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Abstract ─ The integral equation method 
combined with the surface-impedance boundary 
condition is applied for the analysis of propagation 
characteristics of rough lossy metal waveguides. 
The surface roughness of waveguide is random, 
and the statistical properties associated to the wall 
roughness are consistent with a Gaussian random 
process. The effects of the waveguide parameters 
on the propagation constant and attenuation 
constant are discussed rigorously, including the 
frequency, the standard deviation of height and 
correlation length of the Gaussian roughness. The 
results show that, as the  increases of correlation 
length and frequency, the propagation constant is 
increased and the attenuation constant is 
decreased; while as the increase of the standard 
deviation, the trends of the propagation constant  
and the attenuation constant are just opposite. 
 
Index Terms ─ Gaussian random process, integral 
equation, rectangular waveguide, rough surface, 
surface-impedance boundary. 
 

I. INTRODUCTION 
The surface roughness of waveguide is a 

practical reality. It may occur due to various 
reasons, such as polishing of irregular waveguide 
structures, uneven surface coating or corrugation 
of surface while fabricating the waveguides. The 
problem of roughness may also arise due to 
exposure of waveguide to environment. The 
environmental corrosion increases with ageing 
which results in increasing roughness of 
waveguide walls. The surface roughness will 
affect the propagation constant and attenuation 
constant of the waveguide, and change the cutoff 
frequency of every waveguide mode [2], so, it 
becomes very important to study the effect of 

surface roughness on electromagnetic wave 
propagation. 

There have been many numerical techniques 
presented to study the effect of surface roughness 
on waveguide [1-9], including full-wave mode-
matching method [1], finite element method [2], 
moments method [3-5], and finite-difference 
frequency-domain method [6,7]. In [2], the effect 
of surface roughness on TE10, TE20 mode cutoff 
frequencies and passbands is studied. In [3], the 
calculation for TM modes in waveguides with 
polygonal and fractal cross-sectional shapes is 
presented; in [4], the case for TE waves of 
waveguides with inner polygonal structure is 
considered. Based on the numerical techniques of 
[3, 4]. In [5], a scheme to generate an ensemble of 
realizations for wall Gaussian random rough 
profiles in circular waveguide is proposed, but 
without considering the attenuation of the lossy 
metal. The finite-difference frequency-domain 
method to compute the lossy metal waveguides is 
used in [6, 7]. In this method, the surface-
impedance boundary condition (SIBC) is applied 
for lossy metal structures. By solving the Eigen 
equation, the phase constants and attenuation 
constants can be found for a given frequency. 
However, this method is confined to solve the 
regular surface roughness waveguide. In practice, 
most waveguide is made of imperfect conductor, 
and is with random surface roughness. Thus, a 
numerical method which can be applied to 
simulate the random rough lossy waveguide 
becomes important. 

In this paper, a new integral equation method 
is presented for the analysis of propagation 
characteristics of rough lossy metal waveguides. 
The surface roughness of waveguide is random, 
and the statistical properties associated to the wall 
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roughness are consistent with a Gaussian random 
process. The attenuation of the imperfect 
conductor is considered by using the surface-
impedance boundary condition. The validity of 
this numerical technique to simulate the case of 
rough waveguide is confirmed by a comparison 
with previous results. 

The advantage of this integral equation 
method is that it can be used to analyze the 
random rough lossy waveguide and compared with 
the full wave methods, such as the FDTD method 
and MOM method, this method is easy to program. 
By using this integral equation method, the effects 
of the waveguide parameters on the propagation 
constant and attenuation constant are discussed 
rigorously, including the conductivity of the lossy 
metal, the standard deviation of height and 
correlation length of the Gaussian roughness. 
Some useful conclusions are reached.  

This paper is organized as follows. The 
numerical technique applicable to calculations of 
rough lossy waveguides is presented first; then, the 
validity of the approach is tested by a comparison 
with previous results. After that, the effects of the 
parameters of the roughness on the propagation 
constant and attenuation constant are discussed; 
and some useful conclusions are reached.  

 
II. NUMERICAL TECHNIQUE 

A cylindrical surface S of general cross-
sectional contour is shown in Fig. 1. The cross-
sectional size and shape are assumed constant 
along the cylinder axis (z direction), and the 
intersection of the cylinder with the x – y plane is 
the closed profile C. We have assumed that the 
inner space of the cylinder be vacuum. 

 
Fig. 1. Hollow cylindrical waveguide of arbitrary 
cross-sectional shape. 

 
It is a well-known fact that if we assume a 

sinusoidal time dependence i te ω−  for the fields 

inside the cylindrical waveguide, the basic 
problem reduces to finding the eigen values γ  and 
the corresponding eigen functions ( ),x yγψ , 

which represent modes of the electric field zE  
(TM-waves) or of the magnetic field zH  (TE-
waves). To find these modes, we need to solve the 
two-dimensional Helmholtz equation, 

( ) ( )2 2 , 0T x yγγ ψ∇ + = .            (1) 
2
T∇  is given by 

2 2 2 2
T z∇ = ∇ − ∂ ∂ .                    (2) 

The parameter γ can be expressed as, 
2

2 2
2 zk

c
ωγ = + ,                     (3) 

where c is light velocity , zk is the wavevector 
component of the electromagnetic wave 
propagating along the axis of the waveguide. 

We introduce a Green’s function ( )',G r rγ , 
which is the solution of the two-dimensional 
inhomogeneous Helmholtz equation, 

( ) ( ) ( )2 2 ' ', 4T G r r r rγγ π δ∇ + = − −    (4) 

where ( ),r x y=  and ( )' ' ',r x y= . The 
Green’s function can be expressed in terms of a 
Hankel function as follows: 

( ) ( ) ( )1' '
0,G r r i H r rγ π γ= −     (5) 

Applying Green’s integral theorem to the 
functions ( )rγψ and ( )',G r rγ , it obtains, 

( )
( ) ( )

( ) ( )

' '

' ' '

,1
4 ,

c

G r r r
nr d s

r G r r n

γ γ
γ

γ γ

ψ
ψ

π ψ

∂ 
 ∂=  

− ∇ ⋅  
∫





 

           (6)  
where, n is the unitary vector normal to each point 
on C outward. 

Considering the finite conductivity of the 
metal waveguide, we apply the surface-impedance 
boundary condition along the profile C.  

t a n t a nsE Z n H= ×


                     (7) 
For lossy metal waveguides, ( )1sZ i δ σ= + , 
withδ the skin depth, σ the conductivity of metal, 
and index tan the tangential field components 
around profile C. 
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      For the TE-waves, zHγψ = , 0zE = . 
Applying equation (7), we have, 

2s
iZ

n
γ

γ

ψω µψ
γ

∂
=

∂
.                    (8) 

Introducing equation (8) into equation (6), it 
obtains, 

( )
( )

( )
( )

'

'

' '

,1
4 ,

T E

c

G r r Z
r r d s

G r r n

γ

γ γ

γ

ψ ψ
π

 
 =
 − ∇ ⋅ 

∫ 

    (9) 

where, 
2

s
T E

ZZ
i

γ
ω µ

=                       (10) 

with the same manipulation, the integral equation 
for the TM-waves is, 

( )
( )

( )
( )

'

'

' '

,1
4 ,

T M

c

G r r Z
r r d s

G r r n

γ

γ γ

γ

ψ ψ
π

 
 =
 − ∇ ⋅ 

∫ 

      (11) 

with, 
2

T M
s

iZ
Z

γ
ω ε

=                         (12) 

To determine the Eigen values γ and the 
correspondence source functions ( )rγψ , we 
convert the integral equations (9) and (11) into a 
matrix equation by using a simple rectangular 
approximation to evaluate the integrals over small 
intervals. This matrix equation can then be solved 
numerically. 

The matrix equation for the source 
function ( )rγψ , is given by, 

1
0

N
n

m n
n

Lγ
γψ

=

= ∑        1, 2, . . . ,m N=      (13) 

where, ( ) ( )n
r r c nrγ γψ ψ ==  and 

( ) ( ) ( )1 2, , . . . Nr c r c r c are N equally 
spaced points on the contour. The explicit 
expression for the matrix elements can be obtained 
[5],  

( ) ( ) ( )

( )

1
0

1
0

1
4

4 2

m n m n

m n

m n

i s H d
L Z

s sH
i e

γ

γ δ

γ δ

∆ − 
 =

∆ ∆  −     

 

( ) ( ) [ ]
[ ]

( )

( )

'1
1

'

' ' ' ' ' '

1
4

1
2 4

n m nm n
m n

m n n m n

n n n n m n

X Y YH di s
d Y X X

s X Y X Y

γ
γ δ

δ
π

  −∆  − × −   − −   
∆ + − − 

 

 

   (14) 
with 

[ ] [ ]{ } 1 22 2
m n m n m nd X X Y Y= − + − , 

where s∆  is the distance on curve C between 

( )jr c and ( )1jr c + , 

with 1, 2, . . . , 1j N= − ; ( ),m mX Y  are the 

Cartesian components of the vector ( )mr c , and 
( ) ( )1
1H z is a Hankel functions of first order; 

each prime symbol denotes a derivative. For the 
TE and TM-waves, T EZ Z=  and T MZ , 
respectively. 

As can be observed from equation (13), the 
matrix equation is homogeneous; thus, the values 
of γ  can be determined from the condition, 

0m nLγ =                         (15) 
We define the function 

( ) ( )l n m nD Lγγ =               (16) 

considering that the logarithm function is 
appropriately convenient. Because of numerical 
limitations, condition (15) is satisfied 
approximately for eigenvalues 1, 2,. . . ,γ γ where 

( ) ( )1 2, , . . .D Dγ γ are minima of 

the ( )D γ function. 

The source function n
γψ can be determined by 

using a singular-value-decomposition numerical 
technique [8], with use of equation (13), which 
represents a set of homogeneous equations, where 
the matrix m nLγ  is numerically close to singular. 

Once γ  and the source function n
γψ have 

been determined, the field amplitude in the 
cylinder can be calculated, 
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( )

( ) ( )
( ) ( ) [ ]

[ ]

1
0

'1
1

1
'

,
4

n
N

n
n nn

n

n n n

H d Z
i sx y x y yH d

d y x x
γ γ

γ

ψ ψ γ
γ=

 
 ∆
 =  −

− ×     − −  

∑  

(17) 

with [ ] [ ]{ } 1 22 2
n n nd x x y y= − + − . 

 
III. VALIDATION 

In this section, the numerical technique 
presented above is validated by a comparison with 
previous results. 

A metal rectangular waveguide with width 
a =19.05 mm, height b =9 mm, and 
conductivity 75 . 8 1 0σ = × S/m (the 
conductivity of copper) is considered [7]. 
Wavevector component zk jα β= + , with 
β  the propagation constant,  and α  the 
attenuation constant. The numerical results of β  
and α  with respect to frequency calculated by the 
integral equation method are presented in Fig. 2 
and 3. For comparison, the results of [7] are also 
shown in these figures. It can be seen from these 
figures that, the numerical results calculated by 
using the integral equation method agree well with 
the results of [7]. 

 

 
Fig. 2. Propagation constant β of a metal empty 
rectangular waveguide. 
 

IV. DISCUSSION 
By using the numerical technique presented 

above, we discuss the effects of the waveguide 
parameters on the propagation constant and 

attenuation constant, including the conductivity 
σ of the lossy metal, the standard deviation of 
height D and correlation length c ol of the 
Gaussian roughness. The ensembles of profiles 
with these statistical properties are generated by 
using the method presented in [5]. Considering the 
randomicity, we take into account one hundred 
realizations for a calculation; then, we get the 
statistical average value of these results. 
 

 
Fig. 3. Attenuation constant α of a metal empty 
rectangular waveguide. 
 

 
Fig. 4. Simplified model for rectangular 
waveguides with Gaussian rough surface 
 

The dimension of the rough waveguide is 
a b= = 8mm, as shown in Fig. 4. In this 
figure, both the standard deviation of height D  
and correlation length c ol are equal to 0.01mm.  
 
A. Effect of the conductivity σ  

Supposing the waveguide is regular ( D =0), 
and keeping the work frequency unchanged, by 
using the integral equation method, we can get the 
variations of the propagation constant β and 
attenuation constant α with respect to waveguide 
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conductivity σ , as shown in Figs. 5 and 6. Here, 
we consider the first four modes of the regular 
waveguide: TE10, TE11, TM11, and TM21 
modes.  

It can be seen from Fig. 5, that as the increase 
of the conductivity σ , the propagation constants 
β of the TE modes are increased, and the 
propagation constants β of the TM modes are 
decreased. The attenuation constants α , both for 
the TE modes and TM modes, are all decreased as 
the increase of conductivity σ , as shown in Fig. 
6. Besides, it can be seen form these two figures 
that when the conductivity σ increase to 75dbs/m 
(about 75 . 8 1 0× s/m, the conductivity of 
copper), the variations of the propagation constant 
β  and attenuation constant α with respect to 
conductivity σ are not obvious, which means that, 
when exceeding the conductivity of copper, the 
effect of σ on the propagation performance of the 
waveguide is not considerable. 
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Fig. 5. The variations of the propagation constant 
β with respect to conductivity σ . 
 
B. Effect of the standard deviation of height D  

We let the conductivity of the waveguide 
75 . 8 1 0σ = × S/m, the correlation length 

c ol =0.05, and keep the work frequency 
unchanged. In this section, we discuss the effects 
of the standard deviation of height D  of the 
Gaussian rough waveguide on the propagation 
constant β and attenuation constant α . 

By using the integral equation method, we can 
get the variations of propagation constant β and 
attenuation constant α with respect to standard 
deviation of height D , as shown in Figs. 7 and 8. 
It can be seen from these two figures that, as the 
increase of D , for both the TE and TM modes, the 
propagation constants β  are decreased and the 
attenuation constants α are increased. 
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Fig. 6. The variations of attenuation constant 
α with respect to conductivity σ . 
 
C. Effect of the correlation length c ol  

Supposing the conductivity of the waveguide 
75 . 8 1 0σ = × S/m, standard deviation of 

height D =0.03, and keeping the work frequency 
unchanged, by using the integral equation method, 
we can get the propagation constant β and 
attenuation constant α for different correlation 
length c ol , as shown in Figs. 9 and 10. It can be 
seen from these figures that, as the increase of 

c ol , for both the TE and TM modes, the 
propagation constants β  are increased and the 
attenuation constants α are decreased. 
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Fig. 7. The variations of the propagation constant 
β with respect to standard deviation of height D . 
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Fig. 8. The variations of attenuation constant 
α with respect to standard deviation of height. 
 
D. Effect of work frequency f  

To discuss the effect of the work frequency 
f on the propagation constant β and attenuation 

constant α , we suppose conductivity of the 
waveguide 75 . 8 1 0σ = × S/m, standard 
deviation of height D =0.03, and correlation length 

c ol =0.05. The variations of propagation constant 
β and attenuation constant α  with respect to 
frequency f are shown in Figs. 11 and 12. 
Obviously, as the increase of f , the propagation 
constants β  are increased and the attenuation 
constants α  are decreased. 

The dotted lines in Fig. 12 represent the 
variations of attenuation constant α with respect 
to work frequency in a smooth waveguide for 
every mode. It can be seen from this figure that, 
the variations of attenuation constant with respect 
to work frequency f for the rough waveguide is 
the same as that for the smooth waveguide. 
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Fig. 9. The variations of the propagation constant 
β with respect to correlation length c ol . 

 

 
 

 

 
 

 
Fig. 10. The variations of attenuation constant 

α with respect to correlation length c ol . 
 

The discrepancy of the propagation constant 
β between perfect conductor waveguide and 
copper waveguide is defined as, 

p c

e r p

β β
β

β

−
= ,                      (18) 

where  pβ , cβ is the propagation constant of 
perfect conductor waveguide and copper 
waveguide calculated by using integral equation 
method, respectively. 
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Similarly, the discrepancy of the attenuation 
constant α is defined as, 

p c

e r p

α α
α

α

−
= ,                   (19) 

For TE10, TE11, TM11, and TM12 modes, the 
e rβ and e rα for different work frequency f are 

shown in Tables 1-4. It can be seen from these 
tables that, for all the modes, the discrepancies of 
β  and α between perfect conductor waveguide 
and copper waveguide are decreased as the 
increase of the frequency f , which means that the 
effect of the loss metal on the propagation 
performance of the waveguide is decreased as the 
increase of frequency  f . 
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Fig. 11. The variations of the propagation constant 
β with respect to work frequency f  
 

 

Fig. 12. The variations of attenuation constant 
α with respect to work frequency f  
 
Table 1: The e rβ and e rα of TE10 mode for 
different work frequency 

f （GHz） e rβ （%） e rα （%） 
20 3.18 3.79 
24 0.99 2.27 
28 0.23 1.65 
32 0.18 0.88 
36 0.16 0.71 
40 0.14 0.69 

 
Table 2: The e rβ and e rα of TE11 mode for 
different work frequency 

f （GHz） e rβ （%） e rα （%） 
30 1.12 2.19 
34 0.73 1.81 
38 0.24 0.59 
42 0.16 0.55 
46 0.16 0.40 
50 0.15 0.33 

 
Table 3: The e rβ and e rα of TM11 mode for 
different work frequency 

f （GHz） e rβ （%） e rα （%） 
30 2.30 2.41 
34 0.76 0.79 
38 0.65 0.68 
42 0.42 0.43 
46 0.33 0.35 
50 0.28 0.28 

 
Table 4: The e rβ and e rα of TM21 mode for 
different work frequency 

f （GHz） e rβ （%） e rα （%） 
50 0.71 0.74 
54 0.57 0.58 
58 0.53 0.54 
62 0.30 0.31 
66 0.21 0.21 
70 0.21 0.21 
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V. CONCLUSION 
An integral equation method has been 

performed to evaluate the propagation 
characteristic of the random rough lossy 
waveguide. It has been shown that the propagation 
characteristic strongly depends on the frequency, 
the standard deviation of height and correlation 
length. As the correlation length and frequency 
increases, the propagation constant is increased 
and the attenuation constant is decreased; while as 
the increase of the standard deviation, the trends of 
the propagation constant  and the attenuation 
constant are just opposite. Those results may have 
interesting applications for optical 
telecommunication and hollow dielectric film 
coated waveguide for THz radiation. 
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