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Abstract ─ An experimental study of coupling 
compensation for AOA estimation using compact low 
profile antenna arrays with element separations of a 
quarter wavelength has been conducted. Two circular 
arrays of low profile miniaturised logarithmic spiral 
antennas deployed on a circular metal plate were used 
for data acquisition. Using the MUSIC direction-finding 
algorithm, the AOA estimation errors in receiving mode 
were observed before and after compensation: the errors 
were significantly decreased by coupling compensation.

Index Terms ─ Covariance, direction-finding, 
interferometry, mutual coupling. 

I. INTRODUCTION 
In RF covert tracking systems based on Angle-of-

Arrival (AOA) estimation, compact antenna arrays with 
omni-directional radiation patterns are desirable [1]. 
However, in antenna arrays with a relatively short 
separation between elements, mutual coupling between 
the elements affects the performance of array signal 
processing algorithms in most cases. Mutual coupling 
effects are normally analysed in terms of the mutual 
impedances between the radiators: these have complex 
values, and are related to the geometrical positions of the 
array elements. Moreover, the mutual coupling 
behaviour of an antenna array in transmitting mode is 
demonstrably different from that in receiving mode [2, 
3]. In the receiver array, when antennas receive 
simultaneously, the total field on each element will be 
the sum of the radiated and re-scattered fields from 
antenna elements. In radio direction-finding systems, 
where the directional information is obtained from the 
characteristic structure of the received signal matrix, 
mutual coupling changes the corresponding vectors of 
the antenna array, perturbing this correlation matrix. 

This results in degradation of the AOA estimation 
accuracy [4, 5].  

To ensure accurate direction-finding, we need to 
address mutual coupling explicitly, and to compensate 
for it using a suitable decoupling method. Recently, the 
present authors investigated the performance of the AOA 
error of a 4-element uniform circular array using simple 
monopoles on a square metal plate in which they 
improved the AOA accuracy by 50% [6]. In this paper, 
we report an experimental study of receiving mode 
coupling compensation for a direction-finding application
based on the Multiple Signal Classification (MUSIC) 
algorithm using four and six-element uniform circular 
arrays of spiral antennas.

II. LOW PROFILE SPIRAL ANTENNA 
ARRAY

To examine the performance of arrays in receiving 
mode using compensation, two networks, with either 
four or six-elements, using low profile miniaturised 
logarithmic spiral antennas were designed. Each antenna 
provides a monopole-like radiation pattern and supports 
platform installations at TETRA/UHF frequencies [7].  

The antenna prototype with its measured radiation 
pattern is shown in Fig. 1. It should be noted that the 
radiation pattern for the designed prototype antenna was 
considered at its resonant frequency and it is assumed 
that the radiation performance will be in agreement for 
all the elements at their resonances frequencies over all 
working frequency bands. Prototypes were fabricated 
and installed on circular ground planes of diameter one 
meter, as shown in Fig. 2. The inter-element spacing is 
set to a quarter wavelength and the radii of the four and 
six-element circular arrays are 0.1325 and 0.1595 meters 
respectively. The measured return losses of all the 
prototypes over the desired frequency band (420 MHz to 
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425 MHz) are shown in Fig. 3. The minor dissimilarity 
in the frequency responses is due to the mismatches in 
hardware designs of the elements. The measured array 
response acquired in the array calibration process and 
used in the MUSIC algorithm includes these mismatches, 
but the final estimated AOA results are not significantly 
affected. 
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Fig. 1. Multi-element low profile spiral antenna prototype 
and its measured radiation pattern in principal E-plane 
and H-plane co-polarization and cross-polarization. 
 

 
 (a) 

 
 (b) 
 
Fig. 2. Antenna array geometries used for data acquisition. 

 
 
Fig. 3. Measured return losses of low profile spiral 
antennas 
 

III. RECEIVING MUTUAL IMPEDANCES 
USING S-PARAMETER MEASUREMENT 

The mutual impedance is calculated under the 
conditions that the antenna elements are terminated with 
known impedance, ZL and that they are in receiving 
mode under an external plane-wave excitation [2, 3, and 
8]. Consider an antenna array with N antenna elements, 
each of which is terminated with an identical load 
impedance, ZL. When the array is excited by an external 
source, the voltage at antenna terminal Vk can be written 
as: 

 (1) 
where is the terminal voltage due solely to the direct 
incoming signal and  is the voltage due to the mutual 
coupling with other antenna elements.  can be written 
as: 

 
(2) 

where  is the receiving mutual impedance between 
antenna elements k and i, and Ii is the current induced at 
the terminal of antenna element i. The subscript t denotes 
that the receiving mutual impedance is defined at the 
antenna’s terminals. The relationship between and  
can be written as: 

 (3) 

Using Equations (1) and (2), determination of the receiving 
mutual impedances is based on terminal currents or 
voltages. Since the miniaturised logarithmic spiral antenna 
has an omni-directional radiation pattern, it is assumed 
that the current distribution remains unchanged irrespective 
of the azimuth angle of the incoming signal when the 
signal is coming from the plane perpendicular to the axis 
of the antenna (θ=90°). As a result, the receiving mutual 
impedance should remain constant with respect to the 
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azimuth angle of the incoming signal, and thus is suitable 
for direction-of-arrival estimation applications [2]. 

In order to obtain mutual impedances, two elements 
of the array at a time should be considered, with the 
remaining elements loaded. The following steps are 
repeated to retrieve the corresponding S12 parameters:
(1) Measure S12 at element 1's terminal with element 2's 

terminal connected to a load. Denote this as S12_1;
(2) Measure S12 at element 2's terminal with element 1's 

terminal connected to a load. Denote this as S12_2;
(3) Measure S12 at element 1's terminal with element 2 

removed from the array. Denote this as S'12_1;
(4) Measure S12 at element 2's terminal with element 1 

removed from the array. Denote this as S'12_2.
Accordingly the receiving mutual impedances can be 

obtained as follows:

(4)

(5)

The above procedure needs to be repeated for all pairs of 
elements in an array. Figure 4 shows calculated mutual 
impedances between the first antenna and the rest of the 
radiators, both (a) real and (b) imaginary parts, using the 
measured S-parameters for a 4-element array. In this 
example, signals are arriving from 150 and 320 degrees. 
These two angles are chosen to illustrate cases where the 
measured array responses in the azimuth plane without 
coupling compensation give rise to considerable angular 
errors. 

(a) 

(b) 

Fig. 4. Normalized mutual impedance for AOA = 150 
and 320 degrees over the frequency band: (a) real part 
and (b) imaginary part. 

In order to obtain the compensation matrix in 
Equation (3), mutual impedances for pairs of antennas 
are determined for many directions which show 
considerable angular errors in the measured array 
response in the azimuth plane. It is clear from the graphs 
in Fig. 4, that the variation of the mutual impedances 
over the 5 MHz of bandwidth is negligible, and thus 
narrowband compensation would be sufficient. Thus,  
the mutual impedances are averaged from 420 MHz to  
425 MHz and over different angles. The mutual coupling 
values for both array geometries are listed in Tables 1 
and 2. 

IV. AOA ESTIMATION RESULTS 
Deriving mutual coupling compensation entails 

developing an estimate for the actual array response for 
the specified geometries via the results from Tables 1 
and 2. The resultant vectors must subsequently be 
applied to the MUSIC algorithm for direction-finding. In 
this study, in order to capture the array response to 
signals coming from different azimuth angles, the data 
acquisition setup shown in Fig. 5 was used. Log-periodic 
antennas have been used as transmitters to create the 
plane wave source in an anechoic chamber. To send data 
from each terminal in turn to the network analyser, a 
microwave switch has been deployed under the turntable 
while the dc controller of the switch was located outside 
the chamber. The amplitude and phase responses from 
each antenna have been captured for rays from the 
azimuth plane and post-processed using the compensation
matrices and AOA estimation algorithm. Figures 6 and 7 
show the spatial spectra generated using uncompensated 
and compensated array responses for measurement data 
due to pairs of signal sources to the four and six-element 
spiral arrays, respectively.

When the measured voltages are used without any 
compensation for mutual coupling for the four-element 
array, Fig. 6 shows that although the MUSIC spatial 
spectrum function shows two peaks, the peaks are not 
adequately sharp and also are misplaced by about 20 and 
40 degrees for the signals coming from 30 and 150 degree
azimuth angles, respectively. 

Fig. 5. Data acquisition setup for the AOA estimation 
experiment.
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Table 1: Normalized receiving mutual impedances for a 
4-element spiral array 

 
Table 2: Normalized receiving mutual impedances for a 
6-element spiral array 

Var. Value Var. Value 
 -0.540 + 0.089i  -0.135 - 0.236i 
 0.054 - 0.651i  0.220 - 0.335i 
 0.025 - 1.067i  0.461 + 0.143i 
 -0.488 - 0.028i  0.336 - 0.229i 
 0.173 + 0.444i  -0.182 - 0.100i 
 0.220 + 0.044i  0.066 + 0.100i 
 -0.290 - 0.364i  -0.085 + 0.171i 
 0.092 - 0.227i  -0.333 - 0.246i 
 0.048 + 0.150i  0.456 - 0.470i 
 0.210 + 0.103i  0.342 + 0.108i 
 0.164 - 0.142i  0.225 + 0.221i 
 0.307 + 0.090i  -0.326 + 0.108i 
 0.014 + 0.385i  0.163 - 0.334i 
 0.269 + 0.024i  -0.136 - 0.610i 
 0.058 - 0.313i  -0.158 + 0.001i 

 
However, applying the receiving mode compensation 

matrix from Table 1 to these results provides sharper 
peaks and reduces the AOA estimation error to less 
than  degrees. In the second experiment, two incident 
waves irradiate the six-element spiral array from 40 and 
110 degree azimuth angles. As shown in Fig. 7, applying 
the receiving mode compensation matrix using data from 
Table 2 results in an AOA estimation accuracy of about 

 degree for the two directions. 
 

 
 
Fig. 6. MUSIC spatial spectrum for two incident signals 
with azimuth angles of 30 and 150 degrees, four-element 
low profile spiral array. 

 
 
Fig. 7. MUSIC spatial spectrum for two incident signals 
with azimuth angles of 40 and 110 degrees, six-element 
low profile spiral array. 
 

V. CONCLUSION 
In this experimental study, the benefit of mutual 

coupling compensation during AOA estimation process 
using low profile spiral antenna arrays has been 
examined. The receiving mode compensation matrices 
were derived by numerical calculations using measured 
data from four and six-element arrays. It was shown that 
over the 5 MHz bandwidth the mutual impedances do not 
vary significantly, and thus narrowband compensation 
would be sufficient. Moreover, since the low profile 
spiral antenna has an omni-directional radiation pattern, 
the compensation matrix is independent of angle. The 
marked performance improvement in terms of AOA 
estimation, due to the compensated array responses, 
allows for easier and more accurate determination of 
multiple signal sources.  
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