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Abstract ─ In this paper, a high-order three 
dimensional (3-D) discontinuous Galerkin time 
domain (DGTD) method has been introduced for 
the first time for the efficient scattering analysis of 
air-inlets. This method combines the geometrical 
versatility of finite element method (FEM) with 
the explicit time-stepping of finite volume time 
domain (FVTD) method, thus having the 
advantages of handling electrically large, 
arbitrarily shaped, and complex media objects. To 
validate the capability of this method, the radar 
cross section (RCS) of three typical air-inlet 
models have been simulated. The results of the 
DGTD method agree well with that of the method 
of moments (MoM), which proves the DGTD 
method a useful alternative to the traditional 
methods to solve the scattering problems.  
  
Index Terms ─ Air-inlets, DGTD, and RCS.  
 

I. INTRODUCTION 
Scattering properties of air-inlets is of great 

importance in radar signature analysis [1], as the 
air-inlets could significantly affect the overall RCS 
from jetfighters. Therefore, the development of 
accurate and efficient methods to evaluate the 
RCS from such structures is an important task and 
has attracted much attention in the computational 
electromagnetics community. 

Classic frequency methods of scattering 
analysis include high frequency methods and low 
frequency methods. However, the high frequency 

methods employing ray tracing techniques [2] are 
less accurate when dealing with cavity structures, 
while the low frequency methods like the MoM 
[3] is hard to deal with electrically large and 
complex objects with dielectric coating. Moreover, 
as the increasing needs for the wideband scattering 
information, time domain method is more 
efficient, nonetheless, classic time domain 
methods such as the finite difference time domain 
(FDTD) method [4] and the finite element method 
time domain (FEMTD) [5] suffer from low 
accuracy or great resource consumption. As a 
result, new time domain method for efficiently 
solving the electrically large and complex 
scattering problem is highly desirable. 

Recently a set of high-order DGTD methods 
has been developed [6-9], which commonly 
combines the geometrical versatility of the FEM 
[5] and the explicit time-stepping of the FVTD 
method [10]. It exceeds FDTD and FEMTD in 
accuracy and efficiency respectively [11], thus 
becoming a very suitable method for the 
electrically large, arbitrarily shaped, and complex 
media targets. Therefore, in this paper, for the first 
time, the high-order 3-D DGTD method is applied 
for the RCS evaluation of air-inlets. To validate 
the capability of this method to solving scattering 
problem, three typical air-inlet models have been 
simulated. The results of them have shown good 
agreement with that of the MoM, which proves the 
DGTD method a useful alternative to the other 
numerical methods. 
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The remaining parts of the paper are organized 
as follows. In section II, the DGTD method is 
briefly presented. In section III, several numerical 
results of air-inlet models are given to verify the 
accuracy of the method. Finally, conclusions are 
drawn in section IV.  

   
II. DGTD FUNDAMENTALS 

To introduce the high-order 3D DGTD 
method simply, the Maxwell’s curl equations in 
linear, isotropic, and homogeneous media are 
presented in conservation form first, 
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where the material matrix , the state vector q, 

and the flux F are denoted as follows, 
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Then, considering a 3D physical domain Ω, 
which is discretized by K non-overlapping 
elements (tetrahedrons in 3D), Ωk, k=1…K. In an 
arbitrary element Ωk, the fields can be expanded 
using Lagrange interpolation polynomials Li(r) 
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where Np represents the number of the local 
expansion. ˆ kq  contains a Np-vector of expansion 
coefficients to be solved. The relationship between 
Np and the polynomial expansion order N for 
tetrahedron is Np = (N+1)(N+2)(N+3)/6. A 
carefully chosen set of the interpolation nodes ri 
could lead to good numerical behaviour [12]. 

Next, using the classic Galerkin method, 
equation (1) is sampled with test function Li(r) as 
shown, 
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In order to couple with the neighbouring 
elements, the divergence part of the integral in 
equation (3) is first manipulated by an integration 
by parts as 
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where ˆ kn denotes the unit outward-pointing vector 
normal to the contour of element Ωk denoted by 
∂Ωk. Then, replace the flux F on the RHS by the 

numerical flux F* and perform another integration 
by parts, the strong variational formulation of 
equation (3) can be obtained as, 
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The numerical flux F* on the surface ∂Ωk is to 
exchange the coupling between neighboring 
elements. It can be obtained properly by solving a 
local Riemann problem [6]. Here, the pure upwind 
flux [13] is used, which could strongly damp the 
unphysical modes [6], 
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where [E]= E−− E+ and [H]= H−− H+  measure the 
jump in the field values across element interfaces; 
i.e., superscript “+” refers to field values from the 
neighbor element while the “−” refers to field 
values local to the element. For the possible 
difference of material properties between two 
elements, local impedance and conductance, 

1( )Z Y        and local sums Z Z Z    , 

Y Y Y    has to be defined.  
Finally, by substituting the expansions in 

equation (2) with the numerical flux of equation 
(5) into equation (4) and assuming parameters  
and μ constant in each element, the explicit 
expressions of the DGTD can be easily obtain as 
follows, 
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Here, Ek and Hk are Np-vectors. The mass matrix 
k, the stiffness matrices k, and the face mass 

matrix k with respect to the element contour ∂k 

are defined as shown below 
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Since equation (6) are ordinary differential 
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frequency domain method and the models in 
FEKO are meshed with 0.1λ edge-length on 
surface, the DGTD method would be a potential 
tool when dealing with wideband scattering 
problems of electrically larger and complex media 
air-inlet. 
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Fig. 4. (a) the bistatic RCS results and (b) the inset 
of the bending air-inlet model. 
 

IV. CONCLUSION 
In this article, the high-order 3-D DGTD 

method has been introduced for the first time for 
the scattering analysis of air-inlets. This method 
has the advantages of handling electrically large, 
arbitrarily shaped, and complex media 
composition objects. The results of DGTD agree 
well with those of the MoM, which proves it to be 
a useful alternative to the traditional methods to 
solve the scattering problem. Considering the 
advantages of this method, it may be a promising 
method for electrically large and complex air-inlet 
in future work. 
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