
Electromagnetic Shielding of Resonant Frequency-Selective 

Surfaces in Presence of Dipole Sources 
 

 

G. Lovat, R. Araneo, and S. Celozzi 
 

Department of Astronautical, Electrical and Energetic Engineering 

University of Rome “Sapienza”, Via Eudossiana 18, 00184 Roma, Italy 

giampiero.lovat, rodolfo.araneo, salvatore.celozzi@uniroma1.it 

 

 

Abstract ─ The shielding problem consisting in 

the interaction between a dipole source and a 

Frequency-Selective Surface (FSS) is investigated. 

The Array Scanning Method (ASM) is adopted to 

take into account all the propagating and 

evanescent waves, which constitute the spectrum 

of the dipole and all the propagating and 

evanescent Floquet modes, which constitute the 

spectrum of the diffracted field by the FSS. The 

main differences with respect to the shielding of a 

conventional plane-wave source are pointed out, 

especially in terms of resonant frequencies, 

operating bandwidth and transmission levels. 

 

Index Terms ─ Electromagnetic shielding, 

frequency selective surfaces and periodic 

structures. 
 

I. INTRODUCTION 
Frequency Selective Surfaces (FSSs) are 

periodic structures along two dimensions, often 

planar. They may consist of either metallic 

elements or apertures cut in a metallic plate, 

periodically arranged in a two-dimensional (2-D) 

array; multi-layer lattices are generally considered. 

The main characteristic of an FSS is its capability 

to be effectively reflecting Electromagnetic (EM) 

fields in a given frequency range and almost 

completely transparent out of this interval, 

showing filtering properties. FSSs are attractive 

for many applications and can act as polarizers, 

filters, subreflectors, RAMs, superstrates for 

antennas, shields; e.g., [1]. The FSS EM behavior 

and performance mainly depend on the geometry 

of the single element and on the spatial periods; 

moreover, in general, they are also quite sensitive 

to the characteristics of the incident wave (incident 

angles and polarization, if a conventional plane-

wave excitation is used) [2]. In recent years, in 

addition to the study of artificial periodic screens 

with high-pass behaviors [3], [4], many efforts 

have been spent in order to design FSSs with 

miniaturized elements, polarization and angular 

stability and multiband operation [5]-[11]. 

However, very often, the incident field has 

been typically assumed as that of a uniform plane 

wave; only recently, the interaction between a 

finite source (such as an elemental dipole) and an 

infinite periodic structure has been addressed [4], 

[12]-[18] since the conventional Floquet theory 

cannot be applied directly and some alternatives 

must be explored. 

The novelty of the present investigation with 

respect to published papers is resumed as 

follows: 

i) First of all, as far as we know, this is the first 

time that the interaction between a dipole 

source and a resonant infinite periodic screen is 

considered. In previous works, the considered 

periodic screens were basically high-pass 

structures with no resonant properties. 

ii) The resonant behavior of the considered 

structures allows us to investigate how classical 

figures of merit, such as level of transmission, 

resonant frequency, resonant bandwidth, etc., 

change when a finite dipole source is 

considered instead of a classical plane-wave 

excitation. In fact, when the dipole is close to 

the periodic screen the evanescent part of its 

spectrum can strongly interact with the periodic 

screen; thus, spoiling the classical plane-wave 

response 

iii) Some peculiar behaviors are pointed out when 

vertical dipoles are considered. While far-
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interacting horizontal dipoles mainly behave as 

suitably polarized plane waves, far-interacting 

vertical dipoles do not have the corresponding 

plane-wave counterparts; so the response of the 

periodic screens to such sources may be 

particularly interesting. 

In this paper, the shielding properties of 

resonant FSSs in the presence of dipole sources in 

their proximity are studied. The frequency-

selective behavior is first studied in the presence 

of a conventional plane-wave excitation in order to 

point out the standard and generally considered 

response; then more realistic electric and magnetic 

dipole sources characterized by different distances 

and orientations are analyzed. 

 

II. DESCRIPTION OF THE PROBLEM 
The EM configuration is reported in Fig. 1. It 

consists of an incident far or near field (which can 

be either that of a uniform plane wave or that of a 

near electric or magnetic-dipole source, 

respectively) impinging on an FSS periodic along 

the x  and y directions with spatial periods 
x
p  and 

y
p . 

 

 
 

Fig. 1. Two-dimensional (2-D) periodic screen, 

excited either by a finite-dipole iD  or a plane-

wave (PW) source. 

 

The unit cell of the periodic FSS is constituted 

by Perfectly Conducting (PEC) elements or 

apertures cut in a PEC plane; a dielectric foam 

(
r
1 ) is considered as host medium: different 

dielectric hosts call for more sophisticated 

numerical acceleration techniques [19], [20] and 

for simplicity are not considered here, since the 

main features are not affected by this choice 

(except when unconventional substrates are used 

[21]). 

A time-harmonic dependence ej t is assumed 

and suppressed throughout. The electric or 

magnetic shielding effectiveness (SE) is adopted 

as a performance parameter [22]. 

 

III. PLANE-WAVE EXCITATION 
It is well known that in the presence of a 

plane-wave excitation (which is a particular type 

of Floquet-periodic source) the analysis can be 

simplified by restricting the computational domain 

(which in principle, is infinite) to a single unit cell 

by enforcing periodic boundary conditions and 

using a periodic Green’s function [23]. The 

integral equation which describes the problem can 

next be obtained by enforcing the Electric-Field 

Integral Equation (EFIE); i.e., the null of the total 

tangential electric field on the PEC elements of the 

unit cell. The total electric field 
tot
E is the sum of 

the incident plane-wave field 
inc
E  and the 

scattered field 
sc
E  given by: 

 psc , d
EJ

SS
E r G r r J r r , (1) 

where p
EJ
G is the EJ-type dyadic periodic Green’s 

function, SJ  is the unknown current density 

induced over the surface S of the conductors 

within the unit cell and r and r are the vectors 

from the origin to the source and observation 

points, respectively. The solution of the EFIE can 

be obtained by expanding the unknown SJ  

through suitable vector basis functions and 

applying a Galerkin testing procedure for the final 

discretization. From the knowledge of SJ , the 

scattered field 
sc
E  (and thus, the total field 

tot
E ) 

can finally be obtained. 

In dealing with FSSs constituted by arrays of 

apertures cut in a PEC plane, the aforementioned 

integral equation can still be constructed with the 

electric current density SJ  defined on the PEC 

surface of the unit cell. As an alternative, the 

522 ACES JOURNAL, Vol. 29, No. 7, JULY 2014



equivalence theorem may be applied by enforcing 

the continuity of the tangential magnetic field on 

the apertures of the unit cell surface A; thus, 

deriving an integral equation whose unknowns are 

equivalent magnetic currents AM . It is well-

known that the kernel of the integral equation does 

not change; there is only a change in the unknown 

and in the incident field (the electric field in the 

former case, the magnetic field in the latter one). 

Actually, to efficiently solve the derived 

integral equations by means of the MoM 

technique, it is numerically more convenient to 

recast them in a Mixed-Potential Integral Equation 

form (MPIE) [24], [25] by introducing the 

magnetic vector and electric scalar potentials A 

and V for electric sources SJ  (and possibly the 

electric vector and magnetic scalar potentials F 

and W for magnetic sources AM ), respectively; so 

that the convolution terms can be expressed as: 

 1

EJ

A V

j V

j G
j

E J G J A

G J J
, (2a) 

 0

0

1

1

HJ

A

H J G J A

G J
, (2b) 

 0

0

1

1

EM

F

E M G M F

G M
, (2c) 

 1

HM

F W

j W

j G
j

H M G M F

G M M
, (2d) 

where the symbol  denotes the superposition 

integral, while 
,AF

G and ,V WG are the potential 

periodic 2-D Green’s functions for electric or 

magnetic currents and charges, respectively; 

calculated by means of the Ewald method, the 

spectral and spatial representations of the periodic 

Green’s function are combined to obtain a final 

expression in terms of a sum of two fast-decaying 

Gaussian convergent series [24]-[26]. The Ewald 

method has efficiently been applied also for 1-D 

and 3-D periodic Green’s functions [27], [28]. 

A standard MoM procedure is then 

considered; either the PEC parts or the apertures in 

the unit cell can be discretized through non-

overlapping triangles and the unknown current 

densities ( SJ  or AM , respectively) can be 

expanded by a set of second-order subdomain 

basis functions, which provide a linear-

normal/quadratic-tangent (LN/QT) representation 

of the vector quantities [29] and result more 

accurate and smoother than conventional RWG 

basis functions and first-order triangular patches 

(LL) [30]. All the singular terms present in the 

source integrals (proportional to 1 / r r ) can 

be extracted and integrated analytically [31], while 

the remaining (source and testing) integrals can be 

computed by means of standard Gaussian formulas 

[32]. 

 

IV. DIPOLE EXCITATION 
The first step in the application of the ASM is 

the expression of the finite source as a 

superposition of infinite auxiliary Floquet periodic 

sources having the same periods of the original 

periodic structure. The well-known Floquet theory 

[23] can then be applied to each elemental 

Floquet-periodic problem (FPP, characterized by 

the values of the phase shifts qx and qy); thus, 

restricting the computational domain to a unit cell. 

Once the auxiliary FPPs are solved, the solution of 

the original problem is reconstructed by 

superposition through the ASM identity. In fact, 

for 2-D periodic configurations, the ASM exploits 

the following identity: 

0
,

e d d

y x

y x

x x y y

p p

xy mn
m n

p p

j q mp q np
x y

p

q q

r r r r
, (3) 

where 

 
2

2

x y
xy

p p
p , (4) 

 is the Dirac delta generalized function, 

0mn mnr r p , with 0 0 0 0x y zx y zr u u u  
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and mn x x y ymp npp u u . Therefore, the 

single aperiodic dipole source iD  (where iD  can 

be either iJ  or iM  ) directed along the unit vector 

Du  can be expressed as: 

 

0 0 D

FP , , d d
y x

y x

i

p p

xy i x y x y

p p

D

p q q q q

D r r r u

D r
, (5) 

with 

 

FP
0
,

D

, ,

e x x y y

i x y mn
m n
j q mp q np

q q DD r r r

u

. (6) 

For each auxiliary source FP
iD  with phase 

shifts qx and qy, we have a single FPP; which can 

be solved as described in the previous section. 

With respect to the canonical problem involving a 

plane-wave excitation, the only difference is the 

incident field, which is now produced by a 2-D 

phased array of dipoles in free space. The total 

field due to each auxiliary source FP
iD  in the 

presence of the periodic structure is the sum of the 

incident field and of the field scattered by the 

periodic loading. The final step of the ASM 

procedure is the reconstruction of the total field 

produced by the dipole source through the 

superposition of the auxiliary total fields by means 

of the ASM identity (3). 

Several details on the numerical 

implementation of the ASM for 2-D periodic 

structures can be found in [17]; features of the 

configurations considered in this work are 

presented in the next Section. 

 

V. NUMERICAL RESULTS 
Two different resonant FSSs are considered as 

case studies: a metallic Jerusalem-Cross (JC) and a 

Double-Loop (DL), shown in Figs. 2 (a) and 2 (b), 

respectively; with the relevant geometric 

parameters. 

The structures have been designed in order to 

present the first resonant frequency at about 1.9 

GHz. 

 

 
 

Fig. 2. Unit cells (dashed areas) of the two 

considered FSSs: Jerusalem-Cross (JC) and 

Double-Loop (DL). Parameters: p=3.44 cm, 

d=2.24 cm, w=0.16 cm and g=0.08 cm for the JC 

FSS and p=3.66 cm, l=3.33 cm, w=0.3 cm and 

g=0.3 cm for the DL FSS. 

 

In all the reported results, both the dipole 

source and the observation point for SE 

evaluations have been located along the z axis 

(i.e., (x, y)=(0, 0), in the center of the unit cell); 

moreover, the observation point has also been 

placed in the far field at z>50 p, for both the 

structures. In Fig. 3, we report the SE of the JC for 

incident (a) TE and (b) TM plane waves at =0, 

/6, /3 as a function of frequency f along the =0 

plane. As it can be seen, for TE incidence, the 

resonant frequency of the periodic screen is quite 

stable at fres=1.9 GHz; whereas, for TM incidence 
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is more sensitive to the incident angle, although it 

remains between 1.9 and 2 GHz. 

 

 
(a) 

 
(b) 

 

Fig. 3. SE of the metallic JC FSS in Fig. 2 as a 

function of frequency under: (a) TE and (b) TM 

plane-wave incidence for different incidence 

angles  along the =0 plane. 
 

It is then interesting to study how the SE 

changes by placing a dipole source at zs closer and 

closer to the screen; thus, considering a real near-

field source. This is illustrated in Fig. 4 at the 

operating frequency fres=1.9 GHz. It can be seen 

that the SE for both horizontal and vertical dipoles 

of both electric and magnetic type can change by 

almost 20 dB with small variations of zs (from 5 

mm to 30 mm); whereas, for larger values of zs, 

the horizontal dipole results converge to the 

normally-incident plane-wave SE (and the 

horizontal dipole; thus, gains the characteristics of 

a far-field source). This is consistent with the fact 

that a Horizontal Electric Dipole (HED) behaves 

in the far field as a TE plane wave, while a 

Horizontal Magnetic Dipole (HMD) as a TM 

plane wave; since source and observation points 

lie along the z axis, the associated TE and TM 

plane waves behave as normally incident TEM 

plane waves. 

 

 
 

Fig. 4. SE of the JC FSS in Fig. 2 as a function of 

the dipole-screen distance zs for different dipole 

types and orientations at the resonant frequency 

fres=1.9 GHz for normal plane-wave incidence. 

 

 
(a) 

 
(b) 

 

Fig. 5. SE of the JC FSS in Fig. 2 as a function of 

frequency for: (a) electric and (b) magnetic dipoles 

at the dipole-screen distance zs=10 mm. 
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On the other hand, since vertical dipoles do 

not have a far field in their direction, it is not 

obvious that for large zs their SE tends to a plane-

wave SE; as it can be seen in Fig. 4, this actually 

occurs for the considered structure in the Vertical-

Magnetic-Dipole (VMD) case, but not in the 

Vertical-Electric-Dipole (VED) case. 

In general, for all the dipole sources the SE 

decreases by decreasing the dipole-screen distance 

zs; however, for the VED, the SE presents a peak 

when the source is placed at a critical distance zc 

very close to the screen at zc=4.3 cm. Moreover, 

for zs=0 the SE for the HEDx and the VMD tends 

to infinity, while for the VED and the HMDx 

assumes a finite (low) value. Such a behavior can 

easily be understood taking into account that for 

zs=0 the dipoles lie on the PEC part of the JC 

element, so that the HED x and VMD are short-

circuited (and the relevant radiated field is zero), 

while the radiation of the VED and HMDx are 

maximized. 

In order to understand how the frequency- 

selective behavior varies in the presence of a finite 

source close to the screen, in Fig. 5 the SE is 

presented as a function of frequency using a 

conventional TEM plane-wave source and both an 

electric and a magnetic dipole (Figs. 5 (a) and 5 

(b), respectively) with different orientations and 

with the dipole source placed at zs=10 mm. 

It can be observed that both the resonant 

frequency, the relevant bandwidth and the SE peak 

value change significantly, depending on the 

dipole type and orientation. In particular, assuming 

that the dominant part of the electric-dipole 

spectrum is constituted by TE plane waves and 

that of the magnetic-dipole spectrum by TM plane 

waves, it can be understood why the SE of a VMD 

and of a HMD presents stronger differences with 

respect to the SE of a normally incident plane 

wave. It is worth noting that in the HMD case the 

resonant behavior has completely disappeared. 

In Fig. 6, the SE of the DL for incident (a) TE 

and (b) TM plane waves is reported at =0, π/6, 

π/3 as a function of frequency along the =0 

plane. Two resonances are present and the 

shielding performance is quite similar for both 

polarizations; in particular, while the first 

resonance at fres1≃2 GHz is quite sensitive to the 

incident angle, the second resonance at fres2=2.32 

GHz is almost independent of the characteristics 

of the incident plane wave. Moreover, it is 

interesting to note that this type of screen is 

characterized by a frequency of total transmission 

fTT=2.25 GHz (for which SE=0 db), which does 

not depend at all on the plane-wave properties. 
 

 
(a) 

 
(b) 

 

Fig. 6. SE of the DL FSS in Fig. 2 as a function of 

frequency under: (a) TE and (b) TM plane-wave 

incidence for different incidence angles  along 

the =0 plane. 
 

When a dipole source is considered, the 

operation is similar to that already illustrated for 

the JC screen, except for the fact that now the SE 

for the HEDx and the VMD does not tend to 

infinity for source points approaching the screen 

plane, since in this case the source does not lie on 

a PEC part of the screen. This is shown in Fig. 7 at 

the operating frequency fres1=2 GHz, where it can 

be seen that the SE monotonically decreases to 

low SE values by decreasing the dipole-screen 

distance zs except for the VMD, which presents a 

SE peak at the critical distance zc=3.3 cm and 
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maintains a considerably large SE value also for 

very small zs (always larger than 20 db); the latter 

is consistent with the well-known fact that a closed 

loop strongly interacts with an orthogonal 

magnetic dipole. 

Finally, also for the DL FSS, the SE is 

presented as a function of frequency using a 

conventional TEM plane-wave source and both an 

electric and a magnetic dipole placed at zs=10 mm 

(Figs. 8 (a) and 8 (b), respectively) with different 

orientations. It can be observed, that also for this 

structure, both the resonant frequencies and the SE 

peak values strongly depend on the dipole type 

and orientation. In particular, the resonant 

characteristics almost completely disappear when 

a VED or an HMD source is considered. Finally, it 

is interesting to note that in the presence of dipole 

sources, the total transmission phenomenon is still 

present at the frequency fTT=2.25 GHz. 

 

 
 

Fig. 7. SE of the DL FSS in Fig. 2 as a function of 

the dipole-screen distance zs for different dipole 

types and orientations at the first resonant 

frequency fres1=2 GHz for normal plane-wave 

incidence. 

 

 
(a) 

 
(b) 

 

Fig. 8. SE of the DL FSS in Fig. 2 as a function of 

frequency for: (a) electric and (b) magnetic dipoles 

at the dipole-screen distance zs=10 mm. 

 

VI. CONCLUSION 
The shielding characteristics of resonant 

frequency-selective periodic screens based on 

metallic FSSs in the presence of both plane-wave 

far-field and dipole near-field sources have been 

investigated. After an analysis based on a 

conventional plane-wave excitation, the 

interaction between the resonant screen and a 

finite near-field source placed in its proximity has 

been studied in detail, through a periodic MoM 

approach in conjunction with the Array Scanning 

Method. In particular, this analysis method allows 

for taking into account all the propagating and 

evanescent waves constituting the spectrum of the 

dipole source. It has been shown how the presence 

of finite sources can affect the resonant frequency 

and the relevant bandwidth of a frequency-

selective screen; thus, calling for reliable 

numerical tools for the analysis and design and 

demonstrating how conclusions drawn on the basis 

of conventional PW excitation are not 

representative of the actual behavior of frequency 

selective shielding surfaces. 
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