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Abstract ─ Main purpose of this paper is to 
present a solution to electromagnetic scattering by 
bianisotropic dispersive materials. The presented 
solutions provide a reference baseline that can be 
used for comparison reasons by other researchers 
dealing with scattering by bianisotropic dispersive 
media. The solution algorithm based on the 
method of moments and mixed potential equations 
is tested through a few cases of dispersive 
scatterers and first known solutions to these 
problems are obtained. The proposed method has 
an advantage over the time domain methods as it 
does not rely on the Z-transform of the analytical 
expressions necessary to be used when dispersive 
media are present in the problem of interest.  
  
Index Terms ─ Chiral, chiroferrite, dispersive, 
electromagnetic scattering, ferrite, and method of 
moments.  
 

I. INTRODUCTION 
Dispersive materials belong to the category of 

bianisotropic media, for which the following 
constitutive relations apply, 
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where   is the permittivity tensor,   is the 

permeability tensor, and   and   are the 
magnetoelectric tensors. In this paper, the overbar 
"–" denotes a vector and the double overbar "=" 
denotes a tensor.  

Let us consider an inhomogeneous 
bianisotropic body of arbitrary three-dimensional 

shape characterized by the constitutive relations 
shown in equation (1). As shown in Fig. 1, if the 
body is illuminated by a time-harmonic 

electromagnetic wave with tje   dependence, the 
fields in the body are described by Maxwell's 
equations as, 
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where epJ  and mpJ  are the electric and 

magnetic polarization currents, and eb  and mb  
are electric bound charges and magnetic bound 
charges, respectively, that can be related to the 
electric and magnetic polarizations as given in [1]. 

 
 

Fig. 1. Inhomogeneous bianisotropic body in free 
space illuminated by an electromagnetic wave. 
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Separating the total fields into the incident field 

component  incinc HE ,  produced by the primary 

sources and the scattered component  ss HE ,  
produced as a result of scattering from the 
bianisotropic body, and then introducing the  
magnetic vector potential A , the electric scalar 
potential V, the electric vector potential F , and 
the magnetic scalar potential U, the total fields can 
be written as in [1], 
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The surface integrals can be calculated as follows, 
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If the unknown quantities E  and H  in the 
constructed integral equations are expressed in 
terms of D  and B , and then RWG basis functions 
[2, 3] and Galerkin's method are used. Equations 
(3) and (4) can be transformed into the system of 
linear equations, 
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where Z mn, A mn, C mn, and Ymn are N by N matrices 
and Dn, Bn, En, and Hn are N dimensional vectors. 
The detailed analytical expressions for matrix 
elements Z mn, A mn, C mn, and Ymn are given in [1]. 

II. DISPERSIVE PROPERTIES OF 
FERRITE AND CHIRAL MEDIA 

Although obtaining the analytical expressions 
of the material dispersion is not required by this 
method, the dispersion properties of the ferrites 
and chiral media are still given, in case researchers 
need to solve the problems in a time domain 
method for comparison in the future [4]. When the 
expressions modeled from the real world are 
evaluated, the constitutive parameters assigned to 
the material have some physical meaning.  

When biased by a DC magnetic field 

00 ˆBzB  , ferrite materials, whose permittivity 

tensor I0  , are characterized by their 

permeability tensors  r 0   where, 
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The elements in the permeability tensor are 
formulated as in [5], 
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where   is the ferrite damping factor, 0  is the 

Larmor precession frequency and m  is the 
saturation magnetization frequency.  

The Larmor precession frequency 0  and the 

saturation magnetization frequency m  are 
determined by the DC magnetic field bias by, 
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where m  is the gyromagnetic ratio, H0 is the 
magnitude of the applied DC magnetic field, and 
M0 is the magnitude of saturated magnetization 
vector. 0M   is in the same direction as the applied 

magnetic field 0H .  
Once the Larmor precession frequency, 

saturation magnetization frequency, and ferrite 
damping factor are given, the permeability tensor 
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  can be evaluated at any frequency. For 
example, if we consider a ferrite material with the 

parameters of 9
0 1022 , 1.0   , and 

91022  m , we have, at 0.4 GHz, 
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at 0.6 GHz, 
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at 1 GHz, 
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and at 1.2 GHz, 
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The constitutive equations for dispersive chiral 
media can be written as, 
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In most of the cases, the Lorentz model is used 
to characterize the dispersive nature of permittivity 
and permeability. The Condon model is generally 
used to describe the dispersive nature of chirality 
[6]. The Lorentz model is in the form, 
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The Condon model is in the form, 
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If a chiral material with the following parameters 
is considered, 
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the constitutive parameters can be evaluated at 
different frequencies. We have, at 0.4 GHz,  
 

jr 6240.09950.4  ; jr 1456.07988.1  ;

j0128.01026.0  ,  
 

at 0.6 GHz,  
 

jr 9803.09735.4  ; jr 2287.07938.1  ;

j0314.01586.0  , 
 

at 1 GHz,  
 

jr 8462.17692.4  ; jr 4308.07462.1  ;

j1149.02874.0  , 
 

and at 1.2 GHz,  
 

jr 3389.24948.4  ; jr 5457.06821.1  ;

j2003.03561.0  . 
 

In following sections, we will investigate the 
scattering fields that involve the mixtures of the 
ferrite and the chiral materials using the above 
evaluated constitutive parameters. 

 
III. DISPERSIVE HOMOGENIZED 

CHIROFERITE SPHERE 
When equal volume of a ferrite material and a 

chiral material are mixed homogeneously, 
although currently there is no analytic model for 
the constitutive parameters of such a mixture, as 
an engineering approximation, one may assume 
that the material can be described on a 
macroscopic scale by the constitutive parameters, 
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where chiral , chiral , chiral , and chiral  are the 
constitutive tensors for the chiral material, and  
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ferrite , ferrite , ferrite , and ferrite  are the 

constitutive tensors for ferrite material. Again, it is 
important to stress that the approximation 
proposed above does not have any physical or 
practical meaning but it is merely introduced here 
to test the validity of the proposed solution in the 
absence of a real-world material of chiroferrite 
nature. 

For the chiral material, we have 

Ichiralrchiral ,0  , Ichiralrchiral ,0  , 

Ijchiral 00  , and Ijchiral 00   

where chiralr ,  is the relative permittivity of the 

chiral material, chiralr ,  is the relative permeability 

of the chiral medium, and   is the chirality 
parameter of the chiral material.  

For the ferrite material, we have Iferrite 0  , 

ferriterferrite ,0  , and 0 ferriteferrite  , where 

ferriter ,  is the relative permeability tensor of the 

ferrite material. Mixing homogeneously the chiral 
material and ferrite material mentioned in section 
II, the corresponding macroscopic constitutive 
parameters of the chiroferrite material can be 
evaluated at any frequency. 

This section presents the results of scattering 
from such a dispersive homogenized chiroferrite 
sphere shown in Fig. 2. The sphere is of radius R = 
7.2 cm and is illuminated by a plane 
electromagnetic wave propagating in the z 
direction, which has the electric field component 

in the x direction, i.e., zjkincinc eExE 0ˆ   and 
zjkincinc eHyH 0ˆ   where 1incE  [V/m]. 

 

 
 

Fig. 2. A homogenized chiroferrite sphere 
illuminated by an EM plane wave. 

 

A sphere of radius R is constructed and 
meshed by 520 tetrahedra and 1184 faces. As the 
first step of developing this mesh, the entire outer 
surface of sphere has been approximated by a grid 
of 72 triangles. Then a tetrahedral mesh has been 
grown from the outer triangulated surface into the 
sphere, producing a total of 256 tetrahedra and 548 
faces. In order to achieve better accuracy of 
numerical results, refinement of the mesh in the 
close proximity of the outer surface has been 
undertaken, increasing the total number of 
tetrahedra to 520 and faces to 1184. At last, the 
radius of the sphere has been adjusted so that the 
total volume of the tetrahedral approximation of 
the sphere is equal to the actual volume of the 
initial sphere. 

The numerical results are obtained at the 
frequencies of 0.4 GHz, 0.6 GHz, 1 GHz, and 1.2 
GHz. The corresponding values of k0R are 0.6032, 
0.9048, 1.508, and 1.809, respectively. Figures 3 
and 4 show the co-polarized and cross-polarized 
bistatic radar cross sections σθθ of  = 0o and σθ of 
 = 0o. It is noticed that the RCS of such a 
homogenized chiroferrite scatterer is similar to 
that of the two-layered chiroferrite sphere 
presented in [1] because they are composed of the 
same basic materials and dimensions. 

 
 
 

 
 

Fig. 3. Bistatic radar cross section σθθ of a 
homogenized chiroferrite sphere of radius R = 7.2 
cm illuminated by an EM plane wave at 
frequencies of 0.4 GHz, 0.6 GHz, 1 GHz, and 1.2 
GHz. 
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Fig. 4. Bistatic radar cross section σθ of a 
homogenized chiroferrite sphere of radius R = 7.2 
cm illuminated by an EM plane wave at 
frequencies of 0.4 GHz, 0.6 GHz, 1 GHz, and 1.2 
GHz. 

 
IV. DISPERSIVE HOMOGENIZED 

CHIROFERITE CUBE 
In this section we present results for 

electromagnetic scattering from a dispersive 
homogenized chiroferrite cube illuminated by a 
plane electromagnetic wave. The macroscopic 
constitutive parameters of the chiroferrite material 
are obtained in section III. The length of a side of 
the cube is d = 14 cm. The dimension for the cube 
makes its size similar to that of the sphere 
investigated in section III. The incident plane 
electromagnetic wave propagates in the z 
direction, and it has the electric field component in 

the x direction, i.e., zjkincinc eExE 0ˆ   and 
zjkincinc eHyH 0ˆ   where 1incE  [V/m], as 

shown in Fig. 5. 

 
Fig. 5. A homogenized chiroferrite cube 
illuminated by an EM plane wave. 

A meshing process similar to that in section III 
is realized, resulting in a total of 768 tetrahedra 
and 1632 faces. The numerical results are obtained 
at the frequencies of 0.4 GHz, 0.6 GHz, 1 GHz, 
and 1.2 GHz. The corresponding values of k0d are 
1.1729, 1.7593, 2.9322, and 3.5186, respectively. 
Figures 6 and 7 show the co- and cross-polarized 
bistatic radar cross sections σθθ of  = 0o and σθ of 
 = 0o. It is noticed that the RCS of such a cubic 
scatterer is at similar level of the ones of the 
homogenized chiroferrite sphere in section III 
because both cases are made of same materials and 
in have similar dimensions. We also note that the 
angular responses (dependence on θ) are different 
between the spherical and cubic scatterers. In 
particular, at f = 1.2 GHz, the difference is more 
pronounced. 

 

 
 

Fig. 6. Bistatic radar cross section σθθ of a 
homogenized chiroferrite cube of  d = 14 cm 
illuminated by an EM plane wave at frequencies of 
0.4 GHz, 0.6 GHz, 1 GHz, and 1.2 GHz. 
 

V. DISPERSIVE HOMOGENIZED 
CHIROFERITE CYLINDER 

 In this section we present results for 
electromagnetic scattering from a finite circular 
cylinder of dispersive homogenized chiroferrite 
illuminated by an EM plane wave. The 
macroscopic constitutive parameters of the 
chiroferrite material are obtained in section III. 
The radius of the cylinder is R = 7 cm and the 
height of the cylinder is h = 14 cm. These 
dimensions for the cylinder make its size similar to 
that of the sphere investigated in section III. The 
incident plane wave propagates in the z direction, 
and it has the electric field component in the x 

direction, i.e., zjkincinc eExE 0ˆ   and 
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zjkincinc eHyH 0ˆ   where 1incE  [V/m], as 
shown in Fig. 8. 
 

 

 
 
Fig. 7. Bistatic radar cross section σθ of a 
homogenized chiroferrite cube of  d = 14 cm 
illuminated by an EM plane wave at frequencies of 
0.4 GHz, 0.6 GHz, 1 GHz, and 1.2 GHz. 

 

 

 
 
Fig. 8. A homogenized chiroferrite cylinder 
illuminated by an EM plane wave. 

 
A meshing process similar to that in section III 

is realized, resulting in a total of 864 tetrahedra 
and 1920 faces. The numerical results are obtained 
at the frequencies of 0.4 GHz, 0.6 GHz, 1 GHz, 
and 1.2 GHz. The corresponding values of k0h are 
1.1729, 1.7593, 2.9322, and 3.5186, respectively. 
Figures 9 and 10 show the co- and cross-polarized 
bistatic radar cross sections σθθ of  = 0o and σθ of 
 = 0o. It is noticed that the RCS of such a 
scatterer is at similar level of the RCS of the 
homogenized chiroferrite sphere or cube in 
sections III and IV because they are made of the 
same materials and in have similar dimensions. 

 
 

Fig. 9. Bistatic radar cross section σθθ of a 
homogenized chiroferrite cylinder of radius R = 
7cm and height h = 14 cm illuminated by an EM 
plane wave at frequencies of 0.4 GHz, 0.6 GHz, 1 
GHz, and 1.2 GHz. 
 

 
 

Fig. 10. Bistatic radar cross section σθ of a 
homogenized chiroferrite cylinder of radius R = 7 
cm and height h = 14 cm illuminated by an EM 
plane wave at frequencies of 0.4 GHz, 0.6 GHz, 1 
GHz, and 1.2 GHz. 

 
VI. CONCLUSION 

Taking advantage of the flexibility of the 
method presented in [1], scattering problems that 
involve dispersive bianisotropic materials are 
solved and presented in this paper. As an example, 
the method is applied to investigate the scattering 
fields from a dispersive chiroferrite material in 
which chiral materials and ferrite materials are 
mixed. Currently, these problems are difficult to 
solve by conventional methods. The solutions to a 
few of these problems are presented in [7]. This 
paper represents a more comprehensive report on 
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the same work. The combination of chirality and 
anisotropic property makes these problems 
difficult to solve by other current frequency 
domain methods that may handle either chirality 
or the anisotropic property one at a time but not 
both at the same time. The ferrite material and 
chiral material are assumed dispersive, i.e., the 
constitutive relations have frequency dependency.  

As discussed earlier, this method has the 
advantage over the time domain methods. The 
time domain methods rely on the Z-transform of 
the analytical expressions that describe the 
dispersion properties of the material. And these 
analytical expressions are in many cases very 
difficult to obtain. When there is more than one 
kind of dispersive material involved, the situation 
becomes even more complicated for these 
methods. If the material is of a periodic nature, 
homogenization techniques may be used to 
simplify the problem [8]. Corresponding computer 
programs need to be adapted for the different 
dispersion properties of the materials. The solution 
algorithm used in this paper is based on the 
method of moments. In the method of moments, 
problems are solved in the frequency domain, and 
as long as the numerical values of the material 
properties at the operating frequency are provided, 
there is no need to obtain the analytic expressions 
of the material dispersion over a frequency band.  
The main goal of this article is not to provide a 
comprehensive analytical solution to the problems 
of interest as the analytical algorithm is described 
and derived in detail by the same authors in [1]. 
Scattering by dispersive media with mixed chiral 
and anisotropic properties has not been extensively 
studied in the past. To our best knowledge, there 
was no research reported that would provide 
solution to this type of scattering problems and 
that can be used as a reference to check validity of 
proposed algorithms. This article intends to fill 
that gap. With this article, the authors offered a 
solution to a few scenarios of scattering by mixed 
chiral and anisotropic media that can be used by 
other researchers as a baseline to confirm validity 
of their solutions to the problems of similar nature. 
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