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Abstract— In this paper, a neural network is applied
to reconstruct the permittivity profile of a three-
section passive sensor for RFID applications. Input
reflection coefficients of the wave backscattered
from a RF tag, over the frequency range 1-5 GHz,
are used to estimate the material parameters. A neu-
ral network incorporating the Levenberg Marquardt
algorithm is evaluated in terms of average absolute
error, regression analysis and computational effi-
ciency. Suitability of the algorithm is verified using
both simulated and measured data, and accurate
results are obtained while avoiding computational
complexity. The methodology developed in this pa-
per can be successfully used for passive sensing
applications involving RFID technology to inves-
tigate and reconstruct a material profile altered by
environmental variables.

Index Terms— RFID, sensors, neural networks, in-
verse scattering

I. INTRODUCTION
Radio frequency identification (RFID) has been

successfully used across a number of tracking and
sensing applications. Recent development of mate-
rials whose permittivity parameters can change sig-
nificantly with environmental conditions suggests
the possibility of constructing a passive RFID sen-
sor that can be interrogated remotely to extract data
about the environment at the sensor [1]. A simple
passive sensor of this type consists of an antenna
attached to a microstrip transmission line, which in
turn is routed over one or more sections of variable
permittivity material before being terminated in a
load. In the following, we explore the feasibility
of reconstructing the permittivity profile of a three-
section sensor of this type by using the backscatter
from this sensor over frequencies in the range 1 -
5 GHz. Neural networks are employed to re-create
the permittivity profile from the received data.

The problem of identifying medium properties
from waves reflected from a device of this type
is a form of the classical one dimensional inverse
scattering problem. For profile inversion in a lossy
inhomogeneous media, analytical techniques are
difficult to implement in most practical situations,

and thus various numerical techniques have been
investigated [2]. Researchers have been employing
methods such as the finite difference time domain
technique [3] and 1-port and 2-port measurements
[4] for extracting the material properties from the
information contained in reflected or transmitted
waves. Artificial neural networks have been em-
ployed across a wide field of applications, includ-
ing inverse electromagnetic problems [5], [6], and
[7]. Exploiting a priori knowledge of the geometry,
neural networks incorporating a backpropagation
algorithm were able to retrieve the radius position
and dielectric permittivity of a circular cylinder
[8]. Neural networks have also demonstrated the
ability to reconstruct the permittivity profile of ho-
mogeneous cylinders in free space and detecting
the position of cylinders [9]. The effective use
of neural networks to determine non-smooth, one-
dimensional profiles of an inhomogeneous layer has
been investigated with noisy data by Yaman and
Simcsek [10].

The sensor is explained in the following sec-
tion. The complex reflection coefficient is calcu-
lated using signal flow theory as described in sec-
tion III. A brief introduction to neural networks,
with details on the specific approach used in this
investigation, is given in section IV. The feasibility
study and results are demonstrated in sections V and
VI.

II. REMS SENSOR CONCEPT
A sensor concept based on reflected electro-

material signatures (REMS) consists of three dis-
tinct components working together to provide pas-
sive sensing capability of environment information.
The first component is the electro-material line,
a chemical strip sandwiched between the ground
plane and top trace of an RF tag’s microstrip trans-
mission line. The second component, the reflector
circuitry, consists of the transmission line itself,
the radio-frequency integrated circuit (RFIC) that
performs backscatter and identification functions,
and any RF tag antennas. Finally, an RF reader
must be used to interrogate the REMS sensor as
well as performs the signal-processing for data ex-
traction. These components are illustrated in Fig. 1
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Fig. 1. Components of a REMS Sensor.

Conceivably, the REMS concept could be imple-
mented with existing UHF or microwave passive
RFID integrated circuits, greatly lowering cost and
allowing passive interrogation of the sensor. In a
conventional backscatter RFID system, the signal
is reflected from a binary-switched load, providing
two potential frequency-dependent measurements
for extracting material line parameters [11]. Since
an RFID reader filters out unmodulated scatter com-
ponents, an RFID-based REMS sensor would allow
a much more precise measurement compared to
other forms of remote sensing.

Any material that has environmental sensitivity
to permeability, permittivity, or conductivity may
be a candidate for the electro-material line in the
REMS sensor. For example, a simple instantaneous
temperature sensor could incorporate thermotropic
liquid crystals. These types of liquid crystals expe-
rience state disordering upon heating, leading to a
change in their electrical (and optical) properties
[12, 13]. A common, everyday example of these
liquid crystals are the disposable thermometer mag-
nets that allow temperature readouts to become visi-
ble through a graded liquid crystal film. Another ex-
ample of candidate material may be a line substrate
doped with ferroelectric or super-paramagnetic par-
ticles [14]. Such a device could use the nonlinear
relationship between field and flux density compo-
nents to sense external field strengths. The REMS
sensor concept may also allow for materials that
time-record environmental attributes, thus provid-
ing a form of chemical memory rather than elec-
trical memory that would achieve a completely
passive sensor. This type of sensor functionality
cannot be achieved under today’s ‘system on a
chip’ paradigm, which still requires external power
supplies for electronic memory recording functions.
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Fig. 2. The microstrip line model with three discrete
segments having different permittivity profiles, ter-
minated in a load to emulate a REMS sensor with
three wells of sensor material.

III. CALCULATING REFLECTION
COEFFICIENT FROM

TRANSMISSION LINE MODEL
A REMS reader is an RF transceiver that mea-

sures modulated backscatter signals from the RF
tag. To test the REMS concept, the sensor is mod-
eled using three cascaded microstrip transmission
lines, emulating a three part step discontinuity in
the electro-material line. Each cascaded microstrip
line is 1.25cm long and 0.5cm wide with a substrate
height of 0.05cm. Different dielectric materials in
the segments are used to emulate a REMS sensor
with three wells of sensor material. The line is
terminated in a resistive load. As the transmission
line geometry is not specifically designed for a
characteristic impedance of 50Ω, this load causes
part of the wave to be absorbed and part reflected
back. The microstrip line model with three discrete
segments having different permittivity profiles is
shown in Fig. 2. For the frequency range of 1-
5GHz, the relative permittivity, εr, of each segment
was swept across a range of values, and the values
of reflection coefficient, ΓIN , at the input of the
system were computed. Each transmission line acts
as a two port network, and the complete system of
the cascaded lines can be analyzed in terms of S-
parameters and signal flow graphs [15], using Eq. 1.

ΓIN =
b1

a1
= S11 +

S12S21ΓL

1− S22ΓL

(1)

The complex-valued reflection coefficient contains
information about magnitude as well as phase,
and both will be used by the inversion algorithm.
To demonstrate how the frequency-swept measure-
ment of an RF reader changes for slight pertur-
bations in the permittivity profiles, the dielectric
constant of the second bin was changed for four
different values, as illustrated in Fig. 3, and the
reflection coefficient was calculated for each case.
The effect on magnitude and phase of Γin, between
four values of εr2, with εr1 = 2.5 and εr3 = 3.5, is
shown in Fig. 4 and Fig. 5, respectively. Significant
alterations are observed in the magnitude and phase
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Fig. 4. Magnitude of ΓIN for εr2 = 2, 3, 4 and 5
calculated from the signal flow graph.

of the wave scattered out of the tag. Theoretically,
every material profile will produce a unique fre-
quency sweep - although designing a wide range of
switchable loads (ZA, ZB , and possible more) will
greatly affect measurement resolution and sensitiv-
ity.

IV. NEURAL NETWORK
The idea of neural networks evolved in late

19th century in an attempt to understand how the
human brain functions. The concept of decentral-
ized network units (neurons) was introduced in
1943 when McCulloch and Pitts developed the first
mathematical model of a neuron [16]. Inspired from
brain function, the neural network is generally used
to solve artificial intelligence problems without re-
quiring a model of the system. Neural networks are
adjusted and trained to solve problems that are diffi-
cult to solve using conventional techniques and are
extremely useful in pattern recognition and function
approximation problems. In this paper, a neural
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Fig. 5. Phase of ΓIN for εr2 = 2, 3, 4 and 5
calculated from the signal flow graph.

network is used to extract the material properties of
the microstrip transmission line structure based on
the reflection coefficient of a backscattered wave.

In a typical single neuron having a scalar input
p, p is multiplied with a weight w and added to a
bias/offset b. A neuron may or may not have the
bias/offset. The output n (net input) of the sum-
mer forms the argument of an activation function
(transfer function) f , whose output a is the output
of the neuron. The activation function is chosen by
the designer, while the weight and bias (if used)
are adjusted by some learning rule [17]. The output
function is described by Eq. 2.

a = f(wp+ b) (2)

For many systems, one neuron is insufficient
and therefore multiple neurons and multiple neuron
layers are used, as depicted in Fig. 6. For one such
layer comprising S neurons, there may be an arbi-
trary number of inputs R, each connected to all S
neurons. The resulting weight matrix has dimension
S × R. The number of neurons is independent of
the number of rows and columns [17]. All neurons
usually have the same transfer function, although
this is not always the case [17]. In the event that one
layer of multiple neurons is inadequate, a network
with additional (hidden) layers can be used. Each
layer has its own weight matrix W , bias vector b,
net input vector n and output vector a. For R inputs
and S1 neurons in the first layer, the second layer
can be considered as a layer with S1 inputs, S2

neurons and a weight matrix of order S1×S2. Input
to the second layer is a1 and its output is the input
to the next layer. The final output, a3, is given by
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Fig. 6. Three layers of multiple neurons.

Eq. 3.

a3 = f3(W 3f2(W 2f1(W 1p+b1)+b2)+b3) (3)

The transfer function may be linear or nonlin-
ear depending upon the problem. The three most
commonly used transfer functions are the hardlimit
transfer function, the linear transfer function, and
logsigmoidal transfer function [16]. The logsig-
moidal transfer function takes an input from minus
infinity to plus infinity and compresses the output
into the range 0 to 1 according to the expression in
Eq. 4. It is the most typically used transfer function
in backpropagation algorithms and is used in this
work as well.

a =
1

1 + e−n
(4)

A. Training Algorithms
The weights described in the previous section

must be determined by a training process that at-
tempts to match the actual output of the neural
network with the desired output for a training data
set. Function approximation problems are typically
solved using backpropagation algorithms, which
require the activation function to be differentiable.
A common implementation is known as the delta
rule, given by Eq. 5 for the jth neuron and the ith

weight, where α is the constant learning rate, tj is
the target output, yj is the actual output and g(x) is
the activation function.

Δwji = α(tj − yj)g
′(hj)xi (5)

Eq. 5 provides the adjustment in weights during one
step of the training process.

The training algorithm must minimize the error
between the desired and actual network outputs as
quickly as possible. The learning rate (denoted by α
or lr ) is a critical parameter in every algorithm. If
lr is too large, the algorithm may be unstable, and if
lr is too small, the algorithm converges too slowly.
A variety of heuristic or numerical optimization
algorithms are reported in the literature [17, 18,
19, 20, 21, 22]. Each algorithm has its own merits

and demerits depending upon the type of problem
and computing resources. The gradient descent and
gradient descent with momentum algorithms are
considered too slow for practical problems [17].
Conjugate gradient methods were invented purely
for quadratic functions, and some require exces-
sive memory while others require more iterations
to converge. Newton’s method is an alternative to
conjugate gradient methods for fast optimization,
and often converges faster than the conjugate gra-
dient method, but it involves the Hessian which is
expensive to compute. In the quasi-Newton method,
an approximate Hessian is updated at each iteration
instead of being recomputed from scratch [17]. The
Broyden, Fletcher, Goldfarb, and Shanno (BFGS)
algorithm requires more computation and storage
than the conjugate gradient algorithm and is not
suited to large networks [17]. The one step secant
algorithm is an effort to bridge the gap between
conjugate gradient and quasi-Newton algorithms. In
terms of accuracy (mean square error), speed, and
memory requirements, which algorithm performs
best depends upon a number of factors including
the problem complexity, the number of points in
the data set, weights, biases, the desired accuracy,
and the type of problem (pattern recognition or
function approximation). For a function approxima-
tion problem having a network with a few hundred
weights, the Levenberg Marquardt (LM) algorithm
often converges the fastest [17].

A number of simulations were carried out to
determine the best algorithm, with the result that the
LM algorithm exhibited superior absolute average
error and computation time. The algorithm was
designed to approach second order training speed
without computing the Hessian H , instead using the
approximation H = JTJ , where J is the Jacobian
containing the first derivative of network errors with
respect to weights and biases. The gradient is com-
puted as g = JT e, where e is the vector of network
errors [23]. The Jacobian is computed through a
standard back propagation technique which is much
less complex then computing the Hessian [24]. The
algorithm may be written as

xk+1 = xk − [JTJ + μI]−1JT e (6)

The primary drawback of the Levenberg Mar-
quardt algorithm is that it requires the storage of a
relatively large matrix. The size of the Jacobian is
Q×n, where Q is the number of training sets and n
is the number of weights and biases. The Jacobian
can be divided into equal sub matrices, with the
Hessian expressed as

H = JTJ = JT
1 J1 + JT

2 J2 (7)
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Table 1. Comparison of actual values of εr1,2,3 vs neural network output

Actual Values Neural Network output Error
4 4.115 0.115

Set1 4 4.024 0.024
4 3.985 -0.015
2 2.018 0.018

Set2 2.3 2.334 0.034
4.8 4.501 -0.299
3 3.255 0.255

Set3 2.5 2.495 0.005
4.5 4.238 0.262

Table 2. Dimensions of microstrip transmission lines in experimental setup.

Trnas Line 1 Trans Line 2 Trans Line 3
Length (L) 1.25 cm 1.25 cm 1.25 cm
Width (W) 0.5 cm 0.5 cm 0.5 cm

Substrate Height 0.127 cm 0.157 cm 0.127 cm
Conductor Thickness 0.0017 cm 0.0017 cm 0.0017 cm

Loss Tangent 0.002 0.0009 0.002
Substrate RO 3006 RT/Duroid 5880 RO 3006

Dielectric Constant 6.15 2.2 6.15

Table 3. Comparison of values of εr1,2,3 estimated using neural networks against the actual values for
frequency range 1-2.5 GHz.

εr1 εr2 εr3 Average Error
Actual Value 6.15 2.2 6.15

Estimate 1 using LM Algorithm 5.72 2.73 5.60
Absolute Error 0.43 0.53 0.55 0.50

Estimate 2 using LM Algorithm 5.72 2.89 5.53
Absolute Error 0.43 0.69 0.62 0.58

Estimate 3 using LM Algorithm 5.67 2.81 5.69
Absolute Error 0.48 0.61 0.46 0.51

where J is divided into two equal matrices J1 and
J2.

V. APPLICATION OF NEURAL
NETWORKS FOR EXTRACTING

MATERIAL PROPERTIES (εR)
As a first step in using a neural network to

extract material parameters, the dielectric constant
εr2 of the center segment of a 3-step microstrip line
is varied from 2-8 with a step size of 0.1, while
εr1 and εr3 were fixed at 3 and 3.8, respectively.
A data set containing the magnitude and phase of
Γin was generated for frequencies from 5 to 6 GHz
with a step size of 100 MHz. The step size of 100
MHz was chosen to keep the data matrix dimen-
sions within the computing capability of a modest
desktop computer; it was observed that frequency
steps smaller than 100MHz did not increase the
accuracy of the results. The magnitude and phase
values were combined in the data matrix D, which
has the form shown in Eq. 8.

D =

[

|Γ|
∠Γ

]

(8)

For the initial test, |Γ| and ∠Γ were matrices of
dimensions 11 × 61, corresponding to 11 frequen-
cies and 61 different values of εr2. A finer incre-
ment of the dielectric constant, 0.01 for instance,
might improve the accuracy of the network model,
but at a cost of increasing each matrix to 11× 601.
The neural network with 10 neurons in single layer
was trained using εr2 in the range from 2-8, and
then tested using the phase and magnitude of Γin

corresponding to εr2 = 2.1, and 4.75. The network
produced estimated values for εr2 of 2.1186 and
4.7693, respectively.

As a second test, εr1 and εr3 were also varied as
the frequency was swept across the 5-6 GHz range
with a step size of 100 MHz. Values of εr1, εr2, and
εr3 were varied from 2-5 with a step size of 0.1. The
resulting data matrix had dimensions 22× 29, 971.
After training, the Levenberg Marquardt algorithm
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with 10 neurons in a single layer was able to pro-
duce relative permittivity values within ±0.3 of the
actual values, as summarized for several examples
in Table 1.

The first two tests were carried out with a single
neuron layer. Additional tests were carried out with
single layer networks with 5, 10, 15, 20 and 25
neurons, and a two layer network with 10 neurons
each. The results were compared in terms of error
and coefficient of regression analysis. Each network
was tested for the set of permittivity values shown
in Eq. 9 in matrix T . The rows of T correspond to
εr1 , εr2 and εr3, while the columns show the set of
dielectric constants presented to the network at each
time. It was observed that a single layer with 20 or
25 neurons is best suited in terms of absolute mean
error and computation efficiency. The errors for 20
neurons are shown in matrix E20 in Eq. 10.

T =

[

2.1 2.5 3.5
3.5 3.5 3
4.9 4.5 4

]

(9)

E20 =

[

−0.097 −0.026 0.005
0.048 0.004 0.015
−0.015 0.008 0.009

]

(10)

To simulate the presence of white Gaussian
measurement noise, random numbers were added
to the training data. Five different levels of noise
corresponding to a 5dB, 10dB, 15dB, 20dB and
30dB signal to noise ratio (SNR) were induced. The
system was trained, validated and tested using the
LM algorithm, and regression analysis was carried
out. The coefficient of correlation from regression
analysis for all different levels of SNR is plotted in
Fig. 7 where it can be observed that higher SNR
corresponds to higher coefficient of regression R
and vice versa. The ideal value for R is 1.0.

VI. EXPERIMENTAL MEASUREMENT
AND ANALYSIS

To enable measurements, a device was fabri-
cated with three microstrip transmission lines cas-
caded together in the fashion described in section
III, as shown in Fig. 2 and Fig. 8. The dimensions
and dielectric properties of the cascaded microstrip
lines are tabulated in Table 2. Materials with param-
eter values of εr1 = εr3 = 6.15 and εr2 = 2.2 were
used. The microstrip line was terminated in a 50Ω
load.

A network analyzer was used to record S-
parameters over the frequency range 1-5 GHz. A
comparison between measured and simulated val-
ues of the magnitude and phase of the reflection
coefficient are shown in Figs. 9 and 10. There is
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Fig. 8. Snapshot of microstrip transmission line
setup for experimental measurements.

excellent agreement between measured and sim-
ulated results in the frequency range 1-2.5 GHz,
and reasonable agreement at higher frequencies.
Ripples and other deviations are observed for higher
frequencies, which can be attributed at least in
part to discontinuities introduced by the fabrication
technique. The microstrip lines were soldered to-
gether horizontally, across the width, which caused
a noticeable amount of solder paste to sit on the
joints. Moreover, a thin wire was also inserted hor-
izontally to strengthen the solder.

For training purposes, simulated data was gen-
erated for εr1 and εr3 swept across the range from
5 - 8, and for εr2 from 1.1 - 3.6. This results in a
dataset with 30 × 25 × 30 = 22, 500 vectors. The
row dimension of the data matrix is determined by
frequency range and frequency step size. To limit
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Table 4. Comparison of actual values of εr1,2,3 with the neural network results obtained with 1 layer of 20
neurons and trained on data having different levels of white noise, over the frequency range from 1-5 GHz.

’R’ εr1 εr2 εr3 Average Error
Actual Value 6.15 2.2 6.15

Estimated with AWGN (30dB SNR) 0.99 5.96 2.56 7.23
Absolute Error 0.19 0.36 1.08 0.54

Estimated with AWGN (20dB SNR) 0.952 5.91 2.96 6.58
Absolute Error 0.24 0.76 0.43 0.48

Estimated with AWGN (10dB SNR) 0.956 5.95 2.75 6.20
Absolute Error 0.20 0.55 0.05 0.27

Estimated with AWGN (05dB SNR) 0.91 6.45 2.75 6.04
AbsoluteError 0.30 0.55 0.11 0.32
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sured and calculated reflection coefficient (|Γin|).
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the column length, the frequency range from 1-
2.5 GHz was used. A neural network containing a
single hidden layer of 20 neurons was trained with
data containing white Gaussian noise (10dB SNR).
To eliminate the element of coincidence, and verify
the robustness of algorithm, the neural network was
trained and tested three times on the same data, with
different starting weights each time. The three sets
of results are tabulated in Table 3. These results
exhibit an average absolute error range of ±0.6 and
a coefficient of regression R greater than 0.92.

Additional tests were carried out using the 1-
5 GHz frequency range, with a frequency step size
of 300 MHz. Using 20 neurons with the LM algo-
rithm, a neural network was trained with simulated
data containing white Gaussian noise. In terms of
absolute error, the coefficient of regression R was
determined to be 0.91, 0.95, 0.95 and 0.99 for an
SNR of 5, 10, 20 and 30 dB, respectively. Table 4
shows the estimated values of dielectric constants
and their absolute error levels. In this case, the best
errors are achieved for a neural network trained with
a data set containing white Gaussian noise with an
SNR of 10dB. To verify the optimum number of
neurons in the hidden layer, the same procedure
was repeated for 25 neurons, with similar results
for the coefficient of regression as a function of the
SNR level. In this case 20 neurons is sufficient for
an accurate approximation using a frequency range
from 1-5GHz and a step size of 300 MHz.

VII. CONCLUSION
In this feasibility study, neural networks were

used to extract material parameter values from re-
flection coefficient data obtained from an RFID-like
sensor. The dielectric constant was varied across
each of three lengths of microstrip transmission
lines. With a priori knowledge of geometry of the
structure and the range of varying dielectric con-
stants, the neural network was trained with data for
the magnitude and phase of Γin across the com-
plete frequency range of interest. The frequency
resolution was an important parameter for accu-
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racy of results and computational efficiency. It was
demonstrated that a frequency step size smaller than
100 MHz does not improve the accuracy of re-
sults. Furthermore, for a wide range of frequencies
from 1-5 GHz, a frequency resolution of 300MHz
is sufficiently dense to keep the results accurate
while maintaining the computational efficiency of
the algorithm. The Levenberg Marquardt backprop-
agation algorithm was determined to be well-suited
to solve this one dimensional inverse scattering type
problem using neural networks. White Gaussian
noise with a 10dB SNR was induced in training data
to simulate the measurement noise. The architecture
of the neural network is an important parameter
for any problem, and it was demonstrated that one
hidden layer of 20 or 25 neurons enables optimum
performance of the network in terms of average
absolute error and computational efficiency. With
the application of a neural network based on the
LM backpropagation algorithm with one hidden
layer of 20 neurons, the dielectric constant of a
three cascaded microstrip transmission line system
was estimated with absolute average error less than
±0.5. We note that this one dimensional inverse
scattering problem would be more challenging to
investigate with non deterministic boundaries and
for material properties that vary across a greater
range.
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