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Abstract ─ A wideband filter-integrated coupler has 

been presented using the substrate integrated suspended 

line structure with patterned substrate. This coupler 

is composed of a two-line coupled line, two variant 

coupled lines, and four three-line coupled lines at each 

port. The SISL structure is composed of five print circuit 

boards, connected together by metal via holes. There is a 

hollowed substrate between two air cavities to reduce the 

loss. For further explanation, two wideband filtering 

SISL couplers operating at different operating frequencies 

with equal/unequal power divisions are designed and 

simulated, of which a specific coupler working at 1.66 

GHz with a relative bandwidth of about 52.56% is 

fabricated and measured. The experimental results agree 

well with the theoretical and simulation ones. This 

proposed coupler has many advantages such as self-

packaged, low loss, filter integration, arbitrary power 

division ratio, and inherent DC-block function. 

Index Terms ─ Filtering coupler, microwave components, 

patterned substrate, substrate integrated suspended line 

(SISL), wide band. 

I. INTRODUCTION
Branch-line coupler (BLC) has become an essential 

part in the RF/microwave circuits and systems, which 

has found a wide utilization in balanced power amplifier 

[1], balanced mixer [2], and frequency discriminator 

[3]. Nowadays, with the rapid development of 5G and 

satellite communication, multiple-antenna systems, such 

as isophoric sparse arrays [4] and massive MIMO arrays 

[5], have brought forward higher requirements on the 

feed network of antenna and antenna array. As a critical 

part of the feed network, BLC has been used for Butler 

matrix for beam forming network [6], exciting multiple 

modes of the multimode multi-element antenna [7], and 

so on. Thus, multi-function integration, such as filtering, 

power splitting/combining, unequal power-division ratio, 

flatness of amplitude and phase differences, has been 

more and more important for application, among which 

the filtering-integrated coupler has attracted more and 

more interests of researchers. The conventional method 

to realize filtering function is cascading filtering units 

with the coupler, for example, reference [8] uses net-type 

resonator to construct a rat-race coupler with bandpass 

response, and reference [9] utilized coupled resonator 

to design the filtering 180º hybrid. Recently, other 

technologies like substrate integrated waveguide (SIW) 

[10] and low temperature co-fired ceramic (LTCC) [11]

are also introduced into the design of filtering coupler.

But the aforementioned design methods cannot realize

broad bandwidth, filtering function and low loss

property at the same time.

The substrate integrated suspended line (SISL) 

structures [12-13] are composed of multi-layer print 

circuit boards. There are two air cavities on both sides of 

the core circuit, so the field of the circuit is mainly 

distributed in the air. Besides, the substrate of the core 

circuit is hollowed with specific shape. Thus, both the 

dielectric loss and the radiation loss of the suspended line 

are relatively smaller than the ones of microstrip line 

(ML) and strip line. In [12], a novel compact branch-line

coupler has been designed using the SISL technology,

and in [13], SISL and double-sided SISL (DSISL)

inductors with patterned substrate are proposed.

Compared with conventional metal-cavity structure,

SISL technology has solved many problems, showing an

excellent performance on cost, weight, support of the

substrate, and so on.

In this paper, a wideband filter-integrated coupler 

using substrate integrated suspended line (SISL) 

technology has been designed, simulated, and fabricated. 

As an expansion of the authors’ previous work in [14], 

we chose two specific couplers as examples to further 

explain the design and advantages of the SISL coupler. 

This coupler improved the origin transmission-line 

ACES JOURNAL, Vol. 34, No. 6, June 2019

1054-4887 © ACES

Submitted On: September 25, 2018 
Accepted On: December 27, 2018

949

mailto:yuliu@bupt.edu.cn
mailto:wuyongle138@gmail.com
mailto:yuliu@bupt.edu.cn
mailto:yuliu@bupt.edu.cn
mailto:yuliu@bupt.edu.cn


structure in [15] for size reducing. Besides, with the help 

of the patterned SISL technology, loss can be narrowed. 

And the comparison of the losses between the proposed 

one and conventional one is also given. This low-loss 

SISL coupler can also realize filter integration, flexible 

power division ratio, and inherent DC-block function at 

the same time. Compared with the former work of the 

authors in [14], this work explains the design procedures 

in detail and provides two design examples with 

experimental result, in which the properties of this 

coupler such as low loss, flexible power division ratio, 

etc. have been verified. Besides, we discuss the influence 

of physical circuit parameters on the properties of the 

coupler and give the design procedures. The first SISL 

coupler named Example A works at 1.66 GHz with 7 dB 

power division, and the other named Example B is 

designed with 3.50 GHz operating frequency and equal 

power division. Both simulation and measured results 

coincide well with each other. Moreover, this low-loss 

wideband filtering BLC can be applied to many situations 

of wireless communication systems. 

II. WIDEBAND FILTERING SISL COUPLER
The design method of the proposed wideband filter-

integrated coupler can be divided into two parts. Firstly, 

we design and optimize the SISL structure according to 

the technology in [12]. Secondly, the basic circuit of the 

wideband filtering coupler is designed and discussed. 

Finally, we combine these two procedures together and 

take the overall simulation and optimization of the SISL 

coupler. 

A. SISL structure

The SISL structure contains five double-side print

circuit boards, which are fixed together by several 

screws as shown in Fig. 1. The five substrate layers, 

named as Substrate 1, 2, 3, 4, and 5, have created totally 

ten metal planes named as G1, G2, …, G10 from top 

to bottom. Substrate 1 and 5 act as electromagnetism 

shields for the SISL structure, with G1, 2, 9, and 10 being 

ground planes. Substrate 2 and 4 provide two air cavities 

on the upper and lower of the suspended circuit. The air 

cavities are actually a kind of open slot of the substrate, 

which are surrounded by via holes. Substrate 3 acts 

as the suspended substrate. The basic circuit of the 

wideband filtering coupler, which would be discussed in 

the next part, is etched on G5. The field of the circuit 

on G5 is mainly distributed on the two air cavities on 

Substrate 2 and 4, with a boundary brought by the metal 

holes surrounding the air cavities. The dielectric of 

Substrate 3 possesses low loss tangent and is hollowed 

according to the shape of the coupler, thus both radiation 

loss and substrate loss can be greatly reduced [13].  

B. Core circuit of the wideband filtering coupler

The primary circuit of the broadband filter-integrated

coupler on G3 is shown in Fig. 2. The coupler has both 

horizontally and vertically symmetric layout, composed 

of one two-line coupled line in the center, two deformed 

coupled lines at the top and bottom sides, and four three-

line coupled lines connected to the ports. The coupler can 

also achieve wideband filtering function, inherent DC-

block between the ports, and unequal power division. 

The power division ratio can be altered by tuning w1 and 

w2. For further explanation, two design examples with 

different design requirements have been designed and 

simulated. 
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Fig. 1. The SISL construction of the proposed coupler: 

(a) 3D layout and (b) cross section.
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Fig. 2. The circuit configuration of the wideband filtering 

coupler.  

III. DESIGN EXAMPLES

A. Example A

The first case of the SISL coupler named Example

A works at 1.66 GHz with 7 dB power division, which 

ACES JOURNAL, Vol. 34, No. 6, June 2019950



has been discussed in [14]. The material of Substrate 1, 

2, 4, and 5 is chosen as FR-4, with the dielectric constant 

εr being 4.4, the thickness h1 being 1.5 mm, and loss 

tangent being 0.02. Substrate 3 is designed to be F4B, 

whose dielectric constant εr being 2.65, the thickness h2 

being 0.254 mm, and loss tangent being 0.001.  

When designing the specific structure of the SISL 

coupler, we define the demands of the coupler first, 

namely operating frequency and power division ratio. 

The operating frequency of the coupler is related to the 

lengths of the coupled lines. When the working 

frequency of a specific coupler is determined, the lengths 

of l1, l2, l3, and l4 can be defined. Considering that the 

power division ratio is affected mainly by the width of 

w1 and w2, they can be determined by repeated simulations 

using ADS Momentum. Then other parameters will 

be chosen by the optimization of HFSS Optimetrics 

Analysis.  

Then the physical parameters of the Example A can 

be defined as follows (with units of mm): w1=1, l1=3.5, 

l2=3, s1=2, s2=2, w2=5, l3=30, s3=0.2, w3=0.8, w4=1.4, 

l4=33, s4=0.2, wa=33, la=8, wb=35, lb=19, wc=85.8, lc=52. 

The structure of Example A is illustrated in Fig. 3, in 

which the total configuration of the SISL structure is 

shown in Fig. 3 (a), while the circuit of the coupler is 

shown in Fig. 3 (b). The simulated results are given in 

Fig. 4 [14]. From these curves, we can see that this 

coupler can realize wideband filtering function and 

possesses flat phase difference. The relative bandwidth 

is about 52.56% with S11 lower than -15 dB.  
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Fig. 3. The constructions of Example A. (a) The overall 

structure, and (b) the main circuit of the coupler on G3.  

0.5 1.0 1.5 2.0 2.5 3.0
-45

-40

-35

-30

-25

-20

-15

-10

-5

0

1.21

0.9 GHz

S
-P

a
ra

m
et

er
s 

(d
B

)

Frequency (GHz)

S11

S21

S31

 S41

2.11

 (a) 

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
0

20

40

60

80

100

120

140

160

180

P
h

a
se

 d
if

fe
re

n
ce

 (
D

eg
re

e)

Frequency (GHz)

PD
21, sim

PD
21,mea

(b) 

Fig. 4. The calculated results of Example A [14]. (a) The 

S-parameters, and (b) phase difference.

The loss of the coupler can be defined as [12], 
2 2 2 2

11 21 31 411 .Loss S S S S      (1) 

Then we calculate the losses of the designed SISL 

coupler and conventional microstrip line coupler, which 

are shown in Fig. 5 [14] for comparison. As we can see, 

the SISL coupler has a lower loss than the microstrip line 

one. 

The relationship between the power division ratio 

and the line width of w1 and w2 would be further 

discussed. As shown in Fig. 6, as the increasing of w1, 

the power division ratio will decrease. While in Fig. 7, 

the variation trend of the power division ratio along with 

the line width w2 is contrary to the one in Fig. 6. That is, 

the power division ratio increases with the increasing of 

the line width w2. 

B. Example B

When designing Example B, equal power division

and higher operating frequencies are considered. The 

substrate and configuration of the multi-layer structure 

are chosen to be the same as those in Example A. The 

physical parameters of the Example B can be simulated 

and optimized by ADS Momentum and HFSS as follows 
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(with units of mm): w1=2.5, l1=3, l2=2, s1=2, s2=1.7, 

w2=3.5, l3=17, s3=0.2, w3=0.8, w4=1.3, l4=20, s4=0.2, 

wa=20, la=8, wb=22, lb=12.5, wc=57.8, lc=37.4. The SISL 

structure of the Example B is shown in Fig. 8 (a), while 

the circuit of the coupler is shown in Fig. 8 (b). 
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Fig. 5. The losses of SISL coupler and ML coupler [14]. 
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Fig. 8. The constructions of Example B. (a) The overall 

structure, and (b) the main circuit of the coupler on G3.  
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Fig. 9. The calculated results of Example B. (a) The S-

parameters, and (b) phase difference. 
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The simulated scattering parameters and phase 

difference are shown in Figs. 9 (a) and (b), respectively. 

It can be observed that this coupler possesses a relative 

bandwidth of 54.28% with S11 lower than -15 dB and a 

flat phase difference. So, the wideband filtering coupler 

has been realized. 

IV. MEASURED RESULTS
In order to verify the performance of the SISL 

wideband filer-integrated coupler, we take Example A 

as an experimental case. The design parameters of the 

coupler are all the same as those explained in Section 

III.A. The photograph of the fabricated SISL coupler

is illustrated in Fig. 10. The size of the coupler is

about 110.2×70×6.254 mm3. Figures 11 (a) and (b) are

the simulated and measured S-parameters and phase

differences of the coupler in Example A, separately. As

we can see from the figures, the coupler works at 1.66

GHz, with a power division of about 7 dB. The coupler

has good matching and isolation and possesses a relative

bandwidth of about 49.398% with S11 lower than -15 dB.

In addition, the major features and advantages of this

SISL wideband filtering BLC compared with other

reported ones are listed in Table 1.

V. CONCLUSION
In this paper, a compact wideband filter-integrated 

coupler is designed, simulated and fabricated using the 

patterned substrate integrated suspended line technology. 

The design and optimization procedures of the coupler 

have been explained in detail, and two cases with 

different operating frequencies of 1.66/3.5 GHz and 

unequal/equal power division ratios were designed as 

examples. The loss of the designed couplers was greatly 

reduced compared with that of traditional ones. Then for 

further verification, a specific SISL coupler working at 

1.66 GHz with 7 dB power division and 52.56% relative 

bandwidth was designed and fabricated. The measured 

scattering parameters and phase difference coincided 

well with the theory and the simulated results. This 

coupler has the advantages such as self-package, low 

loss, filter integration, and flexible power division ratio, 

which is propitious to the applications in the microwave 

circuits and wireless communication systems. 

Fig. 10. The photograph of the SISL coupler. 
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Fig. 11. The simulated and measured results of the 

wideband filtering SISL coupler. (a) The S-parameters, 

and (b) phase difference. 

Table 1: Performance comparison of the proposed SISL 

wideband filtering BLC with other reported ones 

Refs. BW* IL (dB) Technology 
Self-

Packaged 

[8] 19% 1.38 PCB No 

[9] 10% 0.7 PCB No 

[10] 2.5% 1.9 SIW No 

[11] 8.6% 1.8 LTCC Yes 

This 

work 
49.398% 0.655 SISL Yes 

*: with return loss < -15 dB. 
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