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Abstract ─ In this paper, the validity of four types 
of higher order basis functions for analyzing the 
3D EM scattering from the target and dielectric 
rough surface is investigated. Although the higher 
order basis functions can reduce the number of 
unknowns significantly, the iterative solution time 
may increase with the order of the basis because 
the matrix condition numbers deteriorates with the 
basis order increase. This may be relative to: (a) 
The truncation of the dielectric rough surface and 
the interaction between the object and the rough 
surface; (b) the properties of the basis functions 
adopted. In this paper, a variety of models 
including a rough surface only, an object above or 
below the rough surface are investigated with 
different higher order basis functions. The 
program is based on the Poggio-Miller-Chang-
Harrington-Wu-Tsai (PMCHW) integral 
equations. The multilevel fast multipole algorithm 
(MLFMA) and flexible generalized minimal 
residual (FGMRES) techniques are used to further 
accelerate the iteration solution.  
  
Index Terms ─ Electromagnetic scattering, higher 
order basis functions, MLFMA, rough surface. 
 

I. INTRODUCTION 
Electromagnetic scattering from dielectric 

rough surfaces has a large number of applications, 
such as remote sensing, radar surveillance, and 
ground-penetration radar probing [1-9, 29]. 
Specific examples include detection of landmines 

and remote sensing of soil moisture content to 
retrieve snow depth. Numerical simulation of the 
combined target and rough surface model is 
complicated by the interactions between the target 
and the rough surface background [1]. During the 
past few decades, both the approximate and 
rigorous methods have been developed to tackle 
this problem. Among the approximate methods, 
some are based on small perturbation method 
(SPM) [10], Kirchhoff approximation (KA) [3], 
small slope approximation (SSA) [11] and so on. 
However, the height value must be very small 
compared to the electromagnetic wave length in 
the SPM; the radius of the surface must be larger 
than a wavelength in the KA; the slope must be 
small and the height must be moderate for the first 
order in the SSA. 

Numerical solution, on the other hand, is a 
rigorous approach which can deal with most of the 
cases without considering the profile of the rough 
surfaces. For the 2D problems, the generalized 
forward backward method with spectral 
acceleration algorithm (GFBM/SAA) [12], the 
finite element method (FEM) [13], the extended 
boundary condition method (EBCM) [33], and the 
steepest descent-fast multipole algorithm have 
been successfully used to the target and rough 
surface composite model. However, scattering 
from a 3D target and rough surface composite 
model is much more complicated than in a 2D 
case because of the large computational 
complexity [4]. Till now, only very few reports 
have been found for the 3D case, e.g. the UV 
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method [4], the FDTD method [14, 30], and the 
steepest descent-fast multipole method (SDFMM) 
[2,6]. 

In order to reduce the computational 
complexity, some efficient algorithms have been 
developed. The sparse matrix flat surface iterative 
approach (SMFSIA) [15, 16] takes advantage of 
the fact that rough surfaces are “nearly” planar. In 
this approach, the Green’s function for the weak 
matrix elements has been expanded in a Taylor’s 
series about the flat surface, which maps the 
problem to a flat 2D surface. The FFT technique is 
then used to accelerate the matrix-vector product 
for the Toeplitz structure of the interaction matrix 
on the flat surface. The complexity of the SMFSIA 
is ( log )O N N . Another approach is SDFMM 
[31], which has expressed the free-space dyadic 
Green’s function in terms of a rapidly converging 
Sommerfeld steepest descent integral. The source 
and observation points are evaluated efficiently by 
using a multilevel FMM-like algorithm based on 
inhomogeneous plane wave expansion. The time 
and memory complexity are ( )O N . 

There is still an efficient approach that is 
based on the consideration of basis functions [7] 
[17-18, 34-38]. For example, the characteristic 
basis function method (CBFM) [7] proposed for 
electromagnetic scattering over rough terrain 
profiles, is based on the constructing of high-level 
basis functions on macro-domains. The higher 
order hierarchical basis functions [17-18] have 
been used to analyze the electromagnetic 
scattering from breaking waves [19].  

In this paper, four types of higher order basis 
functions, that is, the hierarchical tangential vector 
basis functions [20, 35-36] with curvilinear 
triangle patch mesh, the higher order hierarchical 
basis functions [17-18] with curvilinear 
quadrilateral patch mesh, and the maximally 
orthogonalized higher order basis functions [21] 
with curvilinear quadrilateral patch mesh are used 
to analyze the electromagnetic scattering from the 
target and dielectric rough surface. The validities 
of these functions are compared. To the 
knowledge of the author, the higher order basis 
functions have not been used to analyze scattering 
from rough surfaces. 

The remainder of this paper is organized as 
follows. In Section II, theory and formulations are 
discussed. Numerical results are presented and 

discussed in Section III. Section IV concludes this 
paper. The time factor j te ω is assumed and 
suppressed throughout this paper.  
 

II. THEORY AND FORMULATION  
A. Rough surface modeling and PMCHW 
integral equation  

In practical cases, in order to eliminate the 
edge effects caused by truncation of the finite 
surface length, the tapered wave [16] is usually 
employed. Figure 1 shows the geometry of the 
proposed problem. The width of the tapered wave 
should be large enough to illuminate upon the 
surface. The incident electric and magnetic fields 
are incE  and incH . Region 1 and Region 2 are 
characterized by medium parameters 1 1( , )ε µ and

2 2( , )ε µ , respectively. The equivalent electric and 
magnetic surface currents J(r)  and M(r) are 
impressed on the rough surface. For simplicity, the 
rough surface without object is considered here, 
the formulations for an object under a dielectric 
rough surface can be found in references [2, 23]. 
To obtain J and M , the PMCHW [5, 22] 
formulation enforces the continuity of the 
tangential electric and magnetic field components 
across S: 

tan 1 2 tan 1 2 tan( ) | ( ) | ( ) | .inc L L K K= + − +E r J(r) M(r)  (1) 

tan 1 2 tan 1 2 tan2 2
1 2

1 1( ) | ( ) | ( ) | .inc K K L L
η η

= + + +H r J(r) M(r) (2) 

where 1η and 2η are the wave impedance of regions 
1 and 2, respectively, and operators pL and pK
(p=1,2) are defined by 

' '( ) [ ( ) ( )] ( ),p p pS
p

jL ds j gωµ
ωε

= + ∇∇∫ ' ' 'X r X r X r r,r
(3) 

         '( ) ( ) ( ),p pS
K ds g= ×∇∫ ' 'X r X r r,r          (4) 

where ( )pg 'r,r is the scalar Green’s function 

            
| |

( ) .
4 | |

pjk

p
eg
π

−

=
'r-r

'
'r,r

r - r
                    (5) 

 

The solution of the PMCHW (equations (1-4)) 
obtains the electric and magnetic surface current 
densities J and M , which are required in the 
computation of the bistatic scattering coefficient 
(normalized RCS) [23]. 
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Fig. 1. Geometric model of EM scattering from the 
rough surface. 

 
B. Higher order basis functions 

In this paper, four types of higher order basis 
functions are used to analyze the electromagnetic 
scattering from the target and dielectric rough 
surface. For simplicity, the higher order 
hierarchical Legendre basis functions defined on 
the curvilinear quadrilateral surface are provided 
here. The specific forms of the hierarchical 
tangential vector basis functions on the curvilinear 
triangle patch [20, 35-36] and the maximally 
orthogonalized higher order basis functions on the 
curvilinear quadrilateral patch [21] can be found in 
the references. 

The higher order hierarchical Legendre basis 
functions defined on the curvilinear quadrilateral 
surface [8-10] are 

,u v
S S u S vJ J= +J a a                         (6) 

where ua and va are the co-variant unitary vectors 
as /u u= ∂ ∂a r and /v v= ∂ ∂a r . Without loss of 
generality, we consider only u-directed currents 

 

0 0

1( , ) ( ) ( ),
( , )

u vM N
u u

mmS mn n n
m nS

J u v a C P u C P v
u v = =

= ∑∑
   (7) 

where ( , ) | |S u vu v = ×a a is the surface Jacobian, 
u
mna  are unknown coefficients, and uM and vN  

are basis orders along the u-directed current flow 
direction and the transverse direction respectively. 

( )nP v  are Legendre polynomials, and  ( )mP u are 
modified Legendre polynomials, which can be 
defined as 



2

1 , 0
( ) 1 , 1 ,

( ) ( ), 2
m

m m

u m =
P u u m =

P u P u m−

−
= +
 − ≥

                  
                                 (8) 

where mC  and nC  are the scaling factors 



3 , 0,1
4 .

1 (2 3)(2 1) , 2
2 2 1

m

m =
C

m m m
m


= 

− + ≥ −

                            

   
       (9) 

1 .
2nC n= +                            (10) 

 
C. Matrix vector product accelerated by the 
MLFMA 

In the process of MLFMA, interactions 
between the elements are classified as near zone 
and far zone. The near-zone elements are 
calculated directly using the MoM, and the far-
zone elements are calculated by using the 
MLFMA [24,32]. The Green’s function in the 
FMM is 



| |
(1)( 1) (2 1) ( ) ( ) ( ),

| |

jk L
l

l l l
l

e jk l j kd h kr P d r
− +

=∞

≈ − − +
+ ∑

r d

r d




(11) 

where k is the wavenumber, lj is a spherical 
Bessel function of the first kind, and lP is a 
Legendre polynomial. r andd are two vectors with
r and d being their amplitudes with d r< , and r  
and d  being their unit vectors respectively. The 
number of modes L is usually chosen as

ln( )L kd kdπ= + + . In the MLFMA, a matrix-
vector product can be executed as follows: all 
basis functions in a group can be aggregated into 
an outgoing radiation pattern which is then 
translated to an incoming radiation pattern at the 
receiving group. The incoming radiation pattern is 
then disaggregated to the test functions. In order to 
accelerate the solving process, the FGMRES [25, 
26] iterative solver is used. 
 

III. NUMERICAL RESULTS 
In this section several numerical results are 

presented for various models and basis functions, 
in which a Gaussian dielectric rough surface with 
the following Gaussian spectrum [27]. 

2 2 2 22
4( , )

4

x x y yl k l k
x y

x y

l l h
W k k e

π

+
−

= ，           (12) 
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is used. Here, xl and yl are the correlation lengths 
in x − and y − directions respectively. h is the rms 
height of the rough surface.  

The GMRES restart counts are set to 30 and 
the inner and outer restart counts of FGMRES are 
both 10. The stop precision for restarted GMRES 
is set to 1.E-3 and that for the inner and outer 
iteration in the FGMRES algorithm are 1.E-2 and 
1.E-3 respectively. The method is implemented on 
a personal computer with Intel Dual-core CPU. 
The CPU and memory sizes are 2.99GHz and 
3.24GB, respectively. In the numerical figures 
presented below, “0.5-t” denotes 0.5-order 
hierarchical tangential vector basis functions based 
on the curvilinear triangle mesh defined in [20]. 
“1.5-t” denotes 1.5-order hierarchical tangential 
vector basis functions based on the curvilinear 
triangle mesh defined in [20]. “1-q” denotes 1-
order hierarchical Legendre basis functions based 
on curvilinear quadrilateral mesh, “2-q” denotes 2-
order hierarchical Legendre basis functions based 
on the curvilinear quadrilateral mesh, and “2-m” 
denotes 2-order maximally orthogonalized higher 
order basis functions based on the curvilinear 
quadrilateral mesh. It should be noted that the 
expressions for 1-order maximally orthogonalized 
higher order basis functions are the same as those 
of 1-order hierarchical Legendre basis functions. 

Firstly, the PMCHW computer code with 
different basis functions is compared with the 
shooting and bouncing rays method (SBR) [28]. 
The size of the rough surface is16 16λ λ× , with

0.04h λ= and 0.5x yl l λ= = , whereλ  is the free-
space wavelength. The dielectric constant is set to 

1 21, 5.4 0.04jε ε= = − . The tapered wave is 

incident at the elevation angle 030iθ = and the 

azimuth angle 00iϕ = , with tapering parameter
5.0g λ= . Figure 2 is the bistatic RCS for HH 

polarization of these methods, which shows a 
reasonably good agreement.  

In the second example the efficiency of the 
proposed method with different basis functions is 
evaluated. The size of the rough surface is
6 6λ λ× , with 0.08h λ= and 1.5x yl l λ= = . The 

dielectric constant is set to be 1 21, 2.25ε ε= = . 
The tapered wave is incident at the elevation angle

030iθ = − and the azimuth angle 00iϕ = , with 
tapering parameter 3.0g λ= . The size of the 
finest level blocks is 0.5 0.5 0.5λ λ λ× × . Figure 3 
is the bistatic RCS of different basis functions for 
HH polarization, which shows a good agreement. 
Table 1 gives comparisons of memory and time 
consumption, where “1.5-t [35,36]” denotes 1.5-
order hierarchical tangential vector basis functions 
based on the curvilinear triangle mesh defined in 
[35, 36]. It should be noted that the expressions for 
0.5-order hierarchical vector basis functions 
defined in [35, 36] are the same as those for 0.5-
order hierarchical basis functions defined in [20]. 

Fig. 2. Comparison of bistatic RCS of the 
dielectric rough surface for HH polarization. 
 

The table shows that, the hierarchical 
Legendre basis functions based on the curvilinear 
quadrilateral mesh lead to a less total CPU time 
cost than the hierarchical tangential vector basis 
functions based on the curvilinear triangle mesh. 
For triangle cells, the basis functions defined in 
[35,36] lead to better condition numbers than the 
ones defined in [20], and results in less CPU time 
cost. Furthermore, the orthogonality of the 
maximally orthogonalzed higher order basis 
functions enable  fast convergence of the iteration, 
which results in a minimum requirement of total 
CPU time.  

In the third example, we consider a perfectly 
electrical conducting (PEC) sphere buried under a 
rough surface published in [23]. The size of the 
rough surface is 8 8λ λ× , with 0.02h λ= and
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0.5x yl l λ= = . The tapering parameter is 
2.0g λ= . The dielectric constant is set to

1 21, 2 0.2jε ε= = − . A sphere of radius 0.3a λ=  
is buried under the rough surface at a depth of

0.6d λ= . 

Fig. 3. Bistatic RCS of the dielectric rough surface 
for HH polarization. 
 
Table 1: Cost comparison among different basis 
functions 

Basis  

functions 

Mesh size 

(λ ) 

Total  

unknowns 

Near field 

filling  

time (sec.) 

0.5-t 0.1 21,360 105 

1.5-t 0.2 17,760 56 

1.5-t-[35][36] 0.2 17,760 54 

1-q 0.1 14,160 151 

2-q 0.2 14,160 33 

2-m 0.2 14,160 33 

 
Basis  

functions 

Iteration 

Number 

Total  

time(sec.) 

Memory  

cost(MB) 

0.5-t 19 209 211 

1.5-t 44 253 158 

1.5-t-[35][36] 27 181 158 

1-q 13 197 112 

2-q 31 138 112 

2-m 18 94 112 

Figure 4 is the normalized RCS of different 
basis functions for HH polarization. The 
difference between the method presented in this 
paper and the references for some observation 
angles can be interpreted as that the rough surface 
used in this example is different from that in the 
references, which is a Gaussian stationary 
stochastic process. Table 2 gives comparisons of 
memory and time consumption. The table shows 
that the fill time of near field for “1.5-t” is smaller 
than that for “0.5-t”. However, due to the 
truncation of the dielectric rough surface, the 
interaction between the object and the rough 
surface, and the individual characteristics of the 
higher order basis functions, the condition 
numbers of the system become higher with the 
basis order increase. Consequently, the iteration 
time of the “1.5-t” is longer than that of “0.5-t”, 
which also applies to the Legendre basis functions. 
However, the maximally orthogonalzed higher 
order basis functions, have a smaller iteration steps 
compared to “1.5-t” and “2-q”, which results in a 
minimum requirement of total CPU time. 

Fig. 4. Normalized RCS for a PEC sphere buried 
under a rough surface. 
 

Finally, we consider a PEC sphere above a 
rough surface. The size of the rough surface is
8 8λ λ× , with 0.02h λ= and 0.5x yl l λ= = . The 
tapering parameter is 3.0g λ= . The dielectric 
constant is set to 1 21, 2 0.2jε ε= = − . A sphere 
of radius 0.3a λ=  is above the rough surface at a 
height of 0.6d λ= . Figure 5 is the bistatic RCS of 
different basis functions for HH polarization, and 
Table 3 gives comparisons on memory and time 
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consumption. Different from the third example, 
the CPU time cost of the three types basis 
functions decreases with the basis order increase, 
and the maximally orthogonalized higher order 
basis functions have a minimum requirement in 
total CPU time. 
 
Table 2: Cost comparison among different basis 
functions 

Basis  

functions 

Mesh size 

(λ ) 

Total  

unknowns 

Near field 

filling  

time (sec.) 

0.5-t 0.1 38,404 276 

1.5-t 0.2 32,000 110 

1-q 0.1 25,592 298 

2-q 0.2 25,472 64 

2-m 0.2 25,472 64 

 
Basis 

functions 

Iteration 

number 

Iteration  

time(sec.) 

Total 

time(sec.) 

Memory 

cost(MB) 

0.5-t 17 188 487 393 

1.5-t 57 506 631 296 

1-q 12 88 493 211 

2-q 87 577 663 210 

2-m 18 124 210 210 

 

 
Fig. 5. Bistatic RCS for a PEC sphere above a 
rough surface. 
 
 
 

Table 3: Cost comparison among different basis 
functions 

Basis 

 functions 

Mesh  

size(λ ) 

Total  

unknowns 

Near field 

filling  

time (sec.) 

0.5-t 0.1 38,401 415 

1.5-t 0.2 32,000 160 

1-q 0.1 25,592 439 

2-q 0.2 25,472 89 

2-m 0.2 25,472 89 

 
Basis 

functions 

Iteration 

Number 

Iteration 

time(sec.) 

Total  

time(sec.) 

Memory  

cost(MB) 

0.5-t 16 191 606 559 

1.5-t 47 437 597 415 

1-q 11 74 513 292 

2-q 28 178 267 289 

2-m 15 98 187 289 

 
IV. CONCLUSION 

Numerical simulation of the combined target 
and rough surface model is complicated by the 
truncation of the dielectric rough surface and the 
interaction between the object and rough surface. 
In this paper, four types of higher order basis 
functions are used to analyze the EM scattering 
from the target and dielectric rough surface. 
Numerical simulation shows a reasonably good 
agreement with the SBR and references. For the 
target above the rough surface or only the rough 
surface case, the hierarchical Legendre basis 
functions based on the curvilinear quadrilateral 
mesh are more efficient than the hierarchical 
tangential vector basis functions based on the 
curvilinear triangle mesh in CPU time with the 
increase of the basis order. The maximally 
orthogonalized higher order basis functions show 
an excellent efficiency in dealing with all of the 
three cases. 
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