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Abstract ─ Diagonal loading technology is widely used 

in array antenna beamforming because of its simple 

method, low computational complexity and the ability  

to improve the robustness of beamformer. On this basis, 

this paper proposes a robust adaptive beamforming 

method based on automatic variable loading technology. 

The automatic variable loading matrix (AVLM) of  

the method is composed of two parts. The non-uniform 

loading matrix dominants when the input signal-to-noise 

ratio (SNR) is small, effectively control the influence of 

noise disturbance without affecting the ability of array 

antenna to suppress interference. The variable diagonal 

loading matrix dominants when the input SNR is high  

to improve the output performance of array antenna. 

Simulated results show that compared to other methods, 

the proposed method has better output performance for 

both low and high input SNR cases. 

 

Index Terms ─ Array antenna, loading, robust adaptive 

beamforming. 
 

I. INTRODUCTION 
Adaptive beamforming technology is an important 

topic in array signal processing. It is widely used in 

radar, sonar, array antenna, wireless communication, 

medical imaging and other fields [1-3]. In numerous 

adaptive beamforming methods, Capon beamforming 

method is used extensively for its effective suppression 

of interference and noise and good output performance 

in ideal environment [4]. However, in practical 

application, various error environments have led to the 

serious degradation in output performance of traditional 

Capon beamforming method. How to improve the 

robustness of beamformer has become a hot topic in  

recent years. 

To increase robustness of array antenna, many 

beamformers based on interference plus noise covariance 

matrix (INCM) reconstruction are proposed [5-7]. This 

kind of method has good performance, but these methods 

are computationally complex and rely heavily on array 

manifold information. To make the method beamformer 

simple and easy to implement, we mainly study the 

beamformer based on loading technology in this paper. 

Carlson proposed a diagonal loading method (LSMI) [8], 

which is robust towards the mismatch of the steering 

vector (SV) of desired signal and the influence of the low 

number of snapshots, and it is easy to implement without 

increasing computation. The output performance of 

conventional LSMI method varies with the selection of 

diagonal loading factor, but there is no certain method  

to determine the value of optimal loading factor. For 

diagonal loading technology, the selection of optimal 

loading factor is still an unsolved problem, which worth 

further research and discussions [9]. A beamforming 

method based on worst case performance optimization 

was proposed in [10]. In this method, the upper limit  

of error is set between imaginary SV and the SV. By 

constraining the response of the beamformer when the 

error of the desired signal steering vector reaches the 

upper limit, the worst-case performance can be optimized. 

Compared to these fixed diagonal loading 

beamforming methods, more variable loading 

beamforming methods have been widely studied [11-

13]. Zhuang proposed a variable loading method, which 

can improve the robustness of the array antenna by 

preventing the weight vector from converging to the 

noise subspace and setting the loading factor in a special 

way [11]. Li proposed a diagonal loading method which 
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makes loading factor change with the input SNR, and 

corrects the steering vector of the desired signal, so as  

to improve the robustness of the array antenna [12].  

In reference [13], according to the interval of diagonal 

loading value, an adaptive diagonal loading technology 

with diagonal loading factor varying with input signal 

power is proposed to further improve the robustness  

of array antenna. However, above methods have limited 

robustness improvement for beamformer, especially 

when the input SNR is large. The output performance of 

Capon beamformer decreases sharply, because of the 

cancellation of desired signals when array antenna 

receives data with small snapshots.  

In view of the above problems, this paper proposes 

a novel robust adaptive beamforming method based  

on automatic variable loading technology (AVL-RAB), 

which constructs the non-uniform loading matrix and 

variable diagonal loading matrix without increasing the 

complexity of calculation firstly. In order to better 

integrate the above matrices, we construct a mixed factor 

to make non-uniform loading matrix play a leading role 

when SNR is low. In this way, the beamformer can 

restrain the influence of noise disturbance, and try to 

keep the ability to suppress interference. When the SNR 

is high, variable diagonal loading matrix play an 

important role. Although the ability of array antenna  

to suppress interference is reduced, the desired signal 

cancellation is avoided to ensure the output performance 

of the array antenna. To further improve the robustness 

of the array antenna, the method corrects SV of the desired 

signal in a way similar to reference [14]. Numerical results 

demonstrate the superior performance of the proposed 

beamformer relative to other existing beamformers. 

 

II. SIGNAL MODEL AND DIAGONAL 

LOADING 

A. Signal model of array antenna 

Consider a uniform linear array (ULA), which is 

composed of N omnidirectional antennas spaced by half 

a wavelength, receiving uncorrelated far-field narrowband 

signals. The sample data of array antenna at the kth 

snapshot is modeled as: 

 ( ) ( ) ( ),k k k= +X AS N  (1) 

Where 
1 2( ) [ ( ) ( )  ( )]Nk x k x k x k= T

X  is a 1N   data 

vector, ( )T  indicates transpose of the matrix, 

0 1( ) [ ( ) ( )  ( )]Mk s k s k s k= T
S  is a mixed signal vector 

containing M narrow band interference and a desired 

signal. ( )kN is assumed to be the additive spatially 

Gaussian white noise with zero mean and variance 2

n . 

0 1[ ( ) ( )  ( )]M  =A a a a  is array manifold matrix, 
( )1

( ) [1 e   e ]p pj j N T

pa
 


−

=  denotes the SV of p . 

2 sin( )p pd   =  is the phase difference.  

The output of this array antenna is given as: 

 ( ) ( )y k k= Hw x , (2) 

where  1 2, , , Nw w w=
T

w  is the weight vector of the 

array antenna, ( )H
 is the conjugate transpose of matrix. 

The minimum variance distortionless response (MVDR) 

beamformer is obtained by minimizing the variance  

of the interference and noise at the output while 

constraining the target response to be unity, hence can be 

formulated as: 

 
H H

0min  s.t. ( ) 1,i n + =
w

w R w w a  (3) 

where 
0( )a  is the desired signal steering vector, 

i+nR  

is the interference plus noise covariance matrix (INCM) 

matrix. In practice, 
i+nR  is unavailable, so replace it 

with the following data sample covariance matrix (SCM): 

 H

1

1ˆ ( ) ( ),
K

k

k k
K =

= R x x  (4) 

where K is the number of snapshots. Therefore, by 

solving the above problems, the weighted vector of the 

beamformer can be obtained as: 

 
1

0

opt H 1

0 0

ˆ ( )

ˆ( ) ( )



 

−

−
=

R a
w

a R a
.  (5) 

In the ideal cases, Capon beamformer has good 

output performance. However, since the desired signal  

is contained in the training data, the standard Capon 

beamforming method is more sensitive to the steering 

vector error of the desired signal. When beamformer 

suffers from large input SNR, small snapshots and 

steering vector mismatches, the performance of  

beamformer decreases sharply. 
 

B. Diagonal loading method 

Diagonal loading method can solve the problem of 

noise disturbance effect well. The principle is as follows: 

 ( ) 0
ˆmin +   s.t.  ( )=1,H H 

w
w R I w w a  (6) 

where   is the diagonal loading factor. I is the identity 

matrix. According to the formula (5), it can be concluded 

that: 

 
( )

( )

1

0

1

0 0

ˆ + ( )
.

ˆ( ) + ( )
DL

H

 

  

−

−
=

R I a
w

a R I a
          (7) 

The beampattern can be expressed as: 
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( ) ( )
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1
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G a a υ G υ
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 (8) 
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where ( )
1

0 0
ˆ1 ( ) + ( ).H   

−

= a R I a  
i  and iυ  are 

eigenvalues and eigenvectors of R̂ , respectively, 

1 2 N     . The three terms on the right side of 

formula (8) are respectively the static array response, the 

weighted sum of interference beam response and the 

weighted sum of noise beam response. It can be seen that 

for the diagonal loading technology, the increase of the 

loading factor is conducive to reducing the impact of 

noise on the beam quality, while the large loading factor 

will reduce the interference suppression ability of the 

array antenna. 

 

III. THE PROPOSED METHOD 
In this section, a robust adaptive beamforming 

method based on automatic variable loading in array 

antenna is proposed.  

 

A. The construction of non-uniform loading matrix 

In this section, the SCM is preprocessed by forward 

and backward spatial smoothing technique. Define a 

transformation matrix J: 

 

0 0 1

0 1 0

0

1 0 0

 
 
 =
 
 
 

J , (9) 

A new covariance matrix R  is obtained by using 

forward and backward spatial smoothing technique.  

This technique can be considered as regularizing the 

unstructured SCM into a more structured one, which 

leads to a higher convergence rate. The proof, which uses 

this reconstructed SCM to improve the performance of 

the beamformer, is shown in [15]. R  can be expressed 

as: 

 
*ˆ ˆ

,
2

+
=

R JR J
R  (10) 

where *( )  is conjugate operation of matrix.  

According to formula (3), a constraint is imposed 

on Capon beamformer to make the weighting vector 

approximately orthogonal to the noise space. It can be 

expressed as: 

 
-

0min   subject  to ( )=1, ,H H H m T 
w

w Rw w a w R w  (11) 

where T is a minimum value, 
0( )a  is assumed desired 

signal SV. The above formula can be resolved into: 

 ( )-

0min  +    subject  to  ( )=1H m H 
w

w R R w w a . (12) 

The non-uniform loading matrix is as follows: 

 
-= .m

u
λ R  (13) 

Through the non-uniform diagonal loading matrix, 

the weighted vector can be avoided to converge to the 

noise space, which is conducive to the array antenna to  

suppress small eigenvalue disturbance and ensure the 

interference suppression ability of the array antenna. 

 

B. The construction of variable diagonal loading factor 

In this section, the variable diagonal loading factor 

(VDLF) is constructed. Process the R  in formula (10) 

via eigen-decomposition: 

 

1

,

H

N
H

i i i

i


=

=

= 

R UΛU

υ υ
 (14) 

where  1 2, , , N=U υ υ υ . ( )1 2, , , Ndiag   =Λ  is 

a diagonal matrix, 
1 2 N     . The desired signal 

SV falls in the signal subspace formed by large 

eigenvalues. Because the difference between the 

assumed desired signal SV
0( )a  and the real value  

is little. Project 
0( )a  to each eigenvector to get the 

following result:  

 2

0( ) | ( ) | ,    1,2, , ,H

ip i i N= =υ a  (15) 

when ( )p i  is the maximum, the eigenvalue of the 

corresponding eigenvector is [ ]
ˆ

N . It is the eigenvalue of 

the desired signal. The small eigenvalues are added and 

averaged to estimate the noise power: 

 2 2

1

N

i

i M

n
N M



 = +=
− −


. (16) 

The VDLF can be set as: 

 

2

[ ]

2

ˆ
=v

N n

nN

 




−
. (17) 

 

C. Construction of automatic variable loading matrix 

In this section, we construct the mixed factor, which 

can change the parameters according to the change of  

the input SNR and has obvious allocation ability  

whether SNR is large or small. The mixed factor can be 

constructed as follows: 

 
[ ]

2

[ ]

ˆ
=

ˆ +

N

N nN



 
 , (18) 

 
2

2

[ ]

=
ˆ

1
+

n

N n

N

N


 

 
= − , (19) 

where  and   are the mixed factors constructed in this 

paper, which can effectively reflect the low input SNR 

and the high input SNR.  

Based on the above research, the automatic variable 

loading matrix can be constructed as follows: 

 [ ]-

2

= +

   = . 
ˆ

m u
I

R

λ

I

λ

n

v

Nm

 





 +

 (20) 

YANG, LI, LI, AND MAO: ROBUST ADAPTIVE BEAMFORMING 910



D. Desired signal SV estimation 

This section estimates the SV of the desired signal 

with the method similar to that in reference [14]. We 

assume that the   is the angular sector in which the 

desired signal is located. Define the correlation matrix of 

the SV: 

 ( ) ( )
N

H

i i

i

N = G a a . (21) 

Process the G via eigen-decomposition. The 

eigenvectors corresponding to the first L large eigenvalues 

are extracted as orthogonal matrices  1 2 L=U υ υ υ . 

So the actual SV of the desired signal can be estimated 

as: 

 0
ˆ( ) =a Uy , (22) 

where y is defined as a rotating vector. By maximizing 

the output power of the desired signal, take y into  

the norm constraint. The optimization problem can be 

expressed as: 

 1min   s.t.  H H H N− =
y

y U R Uy y y . (23) 

The problem (23) can be solved by Lagrange 

multiplier methodology. We can get: 

 
1H − =U R Uy y . (24) 

Define Uy  as the eigenvector corresponding to  

the minimum eigenvalue of matrix 1H −
U R U  and  

H

U U N=y y . Then, the estimated SV of the desired signal 

can be obtained by substituting this solution into (22): 

 
0

ˆ( ) U

U

N
 =a Uy

y
. (25) 

 

E. Calculation of weighted vector 

The mixed loading matrix of formula (20) and the 

desired signal steering vector estimated by formula (25) 

are introduced into formula (12): 

 ( )-

0
ˆmin   + +    s.t.  ( )=1v

H m H  
w

w R R I w w a . (26) 

By solving the above equation, it can be concluded 

that: 

 ( )
1

-

0
ˆ+ + ( )v

m

al   
−

=w R R I a . (27) 

Substitute formula (14) into the above formula, we 

can get: 

 
( )
( )

0

1

ˆ( )H
N

i

al im
i vi i



   =

=
+ +


υ a

w υ . (28) 

In order to further suppress the influence of  

small eigenvalue disturbance, we take the noise power 

estimation as the threshold of small eigenvalue, which is 

defined as ( )2max , , 1,2, ,i i n i N  = = . Through the 

formula (28), we can find that when 0m = , the non-

uniform loading technology becomes uniform diagonal 

loading technology. When m becomes larger, the non-

uniform loading corresponding to large eigenvalue and 

the influence on the interference suppression will be 

smaller. Larger m will result with smaller non-uniform 

loading which corresponds to large eigenvalue, hence 

leading to smaller influences on interference suppression 

of array antenna. However, if m is overlarge, the beam 

sidelobe will be enhanced. In this paper, we define 

2m = , 210 m

n  += . Thus, the weight vector can be 

expressed as: 

 
( )
( )

0

2
1

ˆ( )H
N

i

al i

i vi i 



  =

=
+ +


υ a

w υ . (29) 

The main computational complexity of the AVL-

RAB is the eigen-decomposition operation. Its overall 

computational complexity is of ( )3NO . Compared to 

the methods using optimization algorithms to estimate 

diagonal loading value, the computational complexity  

is relatively low. Table 1 shows the computational 

complexity of several methods. 
 

Table 1: Comparison of computational complexity 

Beamformer Computational Complexity 

INCM-RAB [5] ( )3.5NO  

INCM-NVM [6] ( )3MNO  

LSMI [8]  

LC-RAB [11] 

LCHP-RAB [12] 

ADL-SMI [13] 

AVDL-RAB 

( )3NO
 

 

IV. SIMULATIONS AND COMPARISONS 
Consider a ULA with 10 antennas spaced half-

wavelength. The desired signal direction is 0 . Two 

sidelobe interferences impinge on the ULA from 30−  

and 50  with interference-to-noise ratio (INR) 30dB . 

The signal and interference are statistically independent, 

and the added noise is Gaussian white noise. The 

snapshots of received data is 100. All experimental results 

are from 100 independent Monte Carlo experiments. The 

AVL-RAB in this paper is compared to IPNM-NVM [6], 

LSMI [8] with the loading factor 2=10 n  , LC-RAB [11], 

LCHP-RAB [12], ADL-SMI [13].  
 

A. The simulation of VHDL and mixed factor 

In this simulation, the snapshots number is 100 and 

the input SNR changes from -10dB to 30dB uniformly. 

Fig. 1. shows the VDLF versus the input SNR. From the 

simulation results, the proposed VDLF can estimate the 

input SNR of the received signal, and the estimation 

result is accurate. This factor can make the array antenna 

avoid the desired signal cancellation when the input SNR 

is large and snapshots are small, so as to ensure the 
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output performance of the array antenna. Figure 2 shows 

the curve of mixed factor changing with input SNR. It 

can reasonably allocate the proportion of two loading 

matrices according to the value of SNR. 

 

 

 

Fig. 1. VDLF versus the input SNR. 

 

 

 

Fig. 2. Mixed factors versus the input SNR. 

 

B. Ideal condition 

In this simulation, the performance comparison of 

the above methods is made. Figure 3 shows the curves of 

the output signal to interference and noise ratio (SINR) 

with the input SNR when the number of snapshots is 100. 

The input SNR changes from -10dB to 30dB uniformly. 

Figure 4 shows the curves of the output SINR of each 

method changing with the number of snapshots. The 

input SNR is 15dB and the range of snapshots number 

changes from 20 to 100. 

 

 
 

Fig. 3. Output SINR versus the SNR in ideal condition. 

 
 

Fig. 4. Output SINR versus the number of snapshots in 

ideal condition. 

 

From Fig. 3 and Fig. 4, the IPNM-NVM has 

excellent performance, but it is very complex and needs 

more prior information. For the methods based on 

loading technology, the proposed method has higher 

output SINR and fast convergence speed. Thus, the 

proposed method outperforms other similar methods in 

ideal condition. 

 

C. Desired signal steering vector mismatch 

In this simulation, the look direction error of the 

desired signal is randomly distributed in [ 5 ,5 ] − . The 

true steering vector is formed by five signal paths and  

is given by ( ) ( )
4

0

1

a=a aij

i i

i

e
 

=

+  , where ( )a i i  

corresponds to the coherently scattered paths. 
i  is 

random value in [ 5 ,5 ] − , i  is the phase of the 

independent path and randomly distributed in  0, 2 . 

Other simulation conditions remain unchanged, the 

performance of each method is simulated. 
 

 
 

Fig. 5. Output SINR versus the SNR with desired signal 

SV mismatches. 
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Fig. 6. Output SINR versus the number of snapshots with 

desired signal SV mismatches. 

 

From above simulation results, the output SINR of 

all methods decreases significantly in this condition. The 

beamformer based on INCM reconstruction still perform 

well. The output performance of the method in this paper 

is better than other existing similar methods. 

 

V. CONCLUSION 
In this paper, a novel robust adaptive beamforming 

method based on automatic variable loading technology 

is proposed for array antenna. The method constructs the 

automatic variable loading matrix by mixing the non-

uniform loading matrix and variable diagonal loading 

matrix so as to ensure that the array antenna has better 

output performance whether SNR is large or small. The 

computational complexity of the matrix is relatively low. 

Simulation results show that the proposed method has 

better robustness in the error environment of small 

number of data snapshots and mismatch of SV. The 

proposed method outperform other existing similar 

methods  obviously. 
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