and con-
verges with 21 points. Note that all the S-parameters are
interpolated with the same 21 frequencies. In order to
determine the doublets, we set the threshold ε = 1.0.

The curve of S26,1 is shown in Figs. 3 and
4. The interpolated rational polynomial has a spike
at 157.6 GHz. Table 1 shows that the third par-
tial fraction satisfies b3y = mini=1,··· ,p−1(|biy|) and
| f 3 (b3x) |> | f R (b3x)| × ε , where b3x= 0.6305 corre-
sponds to 157.6 GHz. Therefore, the third partial fraction
causes the spike. Figures 3 and 4 show that the Froissart
doublets are removed by the proposed method and the
resulting curves are still a good approximation to the ref-
erence curves.

The curves of S25,10 are shown in Figs. 5 and
6. The interpolated rational polynomial has a spike at
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Fig. 3. Real parts of S26,1.

 
Fig. 2. The 26-port passive circuit being simulated. 

 

The curve of 𝑆26,1  is shown in Fig. 3 and Fig. 4. 

The interpolated rational polynomial has a spike at 

157.6GHz. Table 1 shows that the third partial fraction 

satisfies  𝑏3𝑦 = min
𝑖=1,⋯,𝑝−1

(|𝑏𝑖𝑦|)   and |𝑓3(𝑏3𝑥)|>

|𝑓𝑅(𝑏3𝑥)| × 𝜀 , where 𝑏3𝑥 = 0.6305  corresponds to 

157.6GHz. Therefore, the third partial fraction causes 

the spike. Fig. 3 and Fig. 4 show that the Froissart 

doublets are removed by the proposed method and the 

resulting curves are still a good approximation to the 

reference curves.  

The curves of 𝑆25,10  are shown in Fig. 5 and Fig. 6. 

The interpolated rational polynomial has a spike at 

33.32GHz. As is shown in Table 2, this spike is 

generated by the ninth partial fraction, in which 𝑏9𝑥 =
0.1329  corresponds to 33.32GHz. Fig. 5 and Fig. 6 

show that after removing the spike, the curves obtained 

by the proposed method are in good agreement with the 

reference curves. 

The curves of S26,20 are given in Fig. 7, which has 

no spike. Table 3 shows that the fifth partial fraction 

has the minimum imaginary part, but |𝑓5(𝑏5𝑥)|>
|𝑓𝑅(𝑏5𝑥)| × 𝜀 is not satisfied. Therefore, the above three  

S-parameters validate the efficacy of the proposed 

method, which can exactly identify the partial fraction 

with Froissart doublets. 

 

Table 1: Residuals, poles, and function values of 𝑆26,1 

No. 
Residual 

𝑎𝑖 
Pole 

𝑏𝑖𝑥 + 𝑗𝑏𝑖𝑦 
𝑓𝑘(𝑏𝑘𝑥) 𝑓𝑅(𝑏𝑘𝑥) 

1 
-0.000028  
-j0.000008 

0.952253  
-j0.028919 

0.000952      
+j0.000272 

0.000604     
-j0.001296 

2 
-0.000315 
+j0.000332 

0.836766 
+j0.076300 

-0.004134      
+j0.004345 

0.004356     
-j0.001552 

3 
-0.000008  
-j0.000002 

0.630471  
-j0.000103  

0.073629      
+j0.021013 

0.005099     
-j0.001753 

4 
-0.000034 
+j0.000076 

0.463729 
+j0.028439 

0.001191      
+j0.002662 

0.000447      
+j0.001365 

5 
-0.000724 
+j0.003600 

0.328455 
+j0.099524 

-0.007271      
+j0.036169 

0.027796     
-j0.013676 

6 
0.000019 

+j0.000014 
0.326027  

-j0.072588 
-0.000260     
-j0.000192 

-0.008067     
-j0.021470 

7 
0.000529  

-j0.003231 
-0.202759 

+j0.057593 
0.009192     

-j0.056095 
-0.006324      

+j0.003122 

8 
0.003413  

-j0.003550 
0.157954 

+j0.104093 
0.032789     

-j0.034107 
-0.011102     
-j0.030392 

9 
0.000085 

+j0.000278 
0.168986 

+j0.022184 
0.003820      

+j0.012519 
0.036364     

-j0.000254 

10 
0.000197  

-j0.000179 
0.087280 

+j0.053472 
0.003678     

-j0.003353 
0.008093      

+j0.009259 
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Table 1: Residuals, poles, and function values of S26,1

No. Residual
ai

Pole
bix+ jbiy

fk (bkx) fR (bkx)

1 -0.000028
-j0.000008

0.952253
-j0.028919
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-j0.001296
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+j0.000332

0.836766
+j0.076300

-0.004134
+j0.004345

0.004356
-j0.001552

3 -0.000008
-j0.000002

0.630471
-j0.000103

0.073629
+j0.021013

0.005099
-j0.001753

4 -0.000034
+j0.000076

0.463729
+j0.028439

0.001191
+j0.002662

0.000447
+j0.001365

5 -0.000724
+j0.003600

0.328455
+j0.099524

-0.007271
+j0.036169

0.027796
-j0.013676

6 0.000019
+j0.000014

0.326027
-j0.072588

-0.000260
-j0.000192

-0.008067
-j0.021470
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-j0.003231

-0.202759
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8 0.003413
-j0.003550

0.157954
+j0.104093

0.032789
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10 0.000197
-j0.000179
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33.32 GHz. As is shown in Table 2, this spike is gener-
ated by the ninth partial fraction, in which b9x= 0.1329
corresponds to 33.32 GHz. Figures 5 and 6 show that
after removing the spike, the curves obtained by the pro-
posed method are in good agreement with the reference
curves.

The curves of S26,20 are given in Fig. 7, which
has no spike. Table 3 shows that the fifth par-
tial fraction has the minimum imaginary part, but
| f 5 (b5x) |> | f R (b5x)|× ε is not satisfied. Therefore, the
above three S-parameters validate the efficacy of the
proposed method, which can exactly identify the partial
fraction with Froissart doublets.
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V. CONCLUSION 
This paper proposes a new technique to remove the 

Froissart doublets in an adaptive rational interpolation 

based on the Loewner matrix. Numerical results 

indicate the efficacy of the proposed method. 
Although the proposed technique is tailored for 

ARILM, it is also applicable to other rational 

interpolations. In addition, the threshold 𝜀 is manually 

set according to specific circuits, and it will be chosen 

automatically in future. 
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Table 3: Residuals, poles, and function values of S26,20

No. Residue Pole fk (bkx) fR (bkx)
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V. CONCLUSION
This paper proposes a new technique to remove the

Froissart doublets in an adaptive rational interpolation
based on the Loewner matrix. Numerical results indi-
cate the efficacy of the proposed method. Although the
proposed technique is tailored for ARILM, it is also
applicable to other rational interpolations. In addition,
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the threshold ε is manually set according to specific
circuits, and it will be chosen automatically in future.
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