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Abstract ─ The paper examines diffraction at rounded 

wedges with perfectly conducting faces. This topic was 

a subject of many publications which investigated 

mainly the total diffracted waves. In the present paper, 

we calculate specifically their fringe components to 

illustrate their sensitivity to the edge curvature. Such 

fringe waves provide substantial contributions to the 

scattered field in certain directions and represent a key 

element in extension of the physical theory of diffraction 

(PTD) for objects with rounded edges. 

 

Index Terms ─ Fringe wave, hard boundary condition, 

method of moments, non-uniform currents, physical 

optics, physical theory of diffraction, rounded wedge, 

soft boundary condition, uniform currents. 

 

I. INTRODUCTION 
A number of papers exist which studied diffraction 

at wedges with rounded edges. Perhaps the first one was 

the Kalashnikov paper [1] where he presented the first 

objective validation of the Sommerfeld diffraction theory. 

He accomplished thorough experimental investigation of 

light waves diffracted at metallic wedges with finite edge 

curvature. In publications [2-24], one can find additional 

references. Main subjects in those publications were the 

total waves scattered at the edges. Our objective is to 

calculate specifically their fringe components which are 

the most sensitive to the edge curvature. Such fringe 

waves provide substantial contributions to the scattered 

field away from the boundaries of incident and reflected 

waves. They represent a key element for extension of the 

physical theory of diffraction (PTD) to objects with 

rounded edges. 

The paper is organized as follows. Section 2 describes 

the geometry of the problem. In Section 3, we formulate 

the integral equations in the PTD format for the fringe 

currents [5,6,25,26]. Section 4 presents their solution by 

method of moments (MoM) and illustrates fringe waves 

scattered at curved edges in comparison with those 

scattered at sharp wedges. 

The time dependence  tiexp  is used in the paper. 
 

II. GEOMETRY OF THE PROBLEM 
A wedge with a rounded edge is constructed as a 

combination of the circular cylinder smoothly conjugated 

with the wedge faces (see, Fig. 1). The wedge with interior 

angle 2 is located symmetrically along x-axis on the 

two-dimensional (2D) xy-plane. The origin coincides 

with the apex of the sharp wedge. Here, a is the radius of 

the cylindrical surface L0. Points (xj,yj) and (xj,-yj) are the 

junctions/tangency points of the cylindrical surface L0 

with two half-planes L1, and L2, which are the faces of 

the tangential wedge. Fringe waves calculated below for 

rounded edges are compared with those for the tangential 

wedge with infinite sharpness (a=0). The wedge is 

illuminated (from the left) by a plane incident wave 

propagating along the x-axis. In other words, only double 

side fixed illumination is considered. 

Electromagnetic (EM) waves with two basic 

polarizations may be investigated for this scenario: the 

waves with the electric vector (magnetic vector) parallel 

to the edge of the PEC wedge. In the acoustic diffraction 

problem, these two situations relate to the wedge with 

the soft (hard) boundary conditions (SBC and HBC), 

respectively. The solutions of these two-dimensional EM 

and acoustic problems are identical [5,6]. 

The wedge structure is canonical in terms of 

extracting/visualizing every wave phenomenon occurs 

there [16]. Electromagnetic and acoustic waves interact 

with objects and scatter. The word scattering includes 

reflection, refraction, and diffraction. The addition of the 

scattered field and the incident field yields total fields. 

The 2D scattering plane around the wedge may be 

divided into three regions in terms of critical wave 
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phenomena occurred there [16]. In the first region, all 

three field components (incident field, reflected field, 

and diffracted field) exist. In the second (reflection-free) 

region, only incident and diffracted fields exist. These 

two regions are separated by the reflection shadow 

boundary. 

 

 
 

Fig. 1. Rounded wedge with perfectly reflecting faces.  

 

For the sake of clear understanding and completeness, 

the definitions of total, scattered, diffracted, and fringe 

fields are included. Total field is the addition of the 

incident and scattered fields. In other words, in order to 

obtain scattered field, one needs to extract/subtract the 

incident field from the total field. The subtraction of the 

incident and reflected fields from the total field yields the 

diffracted field. In other words, the diffracted field is 

equal to the scattered field minus the reflected field. The 

fringe field is the part of diffracted field generated by  

the source-induced fringe (nonuniform) currents. These 

currents exist because of any deviations of a scattering 

surface from a tangential plane [5,6]. Such deviations 

can be in the form of sharp discontinuities (edges, tips), 

discontinuity of a surface curvature (as in the junction 

points (xj,yj), (xj,-yj)) as well as the smooth bending (as 

in the cylindrical surface L0). 

As observed in Fig. 2, there are two points that can 

be taken as the origin. The first is the origin of the xy-

coordinate system (0,0). For the computation of fields 

around the wedge for both sharp and rounded wedges  

the receivers are located on the observation circle with 

this origin and with a specified radius. In this case, the 

coordinates (r,φ) related to the sharp wedge are used. 

The second origin is the center of the rounded-part of the 

rounded wedge (d,0) where we use coordinates (ρ,ψ) 

related to the rounded wedge. In this case, fields around 

the rounded wedge are computed for the receivers 

located on the observation circle with this origin and 

with a specified radius. Figure 2 presents these two 

cases. Note that, reflections occur only in the shaded area 

for the sharp wedge but occur everywhere for the rounded 

wedge.  
 

 
 

Fig. 2. Scenarios for: (a) sharp–rounded wedge 

comparisons, and (b) fields simulated around the rounded 

wedge.  

 

III. FORMULATION OF INTEGRAL 

EQUATIONS 
In the problem under investigation, we apply a 

scalar interpretation for a perfectly conducting wedge. 

The soft boundary condition u=0 relates to excitation of 

the wedge by the E-polarized plane wave: 

 
ikxinc

z
inc euEu 0 . (1) 

The hard boundary condition ( 0/  nu ) corresponds 

to the case when the wedge is illuminated by the H-

polarized plane wave: 

 
ikxinc

z
inc euHu 0 . (2) 

Proceeding with the second Green’s identity one can 

obtain the surface integral equation: 
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Here, L=L0+L1+L2
 

is the total surface of the body, 

   22
yyxxr  , and the integrand is singular at 

the point r=0. The integral is understood as its Cauchy 

principal value. The incident wave 
incu  in (3) is given 

everywhere on the surface L. Function u is the total field 

u=uinc+usc. It follows from (3) that, 
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for the hard surface ( 0/  nu ). 

Now, we recast these equations in the PTD format 

[5,6]. First, introduce the surface currents: 

 hh
s

s uj
n

u
j 




 , . (6) 

They consist of two components: 
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where POjj )0(

 
is the uniform component defined 

according to the physical optics (PO). It is defined as: 
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The term fr
hsj ,

 represents the non-uniform PTD component 

called here the fringe current. In view of these notations, 

Equations (4) and (5) take the forms: 
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Calculating fr
hsj ,

 from (9) and (10), one can find the total 

fringe waves scattered by the object as: 
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As shown in [6,25], the integrals from 
PO

hsj ,  over the faces 

L1,2 represent the PO fields scattered by half-planes. 

They are described in accordance with (3.37-3.40) and 

(3.49), (3.50) of [6]. The details of their calculations  

are presented in [25] that contain the fringe integral 

equations similar to (9), (10). The only difference in (9), 

(10) consists in presence of integrals over the cylindrical 

part L0.  

For numeric solution of the fringe integral Equations 

(9), (10) we apply the classical MoM (see, [14,20] for 

details). 
 

IV. NUMERICAL SIMULATIONS AROUND 

SHARP AND ROUNDED WEDGES 
The MoM related references mentioned above in the 

Introduction show that MoM is highly capable of solving 

surface integral equations. Here, we develop the MoM 

algorithms for the fringe integral equations derived in the 

previous section and first test them against the sharp 

wedge. Note that, in addition to the fringe fields, the 

total, scattered, and PO scattered field variations around 

the wedge are also given for clear understanding of  

wave scattering phenomena (see, [16,18] for detailed 

illustrations of diffracted fields). Fringe fields are 

directly computed using (11), (12). One needs to add PO 

scattered fields in order to obtain total scattered fields. 

Finally, addition of the incident field to the scattered 

field yields the total field. 

Numerical simulations in this section consist of  

two parts. As shown in Fig. 2 (a), the first computations 

belong to various fields from the rounded wedge and 

their comparison with that from the sharp wedge. The 

frequency of all simulations is 30 MHz (i.e., λ=10 m). 

The observer radius is r=2. Although infinite, the length 

of L1 and L2 parts of the wedge is taken 50-long, which 

is tested to be enough for the accuracies used in these 

numerical calculations. Also, the number of segments in 

one wavelength is chosen as 20 for MoM calculations (in 

the vicinity of the edge up to 100-500 segments may be 

used to increase the accuracy). It is also numerically 

tested that the number of segments of the rounded part 

(L0 part) is at least 20 to satisfy rounded curvature. Note 

that, different discretizations may be required for the 

wedges with soft and hard BCs [20]. Approximately, 

10λ-20λ-long wedge sides are enough for the soft wedge 

but up to 100λ-long wedge sides (even more) may be 

required for the hard wedge.  

In the second part, fields from the rounded wedge 

are computed for the scenario in Fig. 2 (b). It includes 

the fringe field, the PO field, and their sum. 

For the soft sharp wedge, we denote  yxj fr
s ,  as

 yxj shrpfr
s ,,  and outside the wedge it creates the field: 

       
L

shrpfr
s

shrpfr
s ldkrHyxj

i
yxu

)1(
0

,, ,
4

, . (13) 

This fringe field is calculated using (4.18) on p. 107 in 

[6]. This is assumed as the reference (PTD) solution. 

Alternatively, the MoM algorithm presented in [20,25] 

can be used directly. For the rounded wedge, (9) is 

discretized and solved using the new MoM algorithm 

and segment fringe currents rndfr
sj

,  are obtained. Then, 

fringe fields  yxu rndfr
s ,,  around the object are calculated 

using (11). 

In the following examples, for the sharp wedge, first 

the wedge (half) angle β=5°,15°,30°,45° is specified. 

Then, the observation circle with r=2 is chosen. On  

this circle, the receivers are located at grid points 

   cosrx ,    sinry  with Δφ=0.5°. Finally, 

because of the symmetry with respect to x axis, 0
, / uu shrpfr

s

for  0  is calculated and plotted. For the 

rounded wedge, and for the same sets of parameters, 

a=/m, m=2,5,10,20,… is specified and MoM solutions 

are generated and 0
, / uu rndfr

s  for  0  is 

plotted. The objective is to demonstrate how 0
, / uu rndfr

s  

approaches 0
, / uu shrpfr

s  with decreasing of the rounding 

radius (a). Examples presented in Figs. 3-7 belong to 

SBC case; the next figures are given both for SBC and 

HBC cases. 
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Note that, the rounded wedge MoM model directly 

yields sharp wedge solutions when a=0. This is used  

in validating the new rounded wedge MoM algorithm. 

The rounded wedge algorithm is tested against both PTD  

and previous sharp MoM models and perfect agreement 

is obtained. Figure 3 belongs to these validations (a  

free MATLAB package has been prepared for the 

visualization of fringe waves around a sharp wedge and 

its tutorial has just been published [26]). 

Figures 4-5 present total and fringe fields, 

respectively, with four different wedges for the scenario 

in Fig. 2 (a). The three curves belong to a=0, a=λ/10, and 

a=λ/5, cases. As observed in Fig. 4, major total field 

contribution comes from the interaction of incident, 

reflected, and diffracted waves. Total fields of the 90 

wedge for all three cases are almost identical. The 

differences in the total fields around the wedge become 

significant as the wedge interior angle gets smaller. This 

is because the locations of the receivers shift significantly 

for narrow wedges (see, Fig. 2 (a)). The same observation 

also holds for the fringe field variations in Fig. 5.  

For the sharp wedge only diffracted field occurs 

backwards (i.e., towards to the angle of incoming plane 

wave). But for the rounded wedge there is a strong 

backward reflection.  

Note that, as a increases, the distance between the 

receiver on x-axis and backward specular reflection point 

increases and the amplitude of the scattered field along 

this direction decreases. The effect of this is observed in 

Fig. 5 where fringe field variation is plotted. However, 

for fringe waves another reason also exists for their 

decrease. The larger is radius a of rounded/cylindrical 

surface L0
 

the smaller gets its curvature and, as a 

consequence, the smaller fringe currents become there.  

PO and fringe fields around the rounded wedge  

are simulated in this section. The scenario for these 

simulations is given in Fig. 2 (b). For the calculation of 

this fringe field, first, β and a are chosen. Then, the 

receivers are located on the circle around the rounded 

wedge using the grid points (x,y) on the circle ρ=a+nλ, 

n=1,2,… with m 0  and Δψ=0.5° where, 

 
 




a
m sin . (14) 

Then, (9) is discretized and solved using the new MoM 

algorithm and the segment fringe currents rndfr
sj

,  are 

obtained. Fringe fields  yxu rndfr
s ,,  are then calculated 

using (11). Fringe fields vs. angle variations are then 

plotted. 

 

 
 

Fig. 3. Fringe fields around different SBC sharp wedges 

(for the scenario in Fig. 2 (a)). The solid (red) curve is 

calculated according to (4.18) in [6]. The dashed (blue) 

curve – by MoM. 
 

 
 

Fig. 4. Total fields around different SBC wedges (for the 

scenario in Fig. 2 (a)). The solid (red) curve is calculated 

according to (4.18) in [6]. Other curves – by MoM. 
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Fig. 5. Fringe fields around different SBC wedges (for 

the scenario in Fig. 2 (a)). 

 

 
 

Fig. 6. Fringe fields around different SBC wedges (for 

the scenario in Fig. 2 (b)). 

 

For the PO-scattered fields around the rounded 

wedge, we calculate the integral: 
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for  222  , where 2,1  is found from 

(A.4). Also, 
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Notice that,  011
)0( ,, krvs  is discontinuous on the 

boundary of the reflected plane wave (  1 ). In 

summary, rndPO
su ,  is calculated from (15) and (16) for 

the specified grid points and the results are plotted as PO 

fields vs. angle. The total field will then be the sum of 

these two: 

     ),(,, ,,, yxuyxuyxu rndPO
s

rndfr
s

rndtot
s  . (21) 

Figure 6 belongs to the second scenario given in  

Fig. 2 (b) and shows fringe field distributions for four 

different wedge angles for two different a values 

(a1=/10
 
and a2=/5). Here, the receivers are located  

on a circle around the rounded wedge (not around the 

origin on the xy-plane) with the center at (0,x2) where 

sin/222 adx   and radius ρ2=λ/5+2λ. Although, 

the receivers for the computations for a1=/10
 

and 

a2=/5 are exactly at the same points, the difference of 

distances between the rounded face and the receivers for 

these two cases gets larger, for the receivers around the 

backscattering direction φ=180°. 

Figure 7 shows uniform (PO), nonuniform (fringe), 

and total currents on the surface of the wedge having  

a 30 interior angle, and a=/2 for the SBC case. This 

figure clearly demonstrates that the fringe currents 

concentrate in vicinity of the junction points, i.e., in 

vicinity of the surface curvature discontinuities. Tests 

with different sets of parameters show that the strongest 

fringe currents occur for the sharp wedge (a=0). The 

fringe current decays on both sides of the junction points 

and has a minimum at midpoint between the junctions. 
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Figure 8 compares fringe currents of both SBC  

and HBC cases a few  around junction points. Here, 

although L1=L2=50
 
is used in the MoM computations, 

only L1=L2=4.35
 
and L0=1.3

 
sections are shown in the 

figure (i.e., horizontal axis extends from -5 to 5) with 

/40 discretization. Nearly, 500 segments are used for 

the rounded part L0 (with a=/2, this corresponds to a 

nearly /400 segmentation). Very small segments are used 

just to increase the accuracy around the junctions.  

As seen there, the fringe current distributions of 

SBC and HBC cases look alike; they have maxima on 

the junction points. However, SBC fringe currents make 

sharp peaks on the junction points but HBC fringe 

currents have slight discontinuities. Also, HBC fringe 

currents are higher than SBC fringe currents. Finally, 

both fringe currents decay away from junctions but HBC 

fringe currents’ decay rate is lower than SBC fringe 

currents. 

Here, it is pertinent to remind the fringe currents 

behavior in vicinity of a sharp wedge. In SBC case, the 

fringe current tends to infinity as   
  /1

/1 kr , 

while in HBC case it is finite (    /240  uj
fr

h ) 

when 0r  and   22  [6,27]. Because fr
hj  

is finite for sharp wedges it is not surprising that it has 

only slight changes in vicinity of the junction points 

where the surface L is smooth and only its second 

derivative undergoes discontinuities. 

Remind also that, away from the edge ( 1kr ) on 

the sharp wedge (with β=15°) the SBC current fr
sj  drops 

as   2/3
/1 kr  while the HBC current fr

hj  attenuates as 

  2/1
/1 kr  [6]. The curves in Fig. 8 for 3r

 
relate to 

large values ( 18kr ) and qualitatively agree with those 

for a sharp wedge. Notice as well that at point ψ=0 (r=0 

in Fig. 8) on the circular cylinder alone (without L1, L2), 

the SBC and HBC fringe currents are determined by 

(14.53) and (14.54) of [6] where one should set 2/ 
 

and 2/  . According to these equations, fr
h

fr
s jkj  . 

For λ=10m (with f=30 MHz) taken in our calculations 

this relationship means that fr
h

fr
s jj 6.0 , while for the 

rounded wedge according to Fig. 8 we have fr
h

fr
s jj 7.0 . 

Finally, in Fig. 9 for comparison purpose we plot 

both the soft and hard fringe waves for rounded wedges 

with a=a2=/5 at the distance ρ=a2+2. They relate to 

the scenario in Fig. 2 (b). Notice that, the curves for the 

wedge with β=30° are similar to those for the sharp 

wedge given in Fig. A4.5 of [6].  

 

 
 
Fig. 7. Total, PO and PTD (fringe) surface currents of the 

30 SBC wedge. 

 

 
 

Fig. 8. PTD (fringe) surface currents of the 30 SBC and 

HBC wedges.  

 

 
 

Fig. 9. Fringe fields around different SBC/HBC wedges 

(for the scenario in Fig. 2 (b)). 
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V. CONCLUSIONS 
Fringe integral equations suitable for analysis of the 

field scattered by rounded soft and hard wedges are 

developed. Numeric results are obtained via a regular 

MoM procedure. Comparison with scattering from sharp 

wedges is illustrated and confirms that the rounded 

wedge can be considered, approximately, as the sharp 

wedge when the radius of rounding does not exceed one 

tenth of the wavelength. The results are also important 

from the theoretical/methodical point of view because 

they demonstrate the direct extension of PTD for objects 

with rounded edges.  
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