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Abstract─ A simple and reliable algorithm for 
design optimization of microwave structures is 
introduced. The presented methodology exploits 
coarse-discretization models of the structure of 
interest, starting from a very coarse mesh, and 
gradually increases the discretization density. Each 
model is optimized using a simple grid-search 
routine. The optimal design of the current model is 
used as an initial design for the finer-discretization 
one. The proposed methodology is computationally 
efficient as most of the operations are performed on 
coarse-discretization models. Three examples of 
microstrip filter designs are given. 
  
Index Terms─ Computer-aided design (CAD), 
electromagnetic simulation, derivative-free 
optimization, grid search, microwave design. 
 

I. INTRODUCTION 
Due to the complexity of microwave structures 

and a growing demand for accuracy, theoretical 
models can only be used to yield initial designs that 
need to be further tuned to meet given performance 
specifications. Therefore, EM-simulation-based 
design closure becomes increasingly important. A 
serious bottleneck of simulation-driven 
optimization is its high computational cost, which 
makes straightforward approaches such as 
employing EM solvers directly in an optimization 
loop impractical. Co-simulation [1-3] is only a 
partial solution because the circuit models with 
embedded EM components are still directly 
optimized.  

Efficient simulation-driven design can be realized 
using a surrogate-based optimization (SBO) 
principle [4], [5], where the optimization burden is 
shifted to a surrogate model, computationally cheap 
representation of the structure being optimized 
(referred to as the fine model). The successful SBO 

approaches used in microwave area include space 
mapping (SM) [6-12] and various forms of tuning 
[13-15] and tuning SM [16], [17]. Unfortunately, 
their implementation is not always straightforward: 
substantial modification of the optimized structure 
may be required (tuning), or additional mapping and 
more or less complicated interaction between 
auxiliary models is necessary (SM). Also, space 
mapping performance heavily depends on the proper 
selection of the surrogate model and its parameters 
[18]. 

Here, a simple yet efficient design optimization 
methodology is introduced. Our technique is based 
on iterative optimization of coarse-discretization 
models using a simple grid-search algorithm. The 
optimal design of the current model is used as an 
initial design for the finer-discretization one. The 
final design can be refined using a second-order 
polynomial approximation of the available EM-
simulation data.  

The proposed methodology is very simple to 
implement. Unlike space mapping or other 
surrogate-based approaches, it does not require a 
circuit-equivalent coarse model or any 
modification of the structure being optimized. It is 
also computationally efficient because the 
optimization burden is shifted to the coarsely-
discretized models. As our technique is based on a 
grid-search routine, it allows design optimization 
of structures simulated with solvers using 
structured grids such as Sonnet em [19]. 
 

II. MULTI-FIDELITY MULTI-GRID 
DESIGN OPTIMIZATION 

In this section, we formulate the optimization 
problem (Section II.A), describe the building blocks 
of the proposed optimization procedure (Sections 
II.B-II.E), formulate the procedure (Section II.F), 
and discuss some practical issues (Section II.G). 
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A. Design Optimization Problem 
The design optimization problem is formulated 

as follows: 
           * arg min ( )f fU

x
x R x  (1)

where Rf  Rm denotes the response vector of a 
fine model of the device of interest, e.g., the 
modulus of the reflection coefficient |S21| evaluated 
at m different frequencies; x  Rn is a vector of 
design variables, and U is a given scalar merit 
function, e.g., a minimax function with upper and 
lower specifications. Vector xf

* is the optimal design 
to be determined.  

As mentioned in the introduction, the fine model 
is assumed to be computationally expensive so that 
its straightforward optimization (e.g., using 
gradient-based search) is prohibitive because of 
high computational cost. 

Here, the fine model is evaluated on a 
simulation grid d1.f  d2.f  …  dn.f that determines 
the resolution of the design optimization process 
(see Fig. 3 for illustration). In case of Sonnet em, 
dk.f is equal to either gh.f or gv.f (the horizontal or 
vertical cell size used by the EM solver). 

 

 
x(j) = s(x(j–1));     // Snap x(j) to the nearest grid point 
Umin = U(Rc.j(x(j)));     // Evaluate objective function 
do 
      U0 = Umin;    // Update the reference objective function value 
      for k = 1 to n     // Evaluating objective function at perturbed designs 
            Uk = U(Rc.j([x1

(j) … xk
(j) + dk.j … xn

(j)]T)); // (here, dk = gh.j or gv.j (depends on orientation of xk
(j))) 

      end 
      h = – [(U1 – U0)/d1.j … [(Un – U0)/dn.j]T; // Search direction estimation 
      h = h·(||[d1.j … dn.j]T||/||h||);   // Search direction normalization 
      do     // Line search: 
            xtmp = s(x(j) + h);    // Set the trial design and “snap” it to the grid 
            Utmp = U(Rc.j(xtmp));   // Evaluate objective function at the trial design 
            if Utmp < Umin     // If the trial is successful:  
                  x(j) = xtmp;    // 1. Update the design  
                  Umin = Utmp;   // 2. Store the best result 
                  h = 2·h;    // 3. Increase the search step 
            else 
                  break;    // Otherwise, exit the line search algorithm 
            end 
      while 1 
      if Umin  U0     // Line search failed => perform local search 
            for k = 1 to n  
                   U–k = U(Rc.j([x1

(j) … xk
(j) – dk.j … xn

(j)]T));    // Evaluate the remaining neighbours of x(j) 
            end 
            Utmp = min{U–k, U–k+1, …, Uk–1, Uk};   // Find the best design 
             ktmp = argmin{–n ≤ k ≤ n : Uk};  // Fine the corresponding perturbation index 
            if Umin < U0      // If local search is successful: 
                   x(j) = [x1

(j) … xk
(j) + sign(ktmp)·dk.j … xn

(j)]T;   // 1. Update the design 
                   Umin = Uktmp;    // 2. Store the best value 
            end 
      end 
while Umin < U0    // Continue if further improvement was possible 
return x(j);     // Otherwise, return x(j) as the optimal design of Rc.j 
 
Fig. 1. Pseudo-code of the grid-search algorithm. 
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Fig. 2. Illustration of the grid-search algorithm for 
two design variables (n = 2). The search direction 
() at the initial design x(j–1) is obtained using two 
perturbed designs marked as squares. The trial 
points for the line search are denoted as 1, 1’ and 
1’’. The last successful trial design is 1’. At this 
design, a new search direction is found, and a new 
line search is launched with designs 2, 2’ and 2’’ 
(the last of which is unsuccessful). The next line 
search starting from 2’ is unsuccessful and the new 
design 3 is obtained using a local search, similarly 
as the final design x(j) that cannot be further 
improved even by a local search, which terminates 
the algorithm. 

 
B. Coarse-Discretization Models 

The optimization technique introduced here 
exploits a family of coarse-discretization models 
{Rc.j}, j = 1, …, K, all evaluated using the same EM 
solver. The model Rc.j exploits a simulation grid d1.j 
 d2.j  …  dn.j. It is assumed that dk.j > dk.j+1 and 
for k = 1, …, n and j = 1, …, K – 1, and dk.K > dk.f 
for all k. In other words, discretization of Rc.j+1 is 
finer than that of Rc.j. It is recommended that 
dk.j/dk.j+1 is an integer (typically 2 or 3). In practice, 
the number K of coarse-discretization models is two 
or three. 

 
C. Grid-Search Algorithm 

To optimize the coarse-discretization model Rc.j 
we use the grid-search procedure shown in Fig. 1. 
Here, x(j–1) = [x1

(j–1) … xn
(j–1)]T is the initial design, 

i.e., the optimal design of Rc.j–1, s is a function that 
“rounds” x to the nearest grid point s(x)). 

For simplicity, only the unconstrained version of 
the grid-search algorithm is described here. The 
generalization for constrained optimization is 
straightforward. The operation of the algorithm is 
illustrated in Fig. 2. 

 
D. Design Refinement 

Having optimized the finest of the coarse- 

discretization models, Rc.K, we also have its 
evaluations at x(K) and at all perturbed designs 
around it xk

(K) = [x1
(K) … xk

(K) + sign(k)·dk.K … 
xn

(K)]T, i.e., R(k) = Rc.K(xk
(K)), k = –n, –n+1, …, n–1, 

n. This data can be used to refine the final design 
without directly optimizing Rf. Instead, one can set 
up an approximation model involving R(k) and 
optimize it in the neighbourhood of x(K) defined as 
[x(K) – d, x(K) + d], where d = [d1.K d2.K … dn.K]T. In 
this work, we use a reduced quadratic model q(x) 
= [q1 q2 … qm]T, defined as 

1 .0 .1 1

2 2
. . 1 1 .2

( ) ([ ... ] ) ...

.. ...

T
j j n j j

j n n j n j n n

q q x x x

x x x

   

   

x  

  
 (2)

Coefficients j.r, j = 1, …, m, r = 0, 1, …, 2n, 
can be uniquely obtained by solving the linear 
regression problems qj(xk

(K)) = Rj
(k), k = –n, –n + 1, 

…, n – 1, n, where Rj
(k) is a jth component of the 

vector R(k). 
In order to account for possible misalignment 

between Rc.K and Rf, it is recommended—instead 
of optimizing the quadratic model q—to optimize 
a corrected model q(x) + [Rf(x(K)) – Rc.K(x(K))] that 
ensures a zero-order consistency [20] between Rc.K 
and Rf. The refined design can be then found as 

* ( ) ( )

( ) ( )
.

arg min{ :
( ( ) [ ( ) ( )])}

K K

K K
f c KU

    

 

x x d x x d
q x R x R x

 (3)

If necessary, the step (3) can be performed a few 
times starting from a refined design, i.e., 
x* = argmin{x(K) – d ≤ x ≤ x(K) + d : 
U(q(x) + [Rf(x*) – Rc.K(x*)])} (each iteration 
requires only one evaluation of Rf).  

 
E. Optional Design Specifications Adjustments 

Typically, the major difference between the 
responses of Rf and coarse-discretization models Rc.j 
is that they are shifted in frequency. This difference 
can be easily absorbed by frequency-shifting the 
design specifications while optimizing a model Rc.j. 
More specifically, suppose that the design 
specifications are described as {k.L, k.H; sk}, k = 1, 
..., ns, (e.g., specifications |S21|  –3 dB for 3 GHz ≤ 
 ≤ 4 GHz, |S21| ≤ –20 dB for 1 GHz ≤  ≤ 2 GHz 
and |S21| ≤ –20 dB for 5 GHz ≤  ≤ 7 GHz would be 
described as {3, 4; –3}, {1, 2; –20}, and {5, 7; –20}). 
If the average frequency shift between responses of 
Rc.j and Rc.j+1 is , this difference can be absorbed 
by modifying the design specifications to {k.L – , 
k.H – ; sk}, k = 1, ..., ns. 
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F. Optimization Algorithm 
The optimization procedure proposed in this 

work can be summarized as follows (input 
arguments are: initial design x(0) and the number of 
coarse-discretization models K): 

1. Set j = 1; 
2. Optimize Rc.j using the algorithm of Section 

2.B to obtain a new design x(j); 
3. Set j = j + 1; if j < K go to 2; 
4. Set up a quadratic model q as in (2) and find 

a refined design x* using (3). 
Note that the original model Rf is only evaluated 

at the final stage (step 4) of the optimization 
process. Operation of our optimization procedure is 
illustrated in Fig. 3. 

 
G. Selection of the Coarse-Discretization 
Models 

As mentioned in Section II.B, the number K of 
coarse-discretization models is typically two or 
three. The first coarse-discretization model Rc.1 
should be set up so that its evaluation time is at 
least 30 to 100 times shorter than the evaluation 
time of the fine model. The reason is that the initial 
design may be quite poor so that the expected 
number of evaluations of Rc.1 is usually large. By 
keeping Rc.1 fast, one can control the computational 
overhead related to its optimization. Accuracy of 
Rc.1 is not critical because its optimal design is only 
supposed to give a rough estimate of the fine model 
optimum. 

The second (and, possibly third) coarse-
discretization model should be more accurate but 
still at least about 10 times faster than the fine 
model. This can be achieved by proper 
manipulation of the EM solver mesh density. 

 
III. EXAMPLES 

A. Compact Stacked Slotted Resonators 
Microstrip Bandpass Filter [21] 

Consider the stacked slotted resonators bandpass 
filter [21] shown in Fig. 4. The design parameters 
are x = [L1 L2 W1 S1 S2 d]T mm. The filter is 
simulated in Sonnet em [19] using a cell size of 
0.05 mm  0.05 mm (model Rf), which corresponds 
to a simulation grid d1.f  d2.f  …  dn.f of 0.05  
0.05  …  0.05 mm. The design specifications are 
|S21|  –3 dB for 2.35 GHz    2.45 GHz, and 
|S21|  –20 dB for 1.9 GHz    2.3GHz and 

2.6 GHz    2.9 GHz. The initial design is 
x(0) = [7 10 0.6 1 2 1]T mm. 

 

 
Fig. 3. Operation of the proposed optimization 
procedure for n = 2 and K = 2: Optimized design 
x(1) of the model Rc.1 is found on the grid d1.1  d2.1 
starting from the initial design x(0). Then, the 
optimized design x(2) of Rc.2 is searched for on the 
grid d2.2  d2.2 using x(1) as the initial design. Finally, 
the design x(2) is refined (cf. (3)) on the fine grid d1.f 
 d2.f using a second-order polynomial model (2) 
that is set up in the shaded area around x(2). 
 

Input

Output

L1

W1
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S2

S1

S1

d

d

L2

    
Fig. 4. Stacked slotted resonators filter: geometry 
[21]. 
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Fig. 5. Stacked slotted resonators filter: responses 
of the coarse-discretization model Rc.1 (0.2 mm  
0.2 mm grid) at the initial design x(0) (dashed line) 
and at the optimized design of Rc.1, x(1), (solid 
line).
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Table 1: Optimization cost of the stacked slotted resonators bandpass filter. 

Algorithm Component Number of Model 
Evaluations 

Evaluation Time 
Absolute [min] Relative to Rf 

Optimization of the coarse-discretization model Rc.1 41 49 3.1 
Optimization of the coarse-discretization model Rc.2 26 130 8.1 

Evaluation of the original (fine-discretization) model Rf 2 32 2.0 
Total optimization time N/A 211 13.2  

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
-30

-25

-20

-15

-10

-5

0

Frequency [GHz]

|S
21

| [
dB

]

 
Fig. 6. Stacked slotted resonators filter: responses 
of the coarse-discretization model Rc.2 (0.05 mm  
0.2 mm grid) at x(1) (dashed line) and at x(2) (solid 
line), the optimized design of Rc.2 found using a 
grid search.  
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Fig. 7. Stacked slotted resonators filter: responses 
of the original fine-discretization model Rf at x(2) 
(dashed line) and at the refined final design x* (solid 
line). 
 

The proposed multi-fidelity multi-grid design 
optimization procedure is realized here using two 
coarse-discretization models: Rc.1 (cell size 0.2 
mm  0.2 mm, simulation grid 0.2  0.2  …  0.2 

mm) and Rc.2 (cell size 0.05 mm  0.2 mm, 
simulation grid 0.05  0.05  0.2  0.2  0.2  
0.05 mm). The evaluation times for Rc.1, Rc.2 and 
Rf are 72 s, 5 min and 16 min, respectively.  

Figure 5 shows the responses of Rc.1 at x(0) and 
at x(1) = [6.4 9.6 0.6 0.6 2 1.8]T mm, its optimal 
design found using a grid search. Figure 6 shows  

 
the responses of Rc.2 at x(1) and at its optimized 
design x(2) = [6.35 9.6 0.6 0.6 2.2 1.8]T mm. Figure 
7 shows the responses of Rf at x(2) (specification 
error –1.7 dB) and the refined design x*  = [6.35 
9.6 0.6 0.6 2.25 1.85]T mm (specification error –
2.1 dB). The total optimization cost (Table 1) is 
quite low and corresponds to only 13 evaluations 
of the original, fine-discretization model. Most of 
this cost is due to the optimization of the coarse-
discretization model Rc.2.  
 
B. High-Temperature Superconducting Filter 
[22] 

As the second example, consider the high-
temperature superconducting (HTS) filter shown in 
Fig. 8 [22]. The design parameters are x = [L1 L2 L3 
S1 S2 S3]T. The width of all the sections is W = 8 mil. 
A substrate of lanthanum aluminate is used with 
r = 23.425 H = 20 mil. The filter is simulated in 
Sonnet em [19] using a grid of 0.5 mil  0.5 mil 
(the Rf model). The design specifications are |S21| ≤ 
0.05 for ω ≤ 3.966 GHz, |S21| ≥ 0.95 for 4.008 GHz 
≤ ω ≤ 4.058 GHz, and |S21| ≤ 0.05 for ω ≥ 4.100 
GHz. The initial design is x(0) = [196 196 190 20 
92 100]T mil. 

Again, we use two coarsely discretized models: 
Rc.1 (grid of 2 mil  4 mil) and Rc.2 (grid of 1 mil  
2 mil). The evaluation times for Rc.1, Rc.2 and Rf 
are about 2 min, 6 min and 51 min, respectively. 
Figure 9 shows the responses of Rc.1 at x(0) and at 
x(1) = [188 190 188 20 76 84]T mil, its optimal 
design found using a grid search, as well as the 
response of Rc.2 at x(0). Because of noticeable 
frequency shift between Rc.1(x(0)) and Rc.2(x(0)) (7 
MHz on average) the design specifications were 
adjusted as described in Section II.E while 
optimizing Rc.1. Figure 10 shows the responses of 
Rc.2 at x(1) and at its optimized design x(2) = [188 
189 188 20 76 86]T mil, as well as the response of 
Rf at x(2). Here, the average frequency shift 
between Rc.2(x(1)) and Rf(x(1)) is about 5 MHz 
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-2

0
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]
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Table 2: Optimization cost of the HTS filter. 

Algorithm Component Number of Model 
Evaluations 

Evaluation Time 
Absolute [min] Relative to Rf 

Optimization of the coarse-discretization model Rc.1 104 195 3.8 
Optimization of the coarse-discretization model Rc.2 26 152 3.0 

Evaluation of the original (fine-discretization) model Rf 3 153 3.0 
Total optimization time N/A 500 9.8 

 
Table 3: Optimization cost of the coupled-line bandpass filter. 

Algorithm Component Number of Model 
Evaluations 

Evaluation Time 
Absolute [min] Relative to Rf 

Optimization of the coarse-discretization model Rc.1 82 42 1.0 
Optimization of the coarse-discretization model Rc.2 55 276 6.4 

Evaluation of the original (fine-discretization) model Rf 2 86 2.0 
Total optimization time N/A 404 9.4 
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Fig. 8. HTS filter: geometry [22].      
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Fig. 9. HTS filter: responses of the coarse-
discretization model Rc.1 at the initial design x(0) 
(dashed line) and at its optimized design x(1) (solid 
line), as well as the response of Rc.2 at x(0) (dotted 
line); design specifications are shifted by 7 MHz 
towards higher frequencies to absorb the frequency 
shift between Rc.1(x(0)) and Rc.2(x(0)).  
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Fig. 10. HTS filter: responses of the coarse-
discretization model Rc.2 at x(1) (dashed line) and at 
its optimized design x(2) (solid line), as well as the 
response of Rf at x(2) (dotted line); design 
specifications are shifted by 5 MHz toward higher 
frequencies to absorb the frequency shift between 
Rc.2(x(1)) and Rf(x(1)).  

 
and the design specifications are modified 
accordingly. Figure 11 shows the responses of Rf at 
x(2) (specification error –0.01) and the refined 
design x*  = [188 189 188 20.5 78 88]T mm 
(specification error –0.02). Total optimization cost 
(Table 2) corresponds to only 10 evaluations of the 
fine-discretization model. 

 
C. Coupled-Line Microstrip Bandpass Filter [23] 

Consider the coupled-line bandpass filter [23] 
shown in Fig. 12. The design parameters are 
x = [L1 L2 L3 L4 S1 S2]T mm. The fine model Rf is 
simulated in FEKO [24]. The initial design is 
x(0) = [18.0 7.0 15.0 10.0 0.2 0.2]T mm. The total 
mesh number for Rf at the initial design is 1422.  
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Fig. 11. HTS filter: responses of the fine-
discretization model Rf at x(2) (dashed line) and at 
the refined final design x* (solid line); here the 
original design specifications are shown. 
 

The design specifications are |S21|  –1 dB for 
2.35 GHz    2.45 GHz, and |S21|  –20 dB for 

1.5 GHz    2.25GHz and 2.55 GHz    
3.3 GHz.  

We are using two coarse models: Rc.1 (total mesh 
number 160 at x(0), simulation grid 0.1  0.1  0.1  
0.1  0.02  0.02 mm) and Rc.2 (total mesh number 
678 at x(0), simulation grid 0.05  0.05  0.05  0.05 
 0.01  0.01 mm). The evaluation times for Rc.1, 
Rc.2 and Rf are about 30 seconds, 5 min and 43 min, 
respectively. Figure 13 shows the responses of Rc.1 
at x(0) and at x(1) = [18.0 7.0 13.8 10.2 0.2 0.1]T mm, 
as well as the response of Rc.2 at x(0). Because of the 
frequency shift between Rc.1(x(0)) and Rc.2(x(0)), the 
design specifications were adjusted accordingly 
(cf. Section II.E) while optimizing Rc.1. Figure 14 
shows the responses of Rc.2 at x(1) and at its 
optimized design x(2) = [18.0 7.0 13.7 10.2 0.18 
0.12]T mm, as well as the response of Rf at x(2). 
Figure 15 shows the responses of Rf at x(2) 
(specification error +0.02 dB) and the refined 
design x* = [17.994 7.013 13.663 10.138 0.128    
0.118]T mm (specification error –0.74 dB). Note 
that, in this case, the refinement step (3) was not 
constrained to the simulation grid. 

Total optimization cost (Table 3) corresponds to 
less than 10 evaluations of the fine-discretization 
model. Similarly as for the first test problem, 
optimization of the second coarse-discretization 
model Rc.2 was the major contributor to the 
computational cost. 

        
Fig. 12. Coupled-line bandpass filter: geometry 
[23]. 
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Fig. 13. Coupled-line bandpass filter: responses of 
Rc.1 at the initial design x(0) (dashed line) and at its 
optimized design x(1) (solid line), as well as the 
response of Rc.2 at x(0) (dotted line); design 
specifications are adjusted to absorb the frequency 
shift between Rc.1(x(0)) and Rc.2(x(0)). 
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Fig. 14. Coupled-line bandpass filter: responses of 
the coarse-discretization model Rc.2 at x(1) (dashed 
line) and at its optimized design x(2) (solid line), as 
well as the response of Rf at x(2) (dotted line). 
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Fig. 15. Coupled-line bandpass filter: responses of 
the fine-discretization model Rf at x(2) (dashed line) 
and at the refined final design x* (solid line); here 
the original design specifications are shown. 

 
D. Comparison with Direct Optimization 

In order to illustrate the computational 
efficiency of the proposed technique, the fine 
models for the three filter examples have been 
directly optimized using the pattern-search 
algorithm of Section II.A. The results are presented 
in Table 4. In all cases, the design found by direct 
search is similar to that obtained using our method 
(specification errors –2.1 dB, –0.025, and –1.8 dB, 
respectively). However, the computational cost, 
depending on the example, is 10 to 20 times higher 
than that for the technique presented here. 

 
Table 4: Direct fine model optimization results. 

Example 
CPU Cost 

Rf Calls Time
Stacked slotted resonators filter (III.A) 120 32 h 

HTS filter (III.B) 210 179 h
Coupled-line bandpass filter (III.C) 133 95 h 

 

 
 

IV. CONCLUSION 
A simple and robust algorithm for microwave 

design optimization is proposed that exploits 
sequential, multi-grid optimization of coarse-
discretization EM-simulation-based models and 
polynomial-approximation-based refinement of the 
final design. The presented method is easy to 
implement. It does not need any auxiliary 
equivalent-circuit model (which is typically used by 
space mapping) or any modifications of the original 
structure, such as cutting and inserting the tuning 
ports necessary by the tuning methodology. It is 

also computationally efficient, as most of the 
operations are performed on the coarse-
discretization models. Because of its simplicity and 
versatility, the proposed method can be viewed as a 
step forward towards making simulation-driven 
microwave design feasible and computationally 
tractable. 
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