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Abstract ─ Magnetic detection electrical impedance 

tomography (MDEIT) is an imaging modality that aims 

to compute the cross-sectional distribution of the 

conductivity of a volume from the magnetic flux density 

surrounding the object. Owing to the Biot-Savart law, the 

MDEIT inverse problem is inherently ill-conditioned 

making image reconstruction highly susceptible to the 

effects of noise and numerical errors. Appropriate priors 

or penalties are needed to facilitate reconstruction and to 

restrict the search space to a specific solution set. The 

images have the sparsity property and sharp variations. 

Consequently, this paper presents an approach involving 

a combination of the L1 and total variation norm 

penalties, the former to suppress spurious background 

signals and enforce sparsity and the latter to preserve 

local smoothness and piecewise constancy in the MDEIT 

reconstructed images. The primal dual-interior point 

method (PD-IPM) for minimizing the joint L1–TV 

penalty was used in the paper. The method was validated 

by using MDEIT simulated data and experimental data 

in comparison with the performances of the L2, L1 and 

total variation norm penalty-based approaches. The 

results show that the joint L1–TV regularized algorithm 

preserves sparsity property, local smoothness and 

piecewise constancy, leading to improvements in the 

localization of the reconstructed images in MDEIT. 

 

Index Terms ─ Inverse problem, joint regularization,  

L1 norm, magnetic detection electrical impedance 

tomography, total variation. 
 

I. INTRODUCTION 
Magnetic detection electrical impedance tomography 

(MDEIT) is an experimental imaging modality that aims 

to reconstruct electrical conductivity images from the 

magnetic flux density surrounding the object induced by 

an injected current. Since measurements of the magnetic 

flux density surrounding the object don’t require surface 

contact, MDEIT can record a greater number of 

measurements with precise detector positions. While 

electrical impedance tomography (EIT) records the 

surface voltage by electrodes on the surface, leading to 

the more errors in the measurement and less number of 

measurements. As a different type of EIT, MDEIT 

overcomes the shortcomings of the standard EIT and 

retains its merits. MDEIT also has some comparative 

advantages over other similar imaging techniques  

in some respects. Magnetic resonance impedance 

tomography (MREIT) eliminates some of the principle 

advantages of EIT, such as low cost and the potential for 

long-time monitoring. Magnetic induction tomography 

(MIT) has limitation in the biomedical application due to 

the smaller signal produced by the eddy current 

compared to the signal produced by the injected current. 

The concept of MDEIT was introduced in 1992 by 

Ahlfors and Ilmoniemi. They proposed a method that 

determines the conductivity distribution within an object 

using magnetic field measurements, which called 

magnetic impedance tomography (MIT) [1]. The 

feasibility of using magnetic field measurements to 

produce current density images was demonstrated with 

four examples in two dimensions, and made the first step 

towards developing MIT as a new medical imaging 

technique [2]. Then, this technique was called as MDEIT, 

because original name was easily confused with 

magnetic induction tomography [3]. They applied the 

Tikhonov regularization and truncated singular value 

method (TSVD) to MDEIT current density reconstruction. 

Ireland described a method of iterative grid refinement, 

improving the ill-posed nature of the MDEIT inverse 

problem by limiting the number of unknowns to be 

solved [4]. But they just constructed the current density 

image, the conductivity distribution reconstruction 

leaved to be solved. In this work we construct the 

conductivity image using simulated data. 

The inverse problem of MDEIT is ill-posed. 

Consequently regularization techniques have been 

adopted to stabilize the solution [2-4]. However, these L2 

norm regularization methods limit the capability of 

describing sharp variations in the conductivity and tend 

to smooth out edges in images. The human images have 

well defined organ boundaries that present sharp 

transitions in conductivity. The ability of reconstructing 

sharp changes should lead to a better estimation of the 
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boundaries and a better accuracy in the estimated values. 

Sharp images could better identify the boundaries 

between the regions. The L2 norm algorithms blur such 

contrasts and make more difficult to estimate the size and 

the contrast value. These inspire us to investigate a 

regularization method that preserves the edge 

information of the reconstructed conductivity image. 

The total variation (TV) minimizing function 

regularization preserves discontinuities in the 

reconstructed profiles [5]. The TV is defined as the L1 

norm of the differences between neighbouring pixels. 

This particular form of the TV penalty enforces sparsity 

on pixel differences and consequently tends to generate 

images with piecewise constant regions and sharp 

boundaries. As a result, we studied TV regularization 

strategy and showed its superiority over the conventional 

L2 regularization in our previous work [6]. However, in 

some cases, the images tend to be very sparse with some 

locally smooth high value regions. For example, the 

cancer is the localized high impedance tissue. Another 

application is the difference imaging, where the goal  

of the reconstruction is to recover the conductivity 

difference that commonly exhibits the sparsity. The L1 

norm is often used to enforce sparsity in images and is 

particularly popular in the field of compressed sensing 

[7-8]. But it tends to shrink the support of large or non-

sparse sources. The TV regularization can preserve the 

boundary of large object well while removing small 

features and sparse sources. This inspires us to joint L1 

norm penalty and TV penalty, enforcing sparsity and 

smoothness in the reconstructed images. The similar 

methods have recently been applied to microwave 

imaging [9] and fluorescence molecular tomography 

[10-11]. This paper firstly uses the joint L1 and total 

variation regularization to solve the inverse problem of 

magnetic detection electrical impedance tomography. In 

this work, the primal dual-interior point method (PD-

IPM) was applied to minimize the joint L1–TV penalty. 

 

II. METHODS 
MDEIT is technically based on generating a current 

distribution inside of the object by injecting an 

alternating current, at one of a range of frequencies, into 

a conducting object with surface electrodes. A large 

number of magnetic flux density measurements recorded 

with magnetic field sensors at fixed positions around  

the object are used to reconstruct the conductivity 

distributions on tomographic planes. 

 
A. Inverse problem of MDEIT 

A straightforward approach for solving the inverse 

problem of MDEIT is seeking the optimal solution by 

minimizing the cost function which is the residual norm 

between the calculated data and the measured data. The 

resulting optimization problem is as follows: 
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where  F σ  is the forward operator calculated at the 

conductivity σ, and B is the measured magnetic field. 

The reconstruction algorithm is capable of finding 

relative conductivity distribution only. Yet, the inverse 

problem of MDEIT is ill-posed, making the image 

reconstruction highly sensitive to the noise of the 

measurement data and numerical errors, and necessitating 

the use of regularization. The forward operator  F σ  

can be stated as [12]: 
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The Jacobian matrix A is defined as: 
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Alternate the index of partial derivative in ə▽φ/ə, 

and obtain the following equation: 
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The partial derivative of electrical potential to 

conductivity əφ/ə  can be calculated through the linear 

equation system of the forward problem. Calculate the 

partial derivative to the conductivity, and obtain the 

following equation: 
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where S is the coefficient matrix between the excitation 

matrix and the nodal voltage matrix based on the finite 

element method. 

 

B. Joint L1 and total variation regularization 

The cost function we seek to minimize contains 

three parts—a data-fitting term, a sparsifying penalty 

term and a smoothing penalty term. The sparsifying 

penalty under consideration is the L1 norm of the 

conductivity image σ. The cost function is: 
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where δ is a constant with a small positive value, which 

enforces the differentiability of the TV penalty. L is a 

regularization matrix. 1L
  and TV are the regularization 

parameter for L1 regularization and TV regularization,  
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respectively.  

Primal Dual-Interior Point Method (PD-IPM) was 

utilized for minimizing the joint L1–TV penalty [13-14]. 

The joint L1–TV regularized inverse problem can be 

formulated as: 

     1

2

12

1
P arg min

2
TV iL

i

F     
σ

σ B σ L σ  (8) 

We call Equation (8) primal problem and label it (P), 

where σ is the primal variable. An equivalent problem to 

(P) is called dual problem which is a maximization 

problem: 
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where x is the dual variable. The complementarity 

condition is: 
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with the feasibility conditions, 
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Apply the Gauss Newton method and obtain the updates 

of the primal and dual variables: 
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Moreover, for maintaining dual feasibility, we 

calculate the exact value of step length according to the 

step rule: 

  *
1 min 1,k k k   x x x , (14) 

where *  is a scalar value such that, 

  * sup : 1, 1, ,ki kix x i n       . (15) 

With joint L1 and TV penalties, there are two 

regularization parameters to be selected. These 

parameters were empirically determined by sweeping 

them over a range of values. The sparsifying and 

smoothing effects increase as we increase the weights on 

the L1 and TV penalties, respectively. 

 

III. EXPERIMENTS AND RESULTS 
We tested the joint L1–TV regularization approach 

and compared it with the L1, TV and L2 penalties using 

simulated and experimental data. 

 

A. Simulation results 

In the section, we evaluated the performance of the 

joint L1–TV regularization algorithm and compared its 

performance with the L1, TV and L2 penalties. The 

evaluation was conducted on the simulated data. The 

simulated phantom is shown in Fig. 1 (a). Suppose a  

10 mA current was injected by one pair of opposite 

electrodes and the size of the electrode is just the same 

as the area of an element. The total element number is 

2160 for simulating the magnetic flux density data 

(forward model) and 540 for the image reconstruction 

(inverse model). The positions of the magnetic flux 

density measurement coils at 120 equally spaced angles 

along 3 equally spaced circles surrounding the circular 

imaging object, which results 360 measurements in all, 

are displayed in Fig. 1 (b). In this paper, the numerical 

treatment was applied to the singular values of the 

sensitivity matrix in the presence of noisy 

measurements, subsequently suggesting the optimal 

detector configurations [15]. For the simulated phantom, 

only magnetic flux density Bz can be recorded by coil at 

these positions. So the orientations of coils are displayed 

as Fig. 1 (b).  

 

 

 (a) (b) 

 
Fig. 1. The simulated phantom used for generating the 

simulated data. (a) The opposite electrodes covering 2 

elements located in the horizontal direction, (b) the 

diagram displaying the positions of the magnetic flux 

density measurement coils at 120 equally spaced angles 

along 3 equally spaced circles surrounding the circular 

imaging object, and orientations for the measured 

magnetic flux density Bz. 

 

The hypersensitivity near the boundary results in the 

better resolution of inhomogeneity near the boundary,  

HAO, XU: JOINT L1 AND TOTAL VARIATION REGULARIZATION 679



while the insensitivity in the centre leads to a worse 

resolution of inhomogeneity in the centre. For the 

different regularizations, the differences among the 

reconstructed conductivity distributions may be smaller 

for the inhomogeneity in the centre, and be bigger for the 

inhomogeneity near the boundary. In order to better test 

the performance of the joint L1–TV regularization, we 

selected three simulation models with the conductivity 

distributions as shown in Fig. 2 (a), Fig. 3 (a) and Fig.  

4 (a). We set the background conductivity for 0.1 S/m, 

the small inclusions present the same value of 0.2 S/m. 

In actually measurements, there will be some necessary 

noise. White Gaussian noise with a signal-to-noise (SNR) 

of 60 dB was added to the simulated magnetic flux 

density data to make the simulations realistic. 

For the model 1 with inhomogeneity near the 

boundary, the reconstruction results for L2, L1, TV and 

joint L1–TV penalties are show in Fig. 2 (b)–(e), 

respectively. This figure clearly indicates the L2 penalty 

generates the most blurred solution and the most mean 

background signal level. The L1 penalty suppresses 

spurious background and enforces sparsity. The TV 

penalty preserves the edge. The joint L1–TV penalty 

simultaneously encourages properties of sparsity and 

smoothness in the reconstructed image. The L1, TV and 

the joint L1–TV schemes lead to significantly stronger 

mean signal levels over the region of interest (ROI) than 

the L2 penalty. The result obtained using the joint L1–TV 

penalty is most similar to the conductivity image 

displayed in Fig. 2 (a). 

 

  

 (a) (b) (c) 

    

 (d) (e) 

 

Fig. 2. The reconstructed results of model 1 with 

inhomogeneity near the boundary. (a) Conductivity map, 

(b) the reconstructed image using L2 norm penalty, (c) 

the reconstructed image using the L1 norm penalty, (d) 

the reconstructed image using TV penalty, and (e) the 

reconstructed image using both L1 and TV penalties. 

 

For the model 2 with inhomogeneity in the centre, 

the reconstructed results are shown in Fig. 3. The L2  

and the TV schemes led to the worse resolution of 

inhomogeneity than the model 1. The L1 and the joint L1–

TV approaches generated the least mean background 

signal level, while the joint L1–TV approach yielded a 

lower background standard deviation than the L1 and TV 

penalties individually. 

The reconstructed results of the model 3 with two 

small inclusions are presented in Fig. 4, where the 

reconstructed images are shown for different 

regularizations. The joint L1–TV penalty was observed 

to yield the best result, which preserves local smoothness 

and piecewise constancy with TV penalty and 

simultaneously encourages properties of sparsity and 

eliminates the artifacts between the two small inclusions 

with L1 norm approach. 

 

   

 (a) (b) (c) 

    

 (d) (e) 

 

Fig. 3. The reconstructed results of model 2 with 

inhomogeneity in the centre. (a) Conductivity map, (b) 

the reconstructed image using L2 norm penalty, (c) the 

reconstructed image using the L1 norm penalty, (d) the 

reconstructed image using TV penalty, and (e) the 

reconstructed image using both L1 and TV penalties. 

 

 

 (a) (b) (c) 

   

 (d) (e) 

 

Fig. 4. The reconstructed results of model 3 with two 

small inclusions. (a) Conductivity map, (b) the 

reconstructed image using L2 norm penalty, (c) the 

reconstructed image using the L1 norm penalty, (d) the 

reconstructed image using TV penalty, and (e) the 

reconstructed image using both L1 and TV penalties. 

 
B. Current density image reconstruction experiment  

In order to test the performance of joint regularized 

algorithm for the realistic magnetic field data, a discrete 
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phantom consisting of one conducting rod of length 1.2 

m in free space was used (Fig. 5 (a)). The coil was used 

to record the magnetic field measurements made with  

an injected current of 10 mA at 31.25 kHz. Fig. 5 (b) 

presents the axial current density distribution of the 

imaging area with a 5 cm radius. The magnetic field data 

was measured on a perpendicular plane surrounding the 

object in the middle height of the object. The position of 

the measurement point on the perpendicular plane at 36 

equally spaced angles along 3 equally spaced circles 

surrounding the circular imaging object, which results 

108 measurements in all, is shown in the Fig. 5 (c). The 

orientation of coil at each angle was tangent to the circle 

region of interest at every point. The data recorded by the 

coil was amplified by a low-noise amplifier, and then fed 

to the data acquisition board NI-PCI6281 produced by 

National Instruments. The SNR of voltage acquired by 

the data acquisition board was 42-57 dB. The digital 

voltage data was processed by the digital lock-in 

amplifier to filter the noise and produce the amplitude of 

the voltage. Fig. 6 presents the vector graphics of the 

simulated and measured magnetic flux density. The 

mean difference between the measured and simulated 

data is 4.08%, with values ranging from 0.55% to 8.74%. 

The region of the imaging object was meshed into 

316 elements. We reconstructed the current density 

image at the 316 positions from the 108 external 

magnetic field measurements. For the current density 

image presented in the paper (Fig. 5 (b)), it has sparsity 

and sharp edges. The joint L1–TV penalty was used to 

reconstruct the current density image for this ill-posed 

inverse problem, enforcing sparsity and preserving  

local smoothness and piecewise constancy in the 

reconstructed images.  

 

 

 (a) (b) (c) 

 
Fig. 5. The magnetic field measurement configuration. 

(a) The discrete phantom consisting of one conducting 

rod with an injected current, (b) the original current 

density distribution of the imaging object, and (c) the 

positions of the magnetic flux density measurement 

points on a perpendicular plane surrounding the object in 

the middle height of the object. 

 

      

 (a) (b) 

 

Fig. 6. The vector graphics of the simulated and 

measured magnetic field, which display the magnetic 

flux density as arrows at the measurement points. The 

length of arrows represents the magnitude of magnetic 

field, while the direction of arrow corresponds to the 

direction of the magnetic field. (a) The vector graphic 

displaying the simulated magnetic field, and (b) the 

vector graphic displaying the measured magnetic field. 

 

Figure 7 shows the reconstructed current density 

images for L2, L1, TV and joint L1–TV penalties, using 

the simulated magnetic field data with 50 dB white 

Gaussian noise. The commonly used L2 penalty 

generates the most blurred solution. The L1 penalty 

suppresses spurious background and enforces sparsity, 

but reduces the object region. The TV penalty preserves 

the edge, but enlarges the object region. The joint L1–TV 

penalty simultaneously encourages properties of sparsity 

and smoothness in the reconstructed image. The result 

obtained using the joint L1–TV penalty is most similar to 

the current density image displayed in Fig. 5 (b).  

 

  

 (a) (b) 

  

 (c) (d) 

 

Fig. 7. The reconstructed current density images from the 

simulated magnetic field data with 50 dB white Gaussian 

noise. (a) The reconstructed image using L2 norm 

penalty, (b) the reconstructed image using the L1 norm 

penalty, (c) the reconstructed image using TV penalty, 

and (d) the reconstructed image using both L1 and TV 

penalties. 
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Based on the experimental data, we employed the 

L2, L1, TV and joint L1–TV penalties to reconstruct the 

current density images shown in Fig. 8. Using L1 or TV 

regularization, in combination or separately, clearly 

leads to improvements in localizing the inhomogeneity 

in MDEIT. There is less difference between the L1, TV 

and joint L1–TV images than between any of these and 

L2 image. The joint L1–TV images have the most natural 

appearance in the simulated and experimental results. 
 

  

 (a) (b) 

  

 (c) (d) 
 

Fig. 8. The reconstructed current density images from the 

experimental magnetic field data. (a) The reconstructed 

image using L2 norm penalty, (b) the reconstructed 

image using the L1 norm penalty, (c) the reconstructed 

image using TV penalty, and (d) the reconstructed image 

using both L1 and TV penalties. 

 

VI. CONCLUSION 
In this work, the joint L1–TV regularization was 

applied to the inverse problem of magnetic detection 

electrical impedance tomography. We used the primal 

dual-interior point method for efficiently minimizing 

joint L1–TV penalty, and compared its performance with 

the L2 norm, L1 norm and TV regularizations. Through 

the simulations of differential conductivity image 

reconstructions, it showed that the joint L1–TV 

regularization preserved sparsity, discontinuities and 

piecewise constancy in the reconstructed image. 

For the experiment of current density image 

reconstruction, the joint L1–TV penalty reconstructed the 

more accurate current density image than either L1 

penalty or TV penalty. Moreover, all of these performed 

better than the conventional L2 penalty. The simulated 

and experimental results of the current density image 

reconstruction appeared similar, but the simulation result 

was little better than the experimental result. The 

possible reason of the difference in results is as follow. 

The sources of inaccuracy in simulation result are noise 

and numerical errors. In comparison, the experimental 

results are also subject to some other nonidealities. These 

include geometric error and position error of the coil. 

Additionally, the measured magnetic field is an average 

measurement over the area of the coil, which is not 

identical to the magnetic field in the centre point of the 

coil. As the coil area decreases, it gives an accurate point 

measurement of magnetic field. However, the signal 

induced in the coil is small, leading to the degradation in 

the quality of data. Therefore, the coil should provide a 

suitable compromise between accuracy and signal 

amplitude. 

The joint L1–TV regularization leads to the 

improvement in localizing the inhomogeneities for 

MDEIT. Furthermore, the sharp edges and piecewise 

constancy of the TV regularization and the sparsity of L1 

penalty may encourage the enhancement in clinical 

applications. For example, MDEIT may be useful in the 

detection of cancer which is the localized high 

impedance tissue. And the sharp impedance contrast 

between the lung and the surrounding tissues might be 

better reconstructed by MDEIT. Further simulation 

studies could be considered and techniques developed to 

reconstruct images from more complex phantoms. 

Another application of MDEIT might provide 

enhancements over current imaging techniques is the 

dynamic continuous real-time monitoring of the imaging 

object such as the brain. But MDEIT still struggles to 

produce images with good resolution that are routine in 

CT and MRI because of the inherent ill-posedness of 

MDEIT inverse problem and the measurement system. 

At the present time, there are two above-mentioned 

restrictions on the quality of images from the 

measurements taken on the human subjects. Therefore, 

the objective of the next phase in the development of 

MDEIT will be to improve both data collection system 

and reconstruction methods to enable accurate imaging. 

With the present measurement system, we only 

reconstructed the current density image from the 

experimental data. Further conductivity image 

reconstruction of more complex phantoms should be 

considered. Therefore, the next work is to improve the 

MDEIT data measurement system, obtaining more 

accurate magnetic field data. 
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