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Abstract ─ Method of moments (MoM) solution 
of the electric field integral equations (EFIE) 
encounters the large memory requirements and the 
slow convergence rate of the iterative solver. A 
direct method based on hierarchical (-) matrix 
algorithm and phase extracted (PE) basis function 
is proposed to overcome these obstacles. A 
recompressed adaptive cross approximation 
(ACA) technique is employed to generate a data-
sparse representation of the dense EFIE system 
matrix, i.e., so-called -matrix. -matrix 
formatted LDLT-decomposition (-LDLT) can be 
implemented in nearly optimal complexity, which 
provides an efficient way for the direct solution of 
EFIE. PE basis function, containing the propa-
gating wave phase factor and defined on large 
patches, is introduced to further reduce the 
computational costs. Numerical results demon-
strate the accuracy and efficiency of the proposed 
method for electrically large scattering problems. 
  
Index Terms ─ Direct solution, electrically large 
scattering, hierarchical LDLT-decomposition (-
LDLT), phase extracted (PE) basis function, 
recompressed adaptive cross approximation 
(ACA).  
 

I. INTRODUCTION 
The electric-field integral equation (EFIE) is 

widely used to analyze electromagnetic scattering 
since it can handle fairly general geometries [1]. 
The method of moments (MoM) is a powerful 
technique for the solution of EFIE. Numerical 
discretization of the EFIE by MoM [2] yields a 
dense complex linear system, which is a serious 

handicap especially for electrically large scattering 
problems. Two distinct approaches have recently 
emerged to address this issue. The first concerns 
efficient methods for the solution of the large 
dense linear system. The second directly pursue a 
reduction of the number of unknowns required to 
obtain an accurate result. In respect of the first 
point, methods for the numerical solution of the 
linear system can usually be classified into two 
categories, i.e., direct methods and iterative 
methods. It is basically impractical to use direct 
methods due to the O(N2) memory requirement 
and O(N3) computational complexity, where N 
refers to the number of unknowns. This can be 
circumvented by iterative methods, in which the 
required matrix-vector product operation can be 
accelerated by multilevel fast multipole method 
(MLFMM) [3-6]. However, a linear system resu-
lting from EFIE is usually ill-conditioned, 
particularly for electrically large problems. 
Effective preconditioners can be used to accelerate 
the convergence rate of iterations, but they are 
usually problem-dependent [7,8]. Moreover, for 
electrically large problems, the memory is still 
burdened due to the filling of near-interaction 
blocks. As the second approach mentioned above, 
other interesting contributions attempt to reduce 
the complexity by considering more elaborate 
bases to approximate the unknown field, such as, 
the physical optics (PO) method, geometrical 
optics (GO) method, and  characteristic basis 
function (CBF) method [9-12]. Besides, a kind of 
basis functions with phase information, named 
phase extracted (PE) basis functions, has recently 
been presented [13-15]. Since the induced currents 
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on the smooth PEC surface have the propagating 
wave phase dependency, the PE bases can be 
defined on very large patches. 

Combining the two approaches mentioned 
above, in this paper, an efficient direct method 
based on hierarchical LDLT-decomposition (-
LDLT) algorithm and PE basis function is 
presented to improve the MoM solution of EFIE. 
-matrix algorithm are based on the data-sparse 
representation, which is an inexpensive but 
sufficiently accurate way to approximate a fully 
populated matrix [ 16 - 18 ]. The key idea is to 
approximate a full matrix by a product of two low-
rank matrices [16,19]. In this paper, the adaptive 
cross approximation (ACA) algorithm is used to 
generate the low-rank approximations [20-23]. A 
major advantage of ACA is that it deals only with 
the matrix entries and is, therefore, kernel-
independent in contrast to other compression 
methods like fast multipole [3], panel clustering 
[24], or the 2-matrix approximation [25] that are 
based on expansions or interpolations of the 
kernel-function. Hence, a practical advantage of 
ACA is that it can be built on top of existing 
computer codes without changes. A blockwise 
recompression scheme is applied following ACA 
to decrease the memory usage. The essential 
operations of -matrices, such as matrix-vector 
and matrix-matrix multiplication, addition, and LU 
decomposition, can be performed through -
matrix arithmetic in O(kaNlogbN) complexity with 
blockwise rank k and appropriate parameters a, b 
[26]. The PE basis function is introduced to reduce 
the number of unknowns, which creates more 
favourable conditions for the implement of -
LDLT. Expressing the propagating wave phase 
dependency, the PE bases break the well-known 
convention of ‘10 degrees of freedom per 
wavelength’ and can be defined on the patches 
with much larger electrical size. Hence, the use of 
PE basis functions leads to a dramatically 
computational saving. Numerical examples will 
show that the proposed method can significantly 
reduce the memory requirement and 
computational complexity compared with the 
traditional direct method and is robust for 
electrically large scattering problems. 

The remainder of this paper is organized as 
follows: Section II describes the theory and 

implementation of PE basis functions, the 
recompressed ACA technique, and the -LDLT 
algorithm in detail. Numerical experiments with 
several electrically large scattering problems are 
presented to demonstrate the efficiency of the 
proposed method in Section III. Section IV gives 
some conclusions. 
  

II. THEORY 
A. MoM solution of EFIE with phase extracted 
basis functions 

Consider an arbitrarily-shaped 3D conducting 
object illuminated by an incident field Ei(r). The 
EFIE is given by 

0 0

1
ˆ ˆ( , ) ( ) ( )i

S
n d n

jk 
     r r J r r E rG  on S ,(1) 

where S denotes the conducting surface of the 
object, n̂  is an outwardly directed normal, 

( , )r rG  is the well-known free-space Green’s 
function, and J(r) denotes the unknown surface 
current. 

For the scattering excited by a plane wave in 
the homogeneous background medium, the 
tangential component of the incident magnetic 
field contains a propagating wave phase 
dependency, which can be expressed as 

~ ,
iinc j

t e k rH                            (2) 

where ik  is the propagation vector of the incident 
wave in the background medium. (2) indicates 

~
iinc j

t e  k rH  . Expressing the tangential compo-
nent of the total magnetic field as the summation 
of the tangential component of incident and the 
scattering magnetic field, and considering the 
boundary condition that the normal component of 
magnetic field vanishes on the PEC surface, we 
have 

0.inc sca
t t t     H H H           (3) 

Hence, the total magnetic field also has the 
phase dependency. According to the surface 
equivalence theorem, the induced current, and the 
total magnetic field satisfy ˆ J = n H , thus, it can 
be concluded that the induced current on the PEC 
surface has the propagating wave phase property: 

~ .
iinc j

t e k rJ                           (4) 
Based on this, a basis function with the 

propagating wave phase factor is introduced, 
called phase extracted (PE) basis functions. PE 
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basis functions can be expressed as the 
multiplication of an amplitude term and a phase 

term. The amplitude term here is chosen as a 
triangular curvilinear Rao-Wilton-Glisson 
(CRWG) function in conventional MoM 
formulation due to its accuracy in representing 
arbitrary curvilinear surfaces, and the phase term 
is an exponential function, as follows 

.( ) ( ) ,
ij

n n e k rJ r j r                      (5) 

where ( )nj r  denotes the CRWG basis functions. 

Thus, the induced current ( )J r  can be expanded 

with the PE basis functions ( )nJ r : 

.

1

( ) ( ) .
i

N
j

n n
n

a e



 k rJ r j r                 (6) 

After the phase extraction, the residual part of 
the basis needs to express the amplitude 
distribution only. For convex objects with smooth 
surfaces, the amplitude term of the induced current 
varies much slower compared with the oscillatory 
phase term. As a result, they can be defined on 
much larger patches than the traditional basis 
functions which do not involve any phase 
information. Hence, a set of very coarse mesh grid 
can be used to discretize the objects and the 
number of basis functions can be reduced 
dramatically. Away from the smooth region, 
where the PE basis function becomes invalid, the 
ordinary discretization density of conventional 
CRWG basis functions is needed. After Galerkin’s 
testing, the resulting linear system from EFIE 
formulation can be symbolically rewritten as 

Ax=b,                                (7) 

where A denotes the system matrix with the 

size being the number of PE basis functions.  

 

B. Construct an -matrix by hierarchical 
partitioning 

The process of generating an -matrix 
representation of the EFIE system matrix A is 
performed by two main procedures. They are the 
hierarchical partitioning of the matrix into blocks 
and the blockwise restriction to low-rank matrices. 
The hierarchical partitioning is on the basis of a 
cluster tree, i.e., a tree IT  satisfies the following:  

 root ( )IT I , 
 if It T  with sons( )t   , then { :t t   

sons( )}t t , 
 if It T  with sons( )t  , then min#t n . 

where I ={1,2,……N} is a finite index set of all 
the PE basis functions, #t  denotes the number of 
elements in the cluster t and minn  is a 
predetermined threshold parameter to control the 
depth of the cluster tree. A simple method for 
building a cluster tree is bisection based on 
geometry-based subdivisions of the index sets 
using bounding boxes. The key idea of this 
method is to split an index set in the coordinate 
direction of maximal extent. Figure 1 (a) depicts a 
simplified subdivision with I including only eight 
elements, and the resulting binary cluster tree IT  
is shown in Fig. 1 (b). 

(a) (b) (c) 

{5,6,7,8}

{1,2}

I={1,2,3,4,5,6,7,8}

{1,2,3,4}

{3,4} {5,6} {7,8}

{2} {3} {4} {5} {6} {7} {8}{1} 

Fig. 1. (a) Subdivision of a finite set using bounding box. “·” denotes the midpoint of each edge. (b) 
Cluster tree . (c) Block cluster tree . Admissible leaves are light grey. 
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Based on the cluster tree IT , the index set 
I I  corresponding to the system matrix 

I IA   is split into a partition  

{ : , },IP t s t s T                      (8) 

which generates the block cluster tree I IT  . To 
approximate a matrix by a block-wise low-rank 
approximation, the sub-blocks have to fulfill a so-
called admissibility condition as follows 

      max , , ,t s t sdiam B diam B dist B B   (9) 

where tB  and sB  denotes the minimal bounding 
box for the support of cluster t and s, diam and dist 
denote the Euclidean diameter and distance of 
cluster t and s respectively, and   controls 
the trade-off between the number of admissible 
blocks. Based on this, the partitioning P can be 
split into admissible (“far-field”) and inadmissible 
(“near-field”) blocks described as: 

,near farP P P                        (10) 
with  

{ :  (9) holds},farP t s P              (11) 

where admissible blocks can be approximated by 
low-rank representation in the following Rk-
matrices as follows 

H
m n

M AB  ,    m kA  , ,n kB       (12) 

with A, B in full matrix representation, and k is 
much smaller than m and n. The corresponding 
block cluster tree I IT   based on the cluster tree IT  
of Fig. 1 (b) is given in Fig. 1 (c). 

Based on the cluster tree and the block cluster 
tree, the class of -matrix for an admissible 
partitioning P and the maximum rank k can be 
defined as 

 ( , ): :rank( )  for all .I I
bP k A A k b P    

 
(13) 

 

C. Low-rank approximation using recom-
pressed ACA 

In the -matrix representation, near-field 
blocks are uncompressed and to be computed via 
PE-based MoM. Due to the rapid decay of the 
discrete Green’s function, the far-field blocks can 
be compressed to low-rank representations with 
little loss of accuracy. To find these low-rank 
approximations, the adaptive cross approximation 
(ACA) algorithm is adopted. In this algorithm, the 
normally dense far-field blocks are approximated 

by using only a few rows and columns, i.e., 
crosses of these blocks, while other matrix entries 
are not required to be calculated. Starting from 
only one cross and adding more and more crosses, 
one applies this approximation iteratively until the 
difference between two consecutive cross-approxi- 
mations are small enough. Then, the low-rank 
approximations of the far-field blocks are 
achieved. Since the ACA theory can be found in 
the original work of Bebendorf [20,21], the details 
of it will not be presented in this paper. It is worth 
noting that the low-rank representation obtained 
by ACA is not yet optimal in terms of storage 
requirements. These low-rank blocks can be in fact 
recompressed, using QR decomposition and the 
truncated singular value decomposition (SVD), 
which allows a further storage reduction without 
accuracy penalties. The process of recompressing 
a low-rank block HM AB  to HM AB    can be 
performed as follows: 
1. Compute a QR decomposition A AA Q R , 

m k
AQ  , k k

AR  . 
2. Compute a QR decomposition B BB Q R , 

n k
BQ  , k k

BR  . 
3. Compute a singular value decomposition 

H H
A BR R U V  . 

4. Extract 11 22diag( , , )k k         (first largest 
k   singular values) with k   satisfies 

ACA 11k k      and ( 1)( 1) ACA 11k k      , 
where ACA  is the relative truncation error. 

5. Extract 1 2[  ]kU U U U      (first k   columns), 

1 2[  ]kV V V V       (first k   columns). 
6. Set AA Q U    and BB Q V  . 

Thus, the construction of an -matrix is 

accomplished with its admissible blocks 
generating from the recompressed ACA technique. 
A typical structure of an -matrix in practice is 

presented in Fig. 2.  

 

D. The recursive scheme for -LDLT 

The-LDLT decomposition can be imple-
mented recursively starting from a 2 2  block-
matrix induced by the hierarchical partitioning. 
Using the exact LDLT decomposition on the finest 
level and assuming that the -LDLT decom-
position has already been defined on all finer 
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levels, the unknown blocks ijL , iiD , and ijU  can 
be solved in the following three steps: 

T T
11 12 11 11 11 21

T
21 22 21 22 22 22

.
L D L L
L L D L

        
             

 


 
(14) 

1. Compute 11L  and 11D  from T
11 11 11 11L D L  by 

an -LDLT decomposition on the next finer 
level. 

2. Compute 21L  from T
21 21 11 11L D L  by an upper 

triangular solver. 
3. Compute 22L  and 22D  from T

22 21 11 21L D L   
T

22 22 22L D L  by an -LDLT decomposition on 
the next finer level. 

 

In Step 2 above, an upper triangular solver is 
needed to solve a upper triangular system, with a 
given upper triangular matrix T

11 11D L  and a given 
right-hand-side matrix 21 , simplified as XU B . 
It can also be solved recursively from 

11 12 11 12 11 12

21 22 22 21 22

.
X X U U B B

X X U B B

               
   (15) 

in the following four steps: 
1. Compute 11X  from 11 11 11X U B  by an upper 

triangular solver on the next finer level. 
2. Compute 21X  from 21 11 21X U B  by an upper 

triangular solver on the next finer level. 
3. Compute 12X  from 12 22 12 11 12X U B X U   by 

an upper triangular solver on the next finer 
level. 

4. Compute 22X  from 22 22 22 21 12X U B X U   by 
an upper triangular solver on the next finer 
level. 

In all these steps for the -LDLT 
decomposition and the upper triangular solver, the 

exact addition and multiplication are replaced by 
the faster formatted -matrix counterparts ( and
 ). Truncation operator 'k k

  based on truncated 
versions of the QR-decomposition and singular 
value decomposition (SVD) is used to define the -
matrix addition A B   2 ( )k k A B  and the -
matrix multiplication ' ( )

k k
A B A B   . In this 

paper, an adaptive truncation scheme with a relative 
truncation error   is adopted, similarly defined as 

ACA . It should be noted that matrix D is  the 
diagonal matrix with little additional storage 
consumption. -LDLT can be performed in 
O(k2Nlog2N) computational complexity and 
O(kNlogN) storage requirement with blockwise 
rank k. After the completion of -LDLT 
decomposition, -matrix formatted forward and 
backward substitutions (-FBS) are implemented 
to obtain the solution x of equation (3) with 
O(kNlogN) computational complexity [26]. If the 
right-hand-side matrix B is replaced by a vector b, 
the process of solving (15) is the backward 
substitution, while the forward case is similar. 

Fig. 3. Bistatic RCS of the sphere. 
 

III. NUMERICAL RESULTS 
In order to demonstrate the performances of 

the proposed method for 3D electrically large 
scattering problems, a variety of arbitrarily shaped 
objects are simulated. In these examples, scatters 
are all excited by the plane wave. The relative 
truncation error of ACA is set to be 3

ACA 10  . 
The computations of the examples in this section 
are performed on a common PC with Intel Core2 
2.8GHz CPU and 8GB RAM in double precision. 

Fig. 2. A typical -matrix with ACA-based 
low-rank matrices. 
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For simplification, the proposed method is referred 
to as the -LDLT-PE method.  

The first example deals with the problem of 
scattering from a PEC sphere with a radius of 3m. 
A plane wave is incoming in the direction 0    
and 0    at a frequency of 300MHz. The 
conventional MoM solution may need 36,273 
unknowns due to 0.1  patch size. The proposed 
-LDLT-PE method needs only 927 unknowns 
since a patch size of about 0.6  is achieved by 
using PE basis functions. The bistatic RCS is 
computed by the -LDLT-PE method and 
compared with the exact Mie series solution on the 
plane 0   . Very good agreement can be 
observed in Fig. 3. Direct solution of this example 
by conventional MoM on a common PC is an 
impossible mission, since a memory usage of 
about 10.0GB is required to store the impedance 
matrix and a rapid increase would occur in the 

direct solution. The bald ACA-based-LDLT 
method can reduce the total memory requirement 
for entire direct solution to about 2.0GB. By using 
the -LDLT-PE method, the computational costs 
can be further reduced dramatically. Table 1 
shows the computational requirements of the 
MoM-based LDLT decomposition and presents 
the computational costs of the-LDLT method 
and the -LDLT-PE method for building an -
matrix representation based on recompressed ACA 
and implementing the -LDLT decomposition 
under 310  . The improvement ratio is also 
presented which validates the ability of the-
LDLT method can be further improved by the -
LDLT-PE method. Besides, we adopt the 
MLFMM combined with GMRES iteration to 
solve this problem. According to our test, 
203.6MB memory usage and 19.2s CPU time 
usage are required for the construction of the 

Table 1: Comparison of the computational costs for different methods 

Method 
Matrix construction LDLT manipulation 

Mem (MB) Time (s) Mem (MB) Time (s) 

MoM-LDLT 1.0×104 - > 1.0×104 > 1.0×105 

MoM-LDLT-PE 6.6 3.2 11.3 6.6 

-LDLT 897.4 532.9 1054.6 1227.1 

-LDLT-PE 4.4 9.6 4.9 3.9 

Improvement Ratio 204.0 55.5 215.2 314.6 

 

(a) 

Fig. 4. The complexity tests of the -LDLT-PE with the number of unknowns increasing. (a) Time 
required for the -LDLT decomposition. (b) Memory required for -LDLT factors.  

(b) 
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impedance matrix, and 582.39s CPU time is 
needed for the GMRES iterative solution with  

310  residual norm.  

Fig. 5. Bistatic RCS of the missile. 
 

It can be found that the -LDLT-PE has 
obvious advantages in the competition. Finally, the 
computational costs of the -LDLT-PE method 
are tested with the unknown number increasing 
from 5,531 to 110,362. As shown in Fig. 4 (a) and 
(b), the CPU time and memory usages are 
validated to be very close to O(k2Nlog2N) and 
O(kNlogN), respectively. 

The second example considers the scattering 
from a missile with a total length of 12.5m and a 
radius of 3m at the main body. The incident plane 
wave propagates from the direction 90    and 

0    at 1 GHz. The conventional MoM solution 
needs 146,694 unknowns by using 0.1  patch 
size, while the proposed -LDLT-PE method 
needs only 17,082 unknowns by using 0.6  patch  
size at the smooth region of the missile. The 
bistatic RCS computed by the -LDLT-PE 

method on the plane 0   agrees very well with 
the results calculated by the MLFMM, as depicted 
in Fig. 5. Table 2 shows the computational costs 
for the construction of an -matrix and the -
LDLT manipulation. The -LDLT-PE method not 
only provides an efficient solution of EFIE, but 
also can control the computational accuracy 
flexibly by different choices of the relative 
truncation error   in the formatted -matrix 
arithmetic. Different   requires different 
memory and CPU time usage, as shown in Table 
2, and leads to different RCS error. Fig. 6 presents 
the RCS error integrated over all directions and 
normalized by the appointed accurate RCS 
calculated under 810  , without taking the 
truncation error of ACA into consideration. Since 
the parts of the top and bottom of this missile are 
not smooth, finer discretization can be employed 
for more accurate RCS, while the coarse 
discretization can be retained at the body of this 
missile without loss of accuracy. It is obvious that 
the direct solution of this 37  problem based on 
MoM is drastically impossible, and the -LDLT 
method can hardly be performed on a common PC 
though the computational cost has been 
dramatically reduced. However, the -LDLT-PE 
method can be easily performed on a common PC 
at a very low cost as show in Table 2. For this 
example, the MLFMM requires 812.4MB memory 
and 192.6s CPU time to construct the impedance 
matrix, and 5410.6s CPU time to perform the 
GMRES iterations. Compared with the -LDLT-
PE, although the MLFMM needs less construction 
time, it spends much more time for the iterative 
solution due to the slow convergence rate.  

Finally, the scattering from a bent rectangular 
plate of 14m 7m is analyzed at 1 GHz. The plate 

Table 2: Computational costs of the -LDLT-PE method for different  

-matrix construction -LDLT manipulation

Mem (MB) Time (s)  Mem (MB) Time (s) 

520.4 624.6 

5e-1 308.9 121.5 

1e-1 398.6 213.4 

1e-2 555.7 459.3 

1e-3 669.3 689. 5 

1e-4 785.2 877. 6 
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is bent leading to a dihedral conforming a wedge 
with an interior angle of 90 . The incident 
elevation angle is 90    and 135   . A patch 
size of about 0.8  is employed at the smooth 
region of the plate, which leads to only 27,189 
unknowns. The bistatic RCS computed by the 
proposed -LDLT-PE method on the plane 

90   is plotted together with the results of the 
MLFMM in Fig. 7. Table 3 shows the computa-
tional costs of the -LDLT-PE method under 

310  . Obviously, the computational costs are 
extremely low by using the -LDLT-PE method, 
while the direct solution of this 42  problem with 
373,956 unknowns under the traditional 0.1  
patch size can hardly be accomplished on a 
common PC. For this problem, the MLFMM 
requires 1899.4MB memory and 366.9s CPU time 
to construct the impedance matrix, and 2796.8s  

 
Fig. 6. Change of the RCS error with   decr-
easing. 

CPU time to complete the GMRES iterative 
solution. It can be found that the -LDLT-PE 
defeats the MLFMM in overall computational 
costs, which demonstrate the capability of the H-
LDLT-PE. 
 

IV. CONCLUSION 
A new direct method based on the -LDLT 

algorithm and PE basis functions is presented for 
the MoM solution of EFIE. The adaptive cross 

approximation technique with a recompression 
scheme is exploited to build the data-sparse 
representation of an -matrix, yielding a kernel-
independent method. The -LDLT algorithm 
provides an inexpensive but sufficiently accurate 
way to compute and store the approximate 
triangular factor of the EFIE system matrix in 
nearly optimal complexity. The accuracy of the -
LDLT is controllable by different choices of the 
relative truncation error, leading to different 
computational costs. PE basis function is 
employed to further reduce the memory and CPU 
time required for the -LDLT by introducing 
propagating wave phase dependence. Numerical 
results demonstrate the proposed method is robust 
for electrically large scattering problems. 

Fig. 7. Bistatic RCS of the bent rectangular plate. 
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