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Abstract – In order to replace millimetre wave com-
munication for extremely fast terabit wireless local and
personal area network connectivity, researchers have
been looking into the possibilities of the terahertz band
for establishing wireless data communication at terabit
rates. The IEEE 802.15 WPAN Terahertz Interest Group
(IGTHz) has been created to encourage research in the
terahertz bands and set standards for their use, in order
to facilitate progress and advancement in this area. The
specific objective of this study is to design and ana-
lyze a microstrip antenna working at 3.5 THz resonant
frequency. The proposed novel antenna includes three
layers: a top layer that represents the patch, a second
layer that represents the substrate, and a bottom layer
that represents the ground plane. It is designed using a
32 nm thin FR-4 substrate with a permittivity of 4.4.
Using HFSS simulations, it was found that the proposed
antenna has an overall efficiency greater than 85% within
the working frequency range of 3.5 THz. Additionally, it
exhibited an extremely low reflection coefficient (S11) of
-43.61 dB at 3.5 THz, with an efficiency exceeding 80%.
This simple and broadband antenna design could have
relevance in high-speed data transmission networks.

Index Terms – Microstrip patch antenna, multilayer
technique, terahertz frequency band, THz antenna.

I. INTRODUCTION
Over the past few years, the manner in which indi-

viduals consume, exchange, and generate information
has changed, leading to significant growth in wireless
data traffic. This has led to an increasing demand for
faster wireless connections that can be used anytime,
anywhere. Over the last 30 years, the speed of wireless
data has increased twofold every 18 months, and it is
now reaching the point where it can match the capac-
ity of conventional communication networks. If present
trends persist, it is anticipated that wireless networks
capable of transmitting terabits of data per second (Tbps)
will be present in the next 10 years [1]. Nevertheless, to
cope with such exceedingly high data rates, innovative
physical layer technologies and novel spectral bands will
be needed [2].

“Terahertz (THz) communication” and “sub-THz
communication” relate to the usage of frequencies falling
within the ranges of 0.1-10 THz and 0.1-0.3 THz [1]. As
a result of the need for rapid data transmission over short
distances, these frequency ranges have become increas-
ingly important. The terahertz spectrum is capable of
transmitting data at high speeds within a range of 10
metres, making it useful for tiny cell cellular networks.
Terahertz communication has the ability to be utilized
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by both stationary and mobile users, as well as in indoor
and outdoor settings. Terabit wireless LAN (T-WLAN)
offers a way to connect personal computers and tablets
to high-speed fiber optic connections. Both cable and
wireless channels move data at the same speed in THz
communication [2]. Despite the advantages of THz fre-
quencies, communication at these frequencies is chal-
lenged by high path loss, which places a severe con-
straint on communication durations. Further challenges
involved in developing dense, high-power transceivers
that operate in the THz band include effective radiators
that work across an ultra-broadband of THz frequen-
cies, characterizing frequency-selective route loss in the
THz band channel, and devising new modulations, trans-
mission strategies and communication protocols that are
optimized for the unique features of this band. The THz
spectrum is currently unregulated due to these challenges
and because many of them are also shared by millime-
tre wave (mmW) communication systems [3]. However,
the radiator size can be decreased to less than a mil-
limetre, which is a huge benefit of THz and sub-THz
frequencies.

Recent advancements in photonic and semiconduc-
tor devices have led to the realization of systems oper-
ating at Terahertz (THz) frequencies. In such systems,
antennas are often fabricated on small substrates before
being integrated with active components. However, the
integration of on-chip radiators with lossy substrates
results in lower efficiency. To address this issue, substrate
integration technology has been proposed as a solution,
which involves transforming nonplanar antenna designs
into planar forms.

While research into achieving Tbps data rates is
still in the initial stages, THz communication has the
capability of achieving data rates in the Gbps range [4].
Some studies have suggested that polarization multiplex-
ing could be used to achieve Tbps data rates [5]. A newly
proposed frequency range in the electromagnetic wave
spectrum of THz, which lies between microwaves and
infrared light, could enhance data transmission rates [6].

After the ITU World Radiocommunication Con-
ference in 2019, where the frequency band of 275-
450 GHz was designated for fixed and land mobile
services, researchers have become more interested in
THz wireless communication technology. The frequency
range of THz waves is defined by the IEEE standard as
0.3-10 THz [7], with a corresponding wavelength range
of 0.03-3 mm. These electromagnetic waves have a fre-
quency band of 0.1-10 THz. The THz wave exhibits the
following remarkable characteristics:

A. Low damage
Compared to X-rays, THz waves have a lower single

photon energy by approximately one part in a million.

Consequently, THz waves do not pose a threat to living
organisms and can be used for various biomedical appli-
cations, such as body scanning for skin cancer, to aid in
medical treatment [8].

B. High spectral resolution
Several important compounds have their spectra in

the THz range, and analyzing the THz radiation spectrum
is necessary to detect harmful objects such as viruses,
toxins, and grenades, among others [9].

C. Visualization
Due to their short wavelengths, THz waves can

penetrate through different non-metallic or non-polar
materials. They can also be converted from opaque to
visible opaque objects by THz wave scanning, which
can provide higher-resolution images. As a result, THz
waves have a significant potential for use in sens-
ing applications, including typical full-body scanners at
airports.

D. Wide bandwidth
A THz wave is the electromagnetic wave with the

broadest frequency range in electronics. Using THz
waves as the signal carrier can significantly increase
the speed of information transmission, potentially up
to Tbps. The field of THz wave sensing applications
has advanced rapidly, but THz antenna applications are
not yet fully developed. Due to the limited availability
of spectrum resources, antennas are being constructed
at higher frequency bands. Compared to typical anten-
nas, THz band antennas provide much higher bandwidth,
owing to the broadband performance of the THz spec-
trum. THz waves offer several advantages over millime-
tre and light waves, including a wider effective fre-
quency band, stronger beam direction, improved secrecy,
and anti-interference performance. THz waves are also
more efficient and can penetrate deeper than light
waves [11].

The broad operational bandwidth of THz antennas
is a result of the distinct features of THz waves and plays
a crucial role in maximizing performance. The devel-
opment of THz antennas is required for the usage of
THz waves in wireless networks. The operating band-
width and antenna gain of the system are both directly
impacted by the performance of these antennas. The
throughput, imaging resolution, and detecting capacities
of the system are also highly related to how THz
antennas perform. Due to the special characteristics
of THz waves, such as their wideband spectrum, high
precision, remarkable directivity, and low cost, THz
antennas have a variety of benefits. However, design-
ing THz antennas is challenging due to the limitations of
materials and manufacturing techniques that restrict the
size of THz antennas. Additionally, THz antennas face
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additional difficulties compared to microwave antennas,
such as establishing successful radiating techniques [12].
When it comes to THz antennas, stricter requirements
must be followed for the type of antenna, materials used,
and manufacturing techniques employed. Sophisticated
microfabrication methods, such as slot array, reflec-
tor, horn, dipole, and leaky wave antennas, are used to
design THz antennas. For sub-THz systems, compact
form factor, high gain, and wide bandwidth designs are
preferred.

Previous research has reported several methods for
reducing link noise, including a multilayer rectangular
cavity design on an InP substrate. This design produced a
broad impedance bandwidth of 38 GHz at 300 GHz with
only 4 dBi gain [13]. Another study utilized CMOS on-
chip technology to create a microstrip patch antenna with
four resonators on top. This method resulted in a broad-
band sub-THz antenna with a central frequency of 10%
fractional bandwidth and 15% radiation efficiency [14].
However, both studies faced challenges with antenna size
and trade-offs between bandwidth, gain, and structure
complexity.

The challenges in developing sub-THz antennas
arise from the high precision required during manufac-
turing and measuring. Despite the existence of numer-
ous techniques for constructing sub-THz antennas at
300 GHz, obtaining high gains, wide bandwidths, and
complex structures remains challenging. To tackle this
issue, the authors propose an antenna design strategy that
achieves high gains and wide bandwidth at sub-THz fre-
quencies. Their approach involves a dipole-based single-
element design with significantly increased bandwidth
and adequate gain. The authors plan to incorporate alter-
native radiating directors and array designs to enhance
the structure’s gain, while still maintaining its compact
form and wide bandwidth.

II. NUMERICAL ANALYSIS
The authors were not able to access the expensive

equipment required to fabricate and test THz antennas at
such high frequencies when this study was conducted.
Even with the adoption of specific methods, such as
batch processing, the fabrication of a highly efficient
coupling port between the source and the antenna is
still challenging, especially for thin substrates. There-
fore, the authors employed numerical analysis to validate
the antenna’s performance. As a result of its availability
and lower cost, FR4 was selected as the substrate for the
designed antenna.

The increasing amount of mobile traffic, projected
to reach 327 petabytes by 2015, highlights the need for
practical and high-speed wireless networks. As the ITU
has not allocated frequencies above 275 GHz for any
specific purpose, the THz frequency band is a promis-

ing option for high-speed communication. Although still
in its early stages, THz communication technology has a
promising future [15], as demonstrated by the hypotheti-
cal wireless personal area network design with THz con-
nections proposed by the U.S. Federal Communications
Commission (Fig. 2) and the secure military wireless
THz communication network depicted in Fig. 1. Increas-
ing carrier frequencies has been the primary approach
to achieve higher data rates, with rates of 10-100 Gbps
translating to frequencies of around 100-500 GHz [16].
Additionally, using frequencies over 300 GHz results in
smaller antenna sizes that are sub-millimetre in scale.

Fig. 1. Wireless THz communication network.

Fig. 2. WPAN design with THz connections.

Due to recent advancements in photonic and semi-
conductor technology, it is now possible to deploy
terahertz-based systems. The development of Si-based
VLSI control systems, MEMS-based devices, and meta-
materials for antennas are essential for THz communi-
cations [17]. A high-frequency photodiode capable of
producing frequencies between 300 and 400 GHz was
reported in [18], with a frequency-to-output power ratio
determined through heterodyning at 1.55 µm. This pho-
todiode could transmit error-free data at a rate of 2
Gbps at 300 GHz with a transmitted power of 10 W.
It had a 140 GHz bandwidth (ranging from approxi-
mately 270 to 410 GHz), a maximum output power of
110 W at 380 GHz, and a photocurrent of 20 mA, which
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is equivalent to a peak output power of 440 W. These
are the features described in the article. Because THz
frequencies are highly attenuated by atmospheric condi-
tions, outdoor data transmission is not feasible, making
it suitable only for short-range indoor applications [18].
The properties of short-range linkages can be estimated
using the Friis formula in Equations (1) and (2) as given
below:

Pr = Pt +Gt +Gr +20 · log
(

λc

4 ·π ·d

)
−

Ladditional −{α · fc ·d} . (1)
SNR (dB) = Pr − {N0 +10.logB +NF + M} . (2)

Pr stands for received power, Pt for transmitted
power, and Gt and Gr, respectively, for the transmit-
ter and receiver antenna gains. The wavelength is rep-
resented by λ , distance by d, and the air attenuation by
α . The system’s noise figure, noise margin, and band-
width are NF, M, and B, respectively. The THz band,
which is made up of tiny cells in a cellular network,
can be used for high-speed data transmission within a
10 m radius. THz communication can be used to serve
stationary and moving users both inside and outside. T-
WLAN enables fast communication between personal
electronics like tablets, laptops, and fiber optic cables.
In THz communication, both wireless and wired lines
communicate at the same speed, enabling bandwidth-
concentrated services like wireless data distribution and
excellent video conferencing in small spaces. Addi-
tionally, THz communication is ideal for military and
defence applications utilizing encrypted communication
networks.

Massive antenna arrays are required in the THz band
to overcome coverage area limitations and transmission
losses due to atmospheric attenuation. This results in nar-
row antenna beams that decrease the likelihood of eaves-
dropping. Additionally, multiple spread spectrum tech-
niques can be employed to counteract signal jamming
attempts. Consequently, the proposed THz antenna is
ideal for high-speed communication networks. A typi-
cal microstrip patch antenna (MPA) consists of three lay-
ers: the top layer, substrate layer, and ground plane. The
rectangular patch is created on the top layer and is sup-
ported by the substrate layer in the middle. The oper-
ating frequency for the proposed terahertz MPA is 3.5
THz, and the thickness of the microstrip patch layer is
usually much smaller than the wavelength. However, in
this case, the operating frequency is higher, so the thick-
ness value is very small. Therefore, to avoid the design
and production constraints depicted in Fig. 3, the thick-
ness value is increased. The proposed THz microstrip
patch antenna uses a flame retardant (FR4) substrate and
has a geometric design size of 1800 × 1800 × 36 nm3.

The antenna being suggested has dimensions that are
mainly in the nanometre range. Table 1 shows the cal-
culated design parameters. The transmission bandwidth
of THz waves is much wider than that of mobile com-
munication, as their frequency range is about 1000 times
greater.

Numerous research teams and organizations have
shown interest in THz technology as a potential solution
for achieving high data rates in wireless communication
systems [19–21]. Compared to mmW systems, THz sys-
tems offer a significantly higher capacity and faster data
transfer rate, making it a promising candidate for ultra-
high-speed wireless communication. THz communica-
tion is mainly used for short-distance terrestrial appli-
cations and space communication. Despite the fascina-
tion of THz waves in the environment, their high trans-
mission rate and strong secrecy meet current demands.
Due to its potential for high-speed data transfer, the
THz communication system has garnered the attention
of many nations, resulting in numerous studies. THz
antennas have progressed rapidly and are available in a
variety of shapes, such as dielectric lens photoconduc-
tive antennas, planar antennas, bowtie dipoles, pyramid-
shaped cavities with dipoles, angle reflector arrays, car-
bon material-based THz antennas, and many more. Con-
ductive antennas, hydrophobic antennas, and innova-
tive technological antennas based on the material used
in their development are the three main types of THz
antennas. A dielectric antenna consists of a substrate
material and an antenna radiator, achieving impedance
matching with the detector through proper design and
providing a simple, easy integration, and low-cost
approach.
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reported in [18], with a frequency-to-output power ratio
determined through heterodyning at 1.55 μm. This pho-
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140 GHz bandwidth (ranging from approximately 270 to
410 GHz), a maximum output power of 110 W at 380
GHz, and a photocurrent of 20 mA, which is equivalent
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sented by λ , distance by d, and the air attenuation by α .
The system’s noise figure, noise margin, and bandwidth
are NF, M, and B, respectively. The THz band, which is
made up of tiny cells in a cellular network, can be used
for high-speed data transmission within a 10 m radius.
THz communication can be used to serve stationary and
moving users both inside and outside. T-WLAN enables
fast communication between personal electronics like
tablets, laptops, and fiber optic cables. In THz communi-
cation, both wireless and wired lines communicate at the
same speed, enabling bandwidth-concentrated services
like wireless data distribution and excellent video con-
ferencing in small spaces. Additionally, THz communi-
cation is ideal for military and defence applications uti-
lizing encrypted communication networks.

Massive antenna arrays are required in the THz band
to overcome coverage area limitations and transmission
losses due to atmospheric attenuation. This results in nar-
row antenna beams that decrease the likelihood of eaves-
dropping. Additionally, multiple spread spectrum tech-
niques can be employed to counteract signal jamming
attempts. Consequently, the proposed THz antenna is
ideal for high-speed communication networks. A typi-
cal microstrip patch antenna (MPA) consists of three lay-
ers: the top layer, substrate layer, and ground plane. The
rectangular patch is created on the top layer and is sup-
ported by the substrate layer in the middle. The operating
frequency for the proposed terahertz MPA is 3.5 THz,
and the thickness of the microstrip patch layer is usually
much smaller than the wavelength. However, in this case,
the operating frequency is higher, so the thickness value
is very small. Therefore, to avoid the design and produc-

tion constraints depicted in Fig. 3, the thickness value is
increased. The proposed THz microstrip patch antenna
uses a flame retardant (FR4) substrate and has a geomet-
ric design size of 1800 × 1800 × 36 nm3. The antenna
being suggested has dimensions that are mainly in the
nanometre range. Table 1 shows the calculated design
parameters. The transmission bandwidth of THz waves is
much wider than that of mobile communication, as their
frequency range is about 1000 times greater.

Numerous research teams and organizations have
shown interest in THz technology as a potential solution
for achieving high data rates in wireless communication
systems [19–21]. Compared to mmW systems, THz sys-
tems offer a significantly higher capacity and faster data
transfer rate, making it a promising candidate for ultra-
high-speed wireless communication. THz communica-
tion is mainly used for short-distance terrestrial applica-
tions and space communication. Despite the fascination
of THz waves in the environment, their high transmis-
sion rate and strong secrecy meet current demands. Due
to its potential for high-speed data transfer, the THz com-
munication system has garnered the attention of many
nations, resulting in numerous studies. THz antennas
have progressed rapidly and are available in a variety of
shapes, such as dielectric lens photoconductive antennas,
planar antennas, bowtie dipoles, pyramid-shaped cavi-
ties with dipoles, angle reflector arrays, carbon material-
based THz antennas, and many more. Conductive anten-
nas, hydrophobic antennas, and innovative technological
antennas based on the material used in their development
are the three main types of THz antennas. A dielectric
antenna consists of a substrate material and an antenna
radiator, achieving impedance matching with the detec-
tor through proper design and providing a simple, easy
integration, and low-cost approach.
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Fig. 3. Proposed 3.5 THz MPA structure: (a) Radiating
layer, (b) bottom layer..

Using the patch antenna cavity model, the following
formula can be used to determine the resonant frequency
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Fig. 3. Proposed 3.5 THz MPA structure: (a) radiating
layer, (b) bottom layer.

Using the patch antenna cavity model, the following
formula can be used to determine the resonant frequency
of the propagation modes (TMmn) in the microstrip [22].
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Table 1: Size of the proposed MPA
Dimensional
Parameter

Dimension Description

a 1100 nm Width of the patch
b 200 nm Width of parasitic patch
c 150 nm Gap between active

patch and parasitic patch
d 200 nm Width of feedline
e 300 nm Width of stub
f 900 nm Height of parasitic patch
g 700 nm Length of the patch
h 800 nm Length of feedline
i 1000 nm Tapered line of the patch
j 300 nm
k 500 nm
l 1800 nm

m 200 nm
n 500 nm Length of stub

The proposed MPA can be designed using equations (3)
and (4) as follows:

fmn =
c

2
√

εe f f

√(m
a

)2
+

(n
b

)2
, (3)

εe f f =
εr +1

2
+

εr −1
2

[
1+12

t1
a

]−0.5
. (4)

Theoretically, equation (1), which takes into account
the rectangular patch’s dimensions a and b, as well as
positive integers m and n, determines the effective rela-
tive permittivity (eff ). When the dimensions a and b and
the permittivity of the substrate layer are known, equa-
tion (2) can be used to get the resonant frequency of
the dominant mode (TM01). The resonant frequency of
TM01 can be altered by adjusting the dimensions a and b
of the patch, which allows for higher modes to propagate
within the dominant frequency range. In this research,
Section 3 describes the design process for determining
the values of a and b. The proposed design employs an
FR4 substrate layer that measures 1800 × 1800 × 36
nm3.

The Q-factor of MPA for a given resonant frequency
is related as:

∆ f
fr

=
1

Q f r
. (5)

The bandwidth is represented by ∆f, the resonant
frequency is represented by fr, and the Q-factor at the
resonant frequency is represented by Q f r. At the domi-
nant mode of the antenna, the gain and quality factors are
related as

Qr f =
2ωεrLW
4hGr f

, (6)

where angular frequency, length, and width of the patch
and height of the substrate are represented by ω , L, W ,
and h, respectively.

Due to higher operating frequency in THz range, the
dielectric loss of the antenna is significant and is given by
the expression

αdl = π
(εe −1)εr tanδ

(εr −1)εeλg
N p/unit − length, (7)

where αdl is the dielectric attenuation loss in nepers (Np)
due to the substrate, λg is the guide wavelength, and δ is
loss tangent. To reduce the effect of dielectric loss, the
thickness of the substrate is kept very small.

The conductor loss of the proposed antenna is
expressed as

αcl =
Rs

ZcWm
Np/unit-length, (8)

where αcl is the conducting loss, Rsis the surface resis-
tance, Zcis the characteristic impedance, and Wm is the
width of the conducting region in the antenna. To reduce
conducting losses, the thickness of the conducting cop-
per layer is kept below 15 µm.

III. RESULTS AND DISCUSSION
The proposed THz MPA was simulated in HFSS

with a frequency range of 3.5 THz. The simulation
results are presented in Fig. 4, showing the plotted S
parameters (transmission and reflection coefficients) ver-
sus the operating frequency. The simulation indicates a
maximum return loss value of approximately -43.61 dB
and a voltage standing wave ratio (VSWR) of 1.013, as
illustrated in Fig. 5. Based on Fig. 5, the VSWR value is
less than 2 in the 3.5 THz working frequency region. The
return loss is a function of VSWR [23], which indicates
how effectively the radiator is matched to the transmis-
sion line or microwave to which it is coupled. A VSWR
value between 1 and 2 [22–26] is considered optimal for
minimal reflection losses. Antenna values are generally
reported with some degree of optimism and accuracy.

The amount of power given to the radiator doesn’t
always get radiated, and matching the antenna with trans-
mission lines is made easier by a low VSWR value.
To evaluate the performance of an antenna, the ratio
of power sent to a reference antenna compared to that

Fig. 4. Simulated return loss value at 3.5 THz.
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Fig. 5. Simulated VSWR value at 3.5 THz.

Fig. 6. Simulated efficiency value at 3.5 THz.

received from an isotropic antenna is used. Most of the
power present at the radiator input will be emitted by
a high-efficiency radiator. On the other hand, low effi-
ciency causes the majority of the power to be lost within
the radiator or reflected due to a mismatched device. The
HFSS simulator was used in this study to simulate the
proposed THz MPA at a frequency of 3.5 THz. Figure 6
depicts how the simulation results demonstrated that the
suggested MPA was successfully radiated in the reso-
nance frequency of 3.5 THz and attained an efficiency of
88.24%. From Fig. 7, the proposed MPA’s impedance is
1.0-0.01 Ω. When compared to current antenna systems,

Table 2: Comparative result analysis
Ref No Antenna

Structure
Dimensions

(mm)
Applications Frequency

(THz)
VSWR S11 (dB) Efficiency

(%)
Substrate

[12] Multi 1130 ×
1130 × 610

THz comm. 3 1.56 -27 - -

[13] Multi Array 2550 ×
1217 × 18

THz comm. 3 - -23 - InP

[14] Multi 2000 ×
2000 × 100

THz comm. 3 1.87 <-10 - quartz

[30] Dual Patch NA sub-THz
radiation detector

1 - -17 93.76 RT-Duroid

[34] Novel Feed
Microstrip

NA NA 3 1.89 -18 - RT-Duroid
5880

[35] Patch Array
Feed Source

NA THz comm. 3 1.73 -20 - PDMS

Proposed Microstrip
Feed

1800 ×
1800 × 36

high-speed
comm.

3.5 1.013 -43.6 88.24 FR4

this high efficiency at 3.5 THz performs well [12–14,
30, 35].

Fig. 7. Impedance plot at 3.5 THz.

IV. COMPARISON
This section aims to evaluate and contrast the elec-

trical characteristics of the proposed THz MPA with
other high-performance MPAs that have been reported in
the literature. Recently, microstrip patch antennas have
gained significant attention for their compact size, pla-
nar design, and low-cost fabrication, especially for oper-
ating at mmW and THz frequencies [12, 13]. In [14],
a small-sized MPA for THz applications has been pre-
sented. Designing multiband THz antennas has become
a new research area, and [30] proposes a dual-band
MPA for surveillance systems. [31] suggests a strategy to
improve manufacturing tolerance at millimetre and ter-
ahertz frequencies by increasing the size of microstrip
patches. [34, 35] discusses two innovative ways of feed-
ing microstrip patches and MPA arrays. The electrical
characteristics of these MPAs, along with their uses and
core values, are summarized in Table 2. The electrical
properties of these structures are compared to those of
the proposed antenna [38–42].
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V. CONCLUSION
The study unveiled a novel, incredibly thin, flexible

MPA design that functions at 3.5 THz. The impact of
the microstrip patch’s symmetrical structures on its elec-
trical performance was investigated by the researchers.
The antenna’s actual performance was in line with the
design analysis’s theoretical expectations. The antenna
has an exceptionally wide bandwidth for its operational
frequency range. Its compact size makes it an attractive
option for use in THz applications, especially high-speed
communications.
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