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Abstract ─ Nowadays, there is an increasing attention on 

novel metaheuristics and their applications in different 

problems of science and engineering. A new efficient 

optimization method, called the League Championship 

Algorithm (LCA) is applied in this paper for the optimal 

design of electromagnetic devices. This method is 

inspired by the competition of sport teams in an artificial 

sport league for several weeks and over a number of 

seasons. The performance of the proposed algorithm is 

tested against two benchmark problems: the magnetizer 

and the outrunner-type brushless DC motor. The 

obtained results show that the LCA is an efficient and 

competitive algorithm for constructing optimal design of 

electromagnetic devices. 

 

Index Terms ─ Electromagnetic devices, league 

championship algorithm, metaheuristics, optimal design, 

optimization. 
 

I. INTRODUCTION 
Optimal design of devices is one of the major 

problems in electrical engineering. It involves choosing 

– from many possible variants – the best or the optimum 

variant based on one or several criteria [1].  

The optimal design of Electromagnetic Devices 

(EMD) using metaheuristics has been successfully 

implemented and applied since the development of such 

algorithms in the early 1980s. Some relatively recent 

examples of the application of metaheuristics for the 

optimal design of EMD include, among others, Genetic 

Algorithms [2], Evolution Strategies [3], Tabu Search 

[4], Artificial Immune Systems [5], Particle Swarm 

Optimization [6], Electromagnetism-Like Mechanism 

[7], Imperialist Competitive Algorithm [8], Bacterial 

Chemotaxis [9], Black-Hole-Based Optimization [10] 

and Teaching Learning Based Optimization [11]. 

Furthermore, recently, great deals of efforts have 

been devoted to the development and application of  

new optimization metaheuristics inspired from real  

life phenomena. In this context, a new developed 

metaheuristic which has not yet received adequate 

attention in the electromagnetic optimization community 

is the League Championship Algorithm (LCA). The 

LCA is a novel algorithm inspired from the concept  

of sport league championships. In LCA, the league 

(population) is composed of teams (individuals) that 

compete in an artificial league over several weeks for a 

number of seasons [12], [13]. 

The main objective of this paper is, first, to review 

the basic algorithmic features of the LCA optimizer and, 

second, to apply LCA for achieving optimal design of 

EMD. The LCA algorithm proposed is then tested on a 

magnetizer benchmark problem and an Outrunner-type 

Brushless DC (OBLDC) motor benchmark problem. 

The remainder of this paper is organized as follows. 

Section 2 provides a detailed description of the LCA.  

In Section 3, the proposed algorithm is applied to the  

two benchmark problems mentioned above. Finally, 

summary and conclusions are drawn in Section 4. 
 

II. LEAGUE CHAMPIONSHIP ALGORITHM 

(LCA) 
A. Overview 

The LCA introduced by Husseinzadeh [12] is a new 
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metaheuristic algorithm developed to solve continuous 

optimization problems [14]. Like some other known 

optimization algorithms, LCA uses a population of 

solutions to obtain the optimal one. Each team (i.e., 

individual) in the league (i.e., population) represents a 

feasible solution to the problem that is being solved. 

These teams compete in an artificial league for several 

weeks (iterations). Based on the league schedule for each 

week, teams play in pairs (say, for example, team i plays 

against team j) and the outcome is determined in terms 

of win or loss based on the playing strength of the teams. 

The team strength (which is basically corresponding  

to the fitness value) results from a particular team 

formation (solution). Keeping track of the previous week 

events, each team can make the required changes in the 

recovery period in order to set up a new formation for the 

next week competition (this simply means that a new 

solution is generated). In the same way, the championship 

continues for a number of seasons (stopping criterion) 

[14]. 

 

B. The algorithm 

Algorithm 1 provides the basic steps of the LCA in 

a greater detail. As in the other optimization algorithms, 

the LCA works with a population of individuals. 

Therefore, in the initialization process, a league of L 

teams is generated and the teams’ playing strengths are 

evaluated. Here, the league, teams, and playing strengths 

represent the population, solutions and fitness values 

(respectively). Also, L is an even number which 

represents the league size. Considering a function of n 

variables, each team comprises n players, where each 

one corresponds to a different variable. In the first step, 

the teams’ best formations take the initialization values. 

In the second step – which is the competition phase – the 

teams compete in pairs based on the league scheduler  

for S(L – 1) weeks; where S is the number of seasons 

and a week (iteration) is represented by t. After each 

competition (or game) between team i and team j (for 

example), the outcome is produced in terms of win or 

loss based on the playing strength of each team; here, we 

assume no tie games can occur. In the recovery step 

(which is the third step), each team devises a new 

formation based on the team’s current best formation and 

the previous week events, too. Selection in LCA is 

greedy in the sense that the current best formation is 

replaced by a more productive team formation that has a 

better playing strength. In other words, If the new 

formation is the fittest one (i.e., the new solution is 

considered the best solution obtained so far for the ith 

member of the population), then the new formation is 

considered as the team’s current best formation. The 

algorithm stops after a certain number of seasons [12], 

[13]. 

In our description of the LCA algorithm, we have 

used some concepts like: generating the league schedule, 

determining the winning or losing team and finally 

setting up a new team formation. More details on the 

mechanism of these concepts are given in [12] and [13]. 
 

Algorithm 1: The League championship algorithm [12] 

1. Initialize the league size (L) and the number of 

seasons (S); t=1; 

2. Generate a league schedule; 

3. Initialize team formations (generate a population 

of L solutions) and determine the playing 

strengths (function or fitness value) along with 

them. Let the initialization be also the teams’ 

current best formation; 

4. While t  S.(L-1): 

5.  Based on the league schedule at week t, 

determine the winner/loser among every 

pair of teams using a playing strength 

based criterion; 

6.  t=t+1; 

7.  For i=1 to L: 

8.   Devise a new formation for team i for 

the forthcoming match, while taking 

into account the team’s current best 

formation and previous week events. 

Evaluate the playing strength of the 

resulting arrangement; 

9.   If the new formation is the fittest one 

(that is, the new solution is the best 

solution achieved so far for the ith 

member of the population), hereafter 

consider the new formation as the 

team’s current best formation; 

10.  End for 

11.  If mod(t,L-1)=0 

12.   Generate a league schedule; 

13.  End if 

14. End while. 

 

C. Implementation of the LCA for the optimal design 

of EMD 

The implementation of the LCA for the optimal 

design of EMD is illustrated in Fig. 1. It can be seen  

that the process begins by selecting the device to be 

optimized. This step is followed by: defining the 

objective function, providing the design variables with 

their mapping ranges, and imposing some constraints if 

needed. Then, the Decision Maker (DM) has to choose 

the more appropriate model for the selected EMD; i.e., it 

can be based on an analytical model or numerical models 

such as the Finite Element Method (FEM), the Finite 

Difference Method (FDM), or any others. Once the 

model is selected, the DM has to select the software 

among many (commercial or open source) software 

which are available for the designers. After that, and in 

order to apply the LCA, parameters like the league size, 

the number of seasons, the type of formation and the 
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probability of success have to be defined. The LCA  

is then run for the optimization. Once the results  

are obtained, the DM has to decide – using his/her 

experience – whether the design is satisfactory or not. If 

it is so, the process must be stopped, otherwise the LCA 

parameters should be modified and the LCA run until the 

designer is satisfied with the obtained results.  

 

Start

Select the EMD to be optimized

If the design is 
satisfactory 

Change the LCA 
parameters No

Yes

Select the objective function

Select the design variables of the EMD and their 
ranges

Print the optimal design of the EMD

End

Impose constraints (equality and inequality 
constraints) if any

Choose the LCA parameters (league size, number 
of seasons, type of formation and the probability 

of success)

Apply the LCA

Select the appropriate model (analytic, based on 
FEM, based on FDM…)

Select the appropriate software 

 
 

Fig. 1. Flowchart of the implementation of LCA for the 

optimal design of EMD. 

III. APPLICATIONS 
As mentioned earlier, the LCA has been applied  

to the following two benchmarks: the magnetizer 

benchmark problem and the OBLDC motor benchmark 

problem. Here is the detailed description of the two 

benchmarks. 

 

A. The magnetizer problem 

1) Description 

The magnetizer problem is modeled as a linear 2D 

magnetostatic field analysis using the Finite Element 

Method (FEM). The geometry of the modeled part of the 

magnetizer is shown in Fig. 2. The key objective here is 

to optimize the pole shape of the magnetizer in order to 

get a predefined profile of the magnetic flux density 

along chord AB positioned halfway through the width of 

the magnetized piece [10]. 

 

 
 

Fig. 2. Geometry of the magnetizer [15], [16]. 

 

The pole shape is modeled using Uniform 

Nonrational Cubic B-Splines (UNBS) with n control 

points P1, P2…Pn corresponding to the radial distances r1, 

r2… rn and separated by  as shown in Fig. 2. UNBS 

interpolation provides local control of the curve, i.e., 

when a control point is moved, this affects only a small 

part of the curve. A B-spline curve is confined to the 

convex hull formed by the control points, and unless a 

control point is repeated at least three times, it does not 

touch the control points [15], [16].  

In the FEM model, a low permeability (close to  

that of the air) is assigned to the object that is to be 

magnetized (nonmagnetic material), a permeability of 

1000 is assigned to the pole face and the outer shell and 

a high current is applied to the coil region (5 A/mm2).  

 

2) Design variables 

As mentioned above, the pole shape is modeled 

using n control points. In this work, we have chosen two 

values for n: n=4 and n=6. The n control points can move 

radially from the fixed point Q. Therefore, there are n 

design variables which are the radial distances from Q, 
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i.e., r1 through rn with mapping ranges given in Table 1. 

Once the locations of the control points are found, the 

curve that shapes the pole face is constructed with B-

splines. This curve touches the control points P1 and Pn, 

each of which is represented with three coinciding B-

spline control points. 
 

Table 1: Design variables and their ranges used in the 

magnetizer problem for n=4 and n=6 

 n=4 n=6 

Design 

Variable 

Lower 

Bound 

[mm] 

Upper 

Bound 

[mm] 

Lower 

Bound 

[mm] 

Upper 

Bound 

[mm] 

r1 22.0 29.5 22.0 29.5 

r2 22.0 31.3 22.0 30.2 

r3 22.0 38.7 22.0 32.3 

r4 22.0 48.5 22.0 36.0 

r5 - - 22.0 41.4 

r6 - - 22.0 48.5 

 

3) Objective function 

The distribution of the magnetic flux density is 

evaluated at N sample points along the chord AB. Based 

on the desired profile of the magnetic flux density 

distribution in the chord AB, two cases are proposed and 

investigated in this paper:  

CASE 1: the objective is to get a sinusoidal 

increasing distribution of B. 

CASE 2: the objective is to get a uniform 

distribution of B. 

In both cases the objective is to minimize the 

summed square of the difference between the desired and 

calculated magnetic flux densities (along the chord AB) 

which is identified as the error. Thus, the objective 

function can be written as follows: 

            fobj = ∑ (Bdesiredi
− Bcalculatedi

)
2

,N
1  (1) 

where: Bdesiredi and Bcalculatedi represent the desired and 

calculated magnetic flux densities at i, respectively. The 

desired flux density distribution Bdesired is calculated 

using the following formula: 

Bdesired = {
B0 sin(𝜃𝑖)   CASE 1

B0                CASE 2
, (2) 

where: 35° ≤ 𝜃𝑖 ≤ 89°, i = 1, … , N, B0 is chosen to be 

equal to 0.27 T and N = 50. 

 

4) Results 

The proposed algorithm has been applied to the 

magnetizer problem for CASE 1 and CASE 2. The 

optimal solutions found are tabulated in Table 2. 

Moreover, Fig. 3 shows a set of results for both cases; 

i.e., evolutions of the objective function over iterations, 

isopotential lines, comparison between the desired and 

optimal magnetic flux densities, and comparison 

between optimal profiles. 

 
(a) Evolution of the objective function over iterations 

for CASE 1 (n=4) 

     
(b) Evolution of the objective function over iterations 

for CASE 1 (n=6) 

 
(c) Evolution of the objective function over iterations 

for CASE 2 (n=4) 

 
(d) Evolution of the objective function over iterations 

for CASE 2 (n=6) 
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(e) Optimized magnetizer pole face and isopotential 

lines for CASE 1 (n=6) 

 
(f) Optimized magnetizer pole face and isopotential 

lines for CASE 2 (n=6) 

 
(g) Comparison between the desired and optimal 

magnetic flux densities for CASE 1 (n=4) 

 
(h) Comparison between the desired and optimal 

magnetic flux densities for CASE 1 (n=6) 

 
(i) Comparison between the desired and optimal 

magnetic flux densities for CASE 2 

 
(g) Comparison between the optimal profiles found 

in CASE 1 and in CASE 2 
 

Fig. 3. Obtained results for the magnetizer problem. 
 

It can be clearly noticed that there is an 

improvement in the results when a higher number  

of control points is used. Furthermore, it is worth 

highlighting that the difference in the profiles depends 

on the objective function, i.e., whether the desired 

magnetic flux density is constant or sinusoidal. The 

optimized pole face has a constant air gap in CASE 1, 

however, this air gap gradually increases in CASE 2. 

The proposed LCA is compared with some well-

known optimization methods which are: Genetic 

Algorithm (GA), Particle Swarm Optimization (PSO), 

Black Hall Based Optimization (BHBO) and 

Electromagnetics Like-Mechanism (EM). The results of 

such a comparison are summarized in Table 3. 
 

Table 2: Optimal solutions found for the magnetizer 

problem 

 Optimal Values [mm] 

 n=4 n=6 

Design 

Variable 
CASE 1 CASE 2 CASE 1 CASE 2 

r1 25.64 25.60 24.96 25.44 

r2 27.51 27.78 26.66 26.03 

r3 33.25 34.68 27.39 28.55 

r4 37.79 44.26 31.07 31.38 

r5 - - 33.82 37.50 

r6 - - 37.67 43.68 
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Table 3: Coordinates of the optimized control points for 

the magnetizer problem for CASE 1 compared with 

those obtained using some well-known optimization 

methods 

 Optimal Values [mm] 

Design 

Variable 
LCA GA PSO EM [7] 

BHBO 

[10] 

r1 24.96 25.882 25.639 25.239 25.444 

r2 26.66 25.537 25.779 26.338 25.941 

r3 27.39 28.140 28.149 27.583 28.232 

r4 31.07 30.565 30.161 30.544 29.715 

r5 33.82 34.401 35.058 34.318 35.691 

r6 37.67 37.380 36.764 37.405 36.351 

 

B. OBLDC motor problem 

1) Description 

In this second example, we aim to optimize a 12 

stator tooth 14-magnet outrunner-type (a motor with 

exterior rotor) brushless DC motor of the type commonly 

used to propel small Unmanned Aerial Vehicles (UAVs) 

(Fig. 4). The objective here is to minimize the size of  

the motor, given a specified bulk current density in the 

windings and a desired torque that should be produced at 

the specified current density [17].  

 

 
 
Fig. 4. Geometry of the OBLDC motor. 

 
2) Design variables 

In this example, we have 10 design variables that 

represent the geometry of the motor. These variables 

with their mapping ranges are detailed in Table 4. 

 
3) Objective function 

As mentioned before, the objective for this example 

is to minimize the size of the motor. In this work the 

desired torque is selected as 1 N.m. Therefore, the 

objective function can be expressed as follows [17]: 

𝑓𝑜𝑏𝑗 =
1

1000
(π ×

hh + rso

2
× (rro2 − rsi2)), (3) 

where: rro is the rotor outer radius and the factor 
1

1000
 is 

to scale the objective function to units of cm3. 

Table 4: Design variables and their ranges used in the 

OBLDC motor problem 

Design 

Variable 
Lower Bound [mm] 

Lower 

Bound 

[mm] 

Upper 

Bound 

[mm] 

rso Stator outer radius  8.0 20.0 

rsi Stator inner radius 2.0 5.0 

dm Magnet thickness 0.1 2.0 

ds Depth of slot opening 0.1 2.0 

dc Can thickness 0.1 2.0 

fm 
Pole fraction spanned by the 

magnet 
0.2 1.0 

fp 
Pole fraction spanned by the 

iron 
0.2 1.0 

ft 
Width of tooth as a fraction 

of pole pitch at stator ID 
0.2 1.0 

fb 
Back iron thickness as a 

fraction of tooth thickness 
0.2 1.0 

hh Length 15.0 50.0 
 

4) Results 

The proposed algorithm has been applied to the 

OBLDC motor problem. The optimal results found  

are tabulated in Table 5. Moreover, Fig. 5 shows  

the isopotential lines of the optimal motor obtained.  

The objective function using LCA gives the value of 

43.0644 cm3 which is better than the one obtained using 

Random Optimization (RO) that is 45.002 cm3 [17]. 
 

 
 

Fig. 5. Optimized 14 magnet OBLDC motor and 

isopotential lines. 
 

Table 5: Optimal design of the OBLDC motor problem 

Design Variable Optimal Values [mm] 

rso 18.736 

rsi 8.000 

dm 1.033 

ds 1.446 

dc 0.322 

fm 0.959 

fp 0.450 

ft 0.507 

fb 0.588 

hh 24.267 
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IV. CONCLUSION 
In this paper, the recently-developed LCA 

optimization algorithm has been used to find the optimal 

design of EMD. In order to assess its effectiveness in the 

selected problem domain, the proposed LCA algorithm 

has specifically been applied to the magnetizer problem 

and to the OBLDC motor problem. In the first problem, 

two cases with different number of control points were 

studied. In both cases, it was found that the LCA 

converged rapidly to optimum. In the second problem, 

the size of the motor was minimized as a result of 

applying the LCA algorithm. Also, a comparison with 

other optimization algorithms for this particular 

benchmark was performed and our results show that 

LCA is a competitive optimization algorithm.  

The results obtained in this paper clearly show that 

the LCA constitutes a potential (as well as efficient) tool 

to be used for the optimal design of EMD. Detailed 

comparison with alternative optimization algorithms for 

the two benchmark problems (and many others in the 

same domain) can be a good base for future research 

work. 
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