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Abstract – This work analyzes the temperature effects
on microwave circuits by employing a novel field-circuit
hybrid multiphysics simulation. Firstly, the multiphysics
simulation is implemented by solving the coupled
governing equations including Poisson equations, semi-
conductor transport equations, and thermodynamic equa-
tions; then, the multiphysics simulation is incorporated
into circuit analysis; finally, the circuit simulation
results are integrated into the finite-difference time-
domain (FDTD) simulation by equivalent sources. In this
manner, a field-circuit hybrid multiphysics simulation
method is presented. Taking two different microwave
rectifiers operating at S- and C-band as examples, tem-
perature effects are analyzed by the proposed approach.
Simulation results are in good agreement with measured
values, demonstrating the accuracy and applicability of
the proposed approach. The presented method more suit-
ably reveals the temperature effects on the rectifier.

Index Terms – field-circuit hybrid simulation, multi-
physics, Schottky diode rectifier, temperature effects.

I. INTRODUCTION
It is well known that temperature has a major

impact on the performance of semiconductor devices
and circuits. This is attributable to the fact that temper-
ature changes the effective carrier density, electron and
hole mobility, and material properties of semiconductor
devices, thereby affecting the performance of the entire
circuit [1].

With the development of wireless power transmis-
sion, research on microwave rectifiers has attracted con-
siderable attention as a key component of converting
space electromagnetic energy into DC. Thereby, the tem-

perature effects caused by the injection of high-power
microwave energy into the rectifier cannot be ignored.
The accurate and efficient simulation of the tempera-
ture effects requires solving more challenging multi-
physics problems [1–3]. Currently, multiphysics simu-
lation of semiconductor devices has become a reality.
Since multiphysics simulation can better describe the
operation of semiconductor devices under various condi-
tions and more accurately predict their physical effects,
the multiphysics analysis of semiconductor devices and
circuits has received increasing attention in recent years
[2]. Abundant research on the electrothermal behaviors
of semiconductor devices and circuits, characterized by
combining multiple physical equations including elec-
tromagnetic fields, semiconductor transport, and thermo-
dynamics, is already available [3–6]. However, the mul-
tiphysics simulation of semiconductor devices is very
complicated and time-consuming. Considering the sig-
nificant time and memory requirement, even for the next-
generation computer systems, it is almost impossible to
accomplish the temperature analysis of entire microwave
circuits [7].

So far, research works on temperature effect simula-
tion of the whole microwave circuit are very rare. In gen-
eral, microwave circuits could be analyzed using either
frequency- or time-domain full-wave simulation method
[8]. However, in dealing with nonlinear semiconduc-
tor devices, time-domain methods enjoy the advantage
of allowing for the direct analysis of field-circuit inter-
actions without resorting to harmonic balance or port
extraction methods [9]. Since FDTD method remains a
popular choice for solving many electromagnetic prob-
lems, because of its versatility and ability for dealing
with complex geometries, materials, and environments
[10–12]. Thus, in the authors’ previous work, a physical
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model-based field-circuit hybrid simulation method was
proposed, and a good agreement between rectifier sim-
ulation and measurements was obtained. However, the
temperature effects on the microwave rectifier were not
taken into account in order to simplify the simulation
process [13]. Since microwave rectifiers usually work
under high frequency and/or large signals, the temper-
ature effects cannot be ignored. Therefore, the presented
research extends previous work by coupling the mul-
tiphysics simulation of semiconductor devices to field-
circuit hybrid simulation based on FDTD. To this end,
the multiphysics simulation is implemented by solv-
ing the coupled governing equations including Poisson
equations, semiconductor transport equations, and ther-
modynamic equations; then the multiphysics simula-
tion is incorporated into circuit analysis; finally, the cir-
cuit simulation taking into account multiphysics is cou-
pled to FDTD simulation by equivalent sources. In this
manner, this paper presents a hybrid field-circuit multi-
physics simulation approach. The presented simulation
approach is applied to analyze the temperature effects of
microwave rectifiers operating at S- and C-band frequen-
cies and a series of experiments are conducted to validate
the approach.

This approach not only characters the behaviors of
microwave rectifiers under large signal conditions but
also predicts its temperature effects. A further obvious
advantage is that the hybrid solution scheme reduces
the computational burden significantly, enabling system-
level circuit simulation and analysis of temperature
effects.

II. THE HYBRID FIELD-CIRCUIT
SIMULATION APPROACH BASED ON

MULTIPHYSICS
The size of semiconductor chips is on the micro-

or nano-scale, while the size of device packages and
microwave circuits may be on the millimeter scale
or larger. Assuming the FDTD field-circuit simulation
adopts the unified grid discretization, then the required
calculations resources are prohibitively large to accom-
plish the simulation. While the field-circuit simula-
tion based on an equivalent source can easily integrate
the equivalent circuits simulation into full-wave FDTD
simulation, greatly reducing the computational burden.
Therefore, in order to address the temperature effect
analysis problem of microwave rectifiers, this paper cou-
ple multiphysics simulation of the semiconductor device
to the circuit simulation, and integrate them into the
FDTD simulation by equivalent sources, presenting a
more accurate and effective hybrid simulation approach.
This section provides an introduction to the multiphysics
simulation of semiconductor devices and their coupling

with circuits, as well as the field-circuit hybrid multi-
physics simulation based on equivalent sources.

A. Multiphysics analysis and simulation for semicon-
ductor devices

The physical model of semiconductor devices is
established based on the geometrical structure and manu-
facturing process and represented by parameters such as
the device’s junction width, gate length, channel thick-
ness, etc. Semiconductor devices are often thermally sen-
sitive, and multiphysics simulations that include temper-
ature effects more accurately model carrier transport and
characterize device behaviors.

For numerical analysis of semiconductor devices, a
series of low-order approximate equations can be derived
from electromagnetic field theory and semiconductor
physics. Among them, the drift-diffusion model (DDM)
is the most widely used semi-classical model. Up until
now, DDM successfully simulate the semiconductor car-
rier transport phenomenon under non-isothermal con-
ditions, thereby basic equations are Poisson Equation,
current continuity equation, and drift-diffusion equation
[14, 15]:

ε∇
2
ϕ = q(p−n+Nt) , (1)

∂n/∂ t = q−1
∇Jn +G−R, (2)

∂ p/∂ t =−q−1
∇Jp +G−R, (3)

Jn = µnkB(T ∇n+n∇T )+qµnn∇ϕ, (4)
Jp =−µpkB(T ∇p+ p∇T )+qµp p∇ϕ, (5)

where ε,q and ϕ denote the material permittivity, elec-
tronic chargeand electrostaticpotential, respectively; Nt ,
n and p denote the doping, electron and holes density,
respectively. G and R denote carriers generation rate and
recombination rate, respectively. Jn and Jp denote the
electron and the hole current density, respectively; T,kB,
µn and µp denote the temperature, Boltzmann constant,
electron and hole mobility, respectively [1].

To analyze the temperature effects on semiconduc-
tor performance in microwave power circuits, in addition
to DDM, the multiphysics simulation of semiconductor
devices should contain the heat conduction equation and
equations containing temperature-dependent characteris-
tic parameters [16]:

ρc ·∂T/∂ t = ∇[k(T )∇T ]+g, (6)
g = (Jn + Jp + ε∂E/∂ t) ·E +REg, (7)
n2

i = n0p0 = NcNv exp(Eg/kBT ) , (8)

µn,p(T ) = µ0
n,p (T/T0)

−α /
[
1+(E/Ec)

β
]1/β

, (9)

τn,p(T ) = τ0
n,p (1+Nt/Nn,p)(T/T0)

γ , (10)
where ρ and c are the material density and the ther-
mal conductivity, respectively; g is the heat generated
per unit time and volume, E and Eg is the electric field
and band-gap width of diode, respectively; Nc and Nv are
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effective state densities of the conduction band bottom
and valence band top, respectively; µ0

n,p and τ0
n,p are the

effective mobility and the lifetime of electrons and holes
at ambient temperature, respectively; Ec is the critical
field;; α,β and γ are empirical constant [14].

The multiphysics equation system consists of Eqs.
(1)–(10) and is a coupled nonlinear partial differential
equation system. In fact, it is impossible to give a closed-
form solution, thereby an iterative numerical method is
employed to solve this system equations.

It can be seen that the main unknowns in the multi-
physics equation system are: n, p,ϕ and T . Without loss
of generality, taking one-dimensional space x = 0−L as
an example, the device grid division is shown in Fig. 1.
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When T is a known value, The electrical characteris-
tics Eqs. (1)–(5) are discretized by central difference and
linearize [17], the whole procedure can be simplified to
the solution of an increment equation [18]:

A∆yk−1 +B∆yk +C∆yk+1 = Hk, (11)
where 3×3 coefficient matrices; H is a 3×1 coefficient
matrices. coefficient matrices value are described in [16].

When n, p and ϕ are known values, the heat conduc-
tion Eq. (6) may be discretized into first-order ordinary
time-dependent differential equations [18]:

Tk+1 −Tk

hk,k+1
− Tk −Tk−1

hk−1,k
+g =

dCk ·Tk

dt
, (12)

where Ck,hk,k+1 and hk−1,k are the discretization
coefficients. By using the Newton-Raphson iteration
method,(12) can be can be rewritten as an increment
equation:

aTk−1 +bTk + cTk+1 = h, (13)
where a, b, c, and h are the coefficients. Eqs. (11) and
(13) can also be solved by using the chasing method,
and the true values of n, p,ϕ , and T can be obtained after
many iterations [19].

The iterative procedure for the multiphysics simu-
lation of the semiconductor model is shown in Fig. 2.
Firstly, the physical parameters of the semiconductor
device are calculated by the initial electrical and tem-
perature parameter (the carrier mobility generation and
recombination rate etc.) and the semiconductor devices
are solved by introduced electrical Eqs. (1)-(5). Then the

heat conduction Eq. (6) and (7) are solved by the elec-
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the current temperature and obtain the electrical field and
temperature until it converges. Finally, the device voltage
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Fig. 2. Brief flow chart for multiphysics simulation of
semiconductor device.

B. Integrating multiphysics simulation of semicon-
ductor devices into circuit analysis

The circuit analysis is an indispensable part for con-
ventional field-circuit hybrid simulation, which needs to
integrate the equivalent circuit simulation into FDTD by
equivalent sources. According to circuit analysis theory,
circuit simulation can be rewritten as a system of equa-
tions by an improved nodal analysis method [20]:

f1 (U1,U2, . . . ,Uk) = 0
f2 (U1,U2, . . . ,Uk) = 0

. . .
fk (U1,U2, . . . ,Uk) = 0

. (14)

Here k is the index of the unknown node voltage, U is the
unknown value, fk (U1,U2, . . . ,Uk) is the node voltage
equation. The solution procedure of the nonlinear(14) is
converted to the Newton-Raphson iterative equations:

Un+1 =Un − J−1 (Un) f (Un) , (15)
where U = [U1,U2, . . . ,Uk]

T , f (U) = [ f (U1) , f (U2) ,
. . . , f (Uk)]

T .
Jis the node voltage equation:

J =


∂ f1
∂U1

∂ f1
∂U2

· · · ∂ f1
∂Uk

∂ f2
∂U1

∂ f2
∂U2

· · · ∂ f2
∂Uk

...
...

. . .
...

∂ fk
∂U1

∂ fk
∂U2

· · · ∂ fk
∂Uk

 (16)
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For any semiconductor device in the circuit, assuming
the device is located in the j-th branch, and two adja-
cent nodes are (k-1) and k, the nonlinear relationship
between the branch current I j and the terminal voltage
can be expressed as [20]:

I j = ψ (U j) = ψ (Uk,Uk−1) . (17)
To obtain transient response of the circuit, the diode

branch current Eq. (17) is obtained by the multiphysics
simulation, introduced previously. while the branch cur-
rents of other linear devices are derived from the cir-
cuit simulation based on its constitutive equations. In this
way, the multiphysics and the circuit simulation are inte-
grated into a unified scheme.

C. Field-circuit hybrid multiphysics simulation based
on equivalent sources

In numerical simulation of antennas and microwave
circuits based on FDTD, the current through the lumped
element can be regarded as an additional current term in
the Maxwell’s integral equations [21]:

∮
C
−→
E ·d

−→
l =−u

∫
S

∂
−→
H

∂ t
·d−→s . (18)∮

C
−→
H ·d

−→
l = ε

∫
S

∂
−→
E

∂ t
·d−→s + Is, (19)

where Is represents the current flowing through the semi-
conductor device. The Eqs. (18) and (19) can be easily
convert to differential forms, and discrete by FDTD Yee
grid. Since physical sizes of semiconductor devices are
generally much smaller than the minimum wavelength
of the operating frequency, it could be modeled by one
dimension, and only occupied one or several serial Yee
grid under the uniform FDTD framework, as shown in
Fig. 3.

Without loss of generality, in Fig. 3, assume a semi-
conductor device is located between nodes a and b,
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The terminal voltage of the semiconductor device Vab
can easily be derived from the electric field through path
integral [21]:

V n
ab =

∫ b

a
E⃗n

ab ·d l⃗. (20)

A control equation can be derived by combining
with Eqs. (18)-(20):

(In+1
x )EM =

V n+1
ab

(Rn+1
x )grid

+ In+1
sx . (21)

In which [21]:(
In+1
x

)
EM =

∑
β=(ih, js,kb)
β=(is, ja,ks)

dx ·Kn+1
xi jk(

Rn+1
x

)
grid

. (22)

(
Rn+1

x
)

grid =

β=(i0,kk,k j)

∑
β=(ii, ja,ka)

∆t
εx(i, j,k)

· ∆x
∆y ·∆z

. (23)

Kn+1
xi jk = En

x(i, j,k)+
dt
ε
(

H
n+ 1

2
z(i, j,k)−H

n+ 1
2

z(i, j−1,k)

dy

−
H

n+ 1
2

y(i, j,k)−H
n+ 1

2
z(i, j,k−1)

dy
− Jn+ 1

2 cx(i, j,k)). (24)

According to circuit analysis, the form of Eq. (21) can
be interpreted as a controlled current source in paral-
lel with an equivalent resistance. Where IEM is deduced
from the electromagnetic field value of the previous
time step, Rgrid is an equivalent resistance that calcu-
lated from FDTD grid size [21]. The FDTD field-circuit
scheme along the y, z direction is similar, its implicit
form ensures simultaneous calculation of the electric
field (deduced from voltage) and current, resulting in the
simulation method having a higher stability.

Microwave circuits containing semiconductor
devices are generally considered to be a hybrid sys-
tem and can be simulated using a field-circuit hybrid
method based on equivalent sources [22]. Generally, the
equivalent sources first equate the electromagnetic field
effect on the semiconductor devices as lumped circuits,
and then solves the circuits formed by the connection
between the equivalent source and the lumped circuit,
finally converting the obtained voltage or current to the
electric or magnetic field value.

In our proposed field-circuit hybrid multiphysics
simulation method, the equivalent circuits of semicon-
ductor devices are substituted by multiphysics model-
ing and simulation; then, the multiphysics simulation
of semiconductor devices is coupled with circuit anal-
ysis, and integrate into FDTD full-wave simulation.
The transient simulation of the entire circuit system is
implemented by advancing synchronously and exchang-
ing data within each FDTD time step, as shown in
Fig. 4.

It is important to emphasize that the initial state of
the circuit transient analysis needs to be set to the end
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The MW-to-DC power conversion efficiency (PCE) 
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microwave rectifiers [24]. Generally, PCE of the 

rectifier could be calculated by the following formula: 
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where MVP  and DCP  are the microwave input Power 

and DC output power, respectively; outV and loadR  are 

the output DC voltage and load, respectively [24] . 

To verify the accuracy and applicability of the 

proposed method in simulating the temperature effects 

of microwave circuit, taking two different microwave 

rectifiers operating at S- and C-band as examples, the 

simulations are performed by presented field-circuit 

hybrid multiphysics approach under different ambient 

temperatures (25 ℃, 75 ℃). The simulation program is 

(a) (b)

Fig. 6. Physical model parameters of Schottky diodes: (a)
the structure of Schottky diode, (b) the package equiva-
lent circuit.

Schottky contacts at the anode and ohmic contacts at the
cathode [13].

To reduce the simulation burden, we make a one-
dimensional simplification with maintaining the diode
characteristics, and its inner structure is shown in
Fig. 6 (a) [23]. In this figure, Schottky barrier height and
metal work function are denoted by φB and φM , respec-
tively; the doping concentration of epitaxial layer and
substrate are indicated by NdND and Nsub, respectively;
the length of epitaxial layer and substrate are indicated
by LE Lepi and Lsub, respectivelyLsub; the effective con-
tact area of the diode is denoted by Ad . For microwave
frequency applications, the diode package effect cannot
be ignored. Schottky diodes of HSMS-282x series adopt
SOT-323 package size, the package effect could be char-
acterized by the equivalent circuit shown in Fig. 6 (b),
which is suitable up to 6 GHz. In Fig. 6 (b), CL1 and
CL2 are lead capacitors, respectively; Cp is the package
capacitor; Lbond and Llead are the welding inductance and
lead inductance, respectively.

The physical model and package parameters of
Schottky diode HSMS-282 and HSMS-286 have been
extracted in the authors’ previous work, they are listed
in Table 1 and Table 2 respectively for easy reference
[13].

The MW-to-DC power conversion efficiency (PCE)
is a key indicator to measure the performance of
microwave rectifiers [24]. Generally, PCE of the rectifier
could be calculated by the following formula:

η =
PDC

PMV
·100% =

Vout
2

PMV ·Rload
·100%, (25)

where PMV and PDC are the microwave input Power and
DC output power, respectively; Vout and Rload are the
output DC voltage and load, respectively [24].

To verify the accuracy and applicability of the pro-
posed method in simulating the temperature effects of
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Table 1: Physical parameters of two Schottky diodes
Parameters HSMS-282 HSMS-286
ΦB [V] 0.629 0.568
ΦM [V] 4.679 4.631
Nd [m−3] 5.44×1014 2.91×1016

Nsub [m−3] 2×1018 2×1018

Lepi [µm] 0.97 1.327
Lsub [µm] 1.02 1.33
Ad [cm2] 6×10−6 5.61×10−6

Table 2: Package parameters of two Schottky diodes
Parameters HSMS-282 HSMS-286
Cp [pF] 0.16 0.2
Lbond[nH] 0.79 0.525
Llead[nH] 0.86 0.98
CL1[pF] 0.007 0.02
CL2[pF] 0.002 0.08

microwave circuit, taking two different microwave recti-
fiers operating at S- and C-band as examples, the simu-
lations are performed by presenting a field-circuit hybrid
multiphysics approach under different ambient temper-
atures (25 ◦C, 75 ◦C). The simulation program is exe-
cuted on a computer workstation with a 3.4GHz fre-
quency Intel Core CPU, 32GB memory and 64-bit Win-
dows operating system. Furthermore, two rectifiers are
placed into a well-sealed thermostat, and the conversion
efficiency is measured to validate the simulation results.

A. The temperature effects analysis on S-band
microwave rectifiers

A compact S-band microwave rectifier working at a
frequency of 2.45 GHz has been manufactured by utiliz-
ing the HSMS-282B diode. The type of printed circuit
board (PCB) used in the rectifier is F4B-2 with a relative
dielectric constant of 2.65, a loss tangent of 0.0012 and
a thickness of 1 mm. The manufactured rectifier dimen-
sion is 20 mm × 16 mm; its structure and photograph are
shown in Fig. 7 (a) and (b), respectively.

It is known that the rectifier performance is deter-
mined by the entire circuit structures, including input
matching and output filtering. However, as a nonlin-
ear device, the Schottky rectifier diodes always generate
high-order harmonics. Although the output filters only
allow DC to pass through and reflects the fundamental
frequency and harmonics, there are still a few harmonics
superimposed on the DC output to cause a ripple.

For the S-band rectifier, the computational domain is
uniformly divided into 240×190×32 (including 5-layer
air and 10-layer CPML) grids in the x, y, and z direc-
tions, the number of iterations is 55000, each iteration

(a) (b)

Fig. 7. (a) Schematic diagram of the 2. 45 GHz rectifier;
(b) Photograph of manufactured 2. 45 GHz rectifier.

Fig. 8. Several typical output voltages of S-band rectifier
at different ambient temperatures.
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is uniformly divided into 240×190×32 (including 5-layer 

air and 10-layer CPML) grids in the x, y, and z 

directions, the number of iterations is 55000, each 

iteration time is approximately 8.4 s, the total simulation 

time is about 128.3 hours. Here, several typical 

simulated output voltages of the rectifier at different 

ambient temperatures are given in Fig. 8. The simulated 

and measured PCE under different temperature (25 ℃, 

75 ℃) are shown in Fig. 9. 
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Fig. 9. PCE of S-band rectifier simulation and 
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B. The temperature effects Analysis on C-band 

microwave rectifiers 

A C-band rectifier was manufactured working at 

frequency 5.8 GHz by utilizing the HSMS-286B diode, 

which still adopts the same PCB as the above-mentioned 

S-band microwave rectifier. The manufactured rectifier 

dimension is 20 mm × 30 mm, its structure and 

photograph are shown in Fig. 10 (a) and (b), respectively.  

Fig. 9. PCE of S-band rectifier simulation and measure-
ments at different ambient temperatures.

time is approximately 8.4 s, the total simulation time is
about 128.3 hours. Here, several typical simulated out-
put voltages of the rectifier at different ambient temper-
atures are given in Fig. 8. The simulated and measured
PCE under different temperature (25 ◦C, 75 ◦C) are shown
in Fig. 9.

B. The temperature effects analysis on C-band
microwave rectifiers

A C-band rectifier was manufactured working at fre-
quency 5.8 GHz by utilizing the HSMS-286B diode,
which still adopts the same PCB as the above-mentioned
S-band microwave rectifier. The manufactured rectifier
dimension is 20 mm × 30 mm, its structure and photo-
graph are shown in Fig. 10 (a) and (b), respectively.
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executed on a computer workstation with a 3.4GHz 

frequency Intel Core CPU, 32GB memory and 64-bit 

Windows operating system. Furthermore, two rectifiers 

are placed into a well-sealed thermostat, and the 

conversion efficiency is measured to validate the 

simulation results. 
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microwave rectifiers 

A compact S-band microwave rectifier working at 

frequency 2.45 GHz has been manufactured by utilizing 

the HSMS-282B diode. The type of printed circuit 

board (PCB) used in the rectifier is F4B-2 with a 

relative dielectric constant 2.65, a loss tangent 0.0012 

and the thickness 1 mm. The manufactured rectifier 

dimension is 20 mm × 16 mm, its structure and 

photograph are shown in Fig. 7 (a) and (b), 

respectively. 
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B. The temperature effects Analysis on C-band 

microwave rectifiers 

A C-band rectifier was manufactured working at 

frequency 5.8 GHz by utilizing the HSMS-286B diode, 

which still adopts the same PCB as the above-

mentioned S-band microwave rectifier. The 

manufactured rectifier dimension is 20 mm × 30 mm, 

its structure and photograph are shown in Fig. 10 (a) 

and (b), respectively.  
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Fig. 10. (a) Schematic diagram of the 5. 8 GHz 

rectifier; (b) Photograph of manufactured 5. 8 GHz 

rectifier. 

For the C-band rectifier, the computational domain is 

uniformly divided into 280×280×22 (including 5-layer 

air and 10-layer CPML) grids in the x, y, and z 

directions, the number of iterations is 35000, each 

iteration step is approximately 9.6 s, the total simulation 

time is about 93.3 hours. The typical output voltages of 

C-band rectifier at different ambient temperatures (25 

℃, 75 ℃) are simulated, and shown in Fig. 11. The 

simulated and measured PCE under different 

temperature are shown in Fig. 12. 

(a) (b)

Fig. 10. (a) Schematic diagram of the 5. 8 GHz rectifier;
(b) Photograph of manufactured 5. 8 GHz rectifier.

For the C-band rectifier, the computational domain
is uniformly divided into 280×280×22 (including 5-
layer air and 10-layer CPML) grids in the x, y, and z
directions, the number of iterations is 35000, each itera-
tion step is approximately 9.6 s, the total simulation time
is about 93.3 hours. The typical output voltages of C-
band rectifier at different ambient temperatures (25 ◦C,
75 ◦C) are simulated, and shown in Fig. 11. The simu-
lated and measured PCE under different temperature are
shown in Fig. 12.

From Figs. 9 and 12, it can be clearly seen that
both S-band and C-band Schottky rectifiers, the PCE
have a consistent variation trend with temperature. The
slight errors may attribute to the discontinuities of SMA
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Fig. 10. (a) Schematic diagram of the 5. 8 GHz rectifier; 

(b) Photograph of manufactured 5. 8 GHz rectifier. 
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directions, the number of iterations is 35000, each 

iteration step is approximately 9.6 s, the total simulation 

time is about 93.3 hours. The typical output voltages of 

C-band rectifier at different ambient temperatures (25 

℃, 75 ℃) are simulated, and shown in Fig. 11. The 

simulated and measured PCE under different 

temperature are shown in Fig. 12. 

 
Fig. 11. Several typical output voltages of C-band 

rectifier at different ambient temperatures. 

 
Fig. 12. PCE of C-band rectifier simulation and 

measurements at different ambient temperatures. 

 

From Fig. 9 and 12, it can be clearly seen that both 

S-band and C-band Schottky rectifiers, the PCE have a 

consistent variation trend with temperature. The slight 

errors may attribute to the discontinuities of SMA 

connectors and temperature effects on PCB material 

properties. The PCE increases slightly with temperature 

increase under low input power, yet decreases 

significantly with temperature increase under high input 

power. From a physical point of view, that is due to the 

fact that the Schottky diode is a cut-off state under low 

input power, carrier density of the Schottky diode 

increase with temperature rise, which causes diode 

current aggrandize and makes the PCE gradually 

increase. However, as the input power continually 

increases, the Schottky diode becomes a turn-on state, 

the diode impedance diminution with the temperature 

rise, which will lead to the input and output impedance 

mismatch and make the PCE decrease significantly.  

The measured results are validated by the simulation 

results at different temperatures, which confirm the 

effectiveness and applicability of our proposed 

approach.  

Furthermore, excessive input power may cause 

Schottky diode self-heating, resulting in power 

conversion efficiency decrease. Thus, power conversion 

efficiency of rectifiers can be optimized by carefully 

selecting suitable temperature conditions, especially for 

energy harvesting application at a low input power level. 

 

IV. CONCULSION 
The temperature effects of electronic devices and 

circuits are essential for microwave power application. 

This paper adopts a novel field-circuit hybrid 

multiphysics simulation to analyse the temperature 

effects of microwave rectifier. Firstly, multiphysics 

model involving semiconductor and thermal conducting 

is solved; then, multiphysics simulation is embedded 

into circuit analysis; finally, this circuit analysis was 

coupled into field-circuit hybrid simulation based on 

FDTD. Taking two different Schottky diode rectifiers 

operating at S- and C- band as examples, simulation 

results match well with the measured ones, which 

validate the accuracy and applicability. This method that 

combines the multiphysics simulation and FDTD 

solution can greatly improve the simulation accuracy of 

microwave power circuits. This approach not only has 

the advantage of accuracy and versatility stemming from 

the multiphysics simulation, but also retains simplicity 

and efficiency of the FDTD field-circuit hybrid 

simulation. 

Moreover, the propose method effectively reveal the 

physical mechanism of rectifier temperature effects. 

Furthermore, the presented approach could be extended 

to more complex circuits without significant 

modifications. This method may become an attractive 

candidate for simulating and predicting temperature 

effects of microwave power circuits.  
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Fig. 12. PCE of C-band rectifier simulation and measure-
ments at different ambient temperatures.

connectors and temperature effects on PCB material
properties. The PCE increases slightly with tempera-
ture increase under low input power, yet decreases sig-
nificantly with temperature increase under high input
power. From a physical point of view, that is due
to the fact that the Schottky diode is a cut-off state
under low input power, carrier density of the Schot-
tky diode increase with temperature rise, which causes
diode current aggrandize and makes the PCE gradu-
ally increase. However, as the input power continually
increases, the Schottky diode becomes a turn-on state,
the diode impedance diminution with the temperature
rise, which will lead to the input and output impedance
mismatch and make the PCE decrease significantly.

The measured results are validated by the simula-
tion results at different temperatures, which confirm the
effectiveness and applicability of our proposed approach.

Furthermore, excessive input power may cause
Schottky diode self-heating, resulting in power con-
version efficiency decrease. Thus, power conversion
efficiency of rectifiers can be optimized by carefully
selecting suitable temperature conditions, especially for
energy harvesting application at a low input power level.

IV. CONCULSION
The temperature effects of electronic devices and

circuits are essential for microwave power application.
This paper adopts a novel field-circuit hybrid multi-
physics simulation to analyse the temperature effects of
microwave rectifier. Firstly, multiphysics model involv-
ing semiconductor and thermal conducting is solved;
then, multiphysics simulation is embedded into circuit
analysis; finally, this circuit analysis was coupled into
field-circuit hybrid simulation based on FDTD. Tak-
ing two different Schottky diode rectifiers operating at
S- and C-band as examples, simulation results match
well with the measured ones, which validate the accu-
racy and applicability. This method that combines the
multiphysics simulation and FDTD solution can greatly
improve the simulation accuracy of microwave power
circuits. This approach not only has the advantage of
accuracy and versatility stemming from the multiphysics
simulation, but also retains simplicity and efficiency of
the FDTD field-circuit hybrid simulation.

Moreover, the propose method effectively reveal the
physical mechanism of rectifier temperature effects. Fur-
thermore, the presented approach could be extended to
more complex circuits without significant modifications.
This method may become an attractive candidate for sim-
ulating and predicting temperature effects of microwave
power circuits.
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