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Abstract ─ A modified V-shaped silicon groove 

waveguide, embeded with metal nanowire,which is 

coated with a low refractive index layer was proposed. 

Finite element method (FEM) is used to numerically 

simulate the characteristics of the hybrid plasmonic 

mode at the wavelength of 1550nm. The simulation 

results show that the hybrid plasmonic mode can be 

confined to the dielectric layer on the surface of the metal 

nanowire. Meanwhile, factors on the modal properties 

are analyzed. Low loss and strong mode confinement can 

be realized by adjusting the size of the dielectric and 

metal nanowires as well as the angle of the V-shaped 

groove. The overall performance of the proposed model 

is superior to that of traditional hybrid plasmonic 

waveguides. 

Index Terms ─ Finite element method, hybrid plasmonic 

waveguide, Modal analysis, V-shaped silicon groove. 

I. INTRODUCTION
Surface plasmon polaritons (SPPs) have been 

widely used as information carriers for designing and 

preparing nano-waveguide structures. By the advantage 

of excellent conductivity and the breakthrough of 

diffraction barrier, surface plasmon waveguides (SPWs) 

has become one of the ideal design schemes for the new-

generation optoelectronic integrated chips. A key issue 

in designing SPWs is how to get the balance between 

mode confinement and propagation length [1-2]. 

Up to present, researchers have made a variety of 

innovative improvements in the structure of optical 

waveguides, and have proposed a series of surface 

plasmonic waveguide structures, e.g., shapes, film, slit, 

cylinder, strip and V-shaped groove were designed; 

material patterns, dielectric-metal-dielectric (DMD), 

metal-dielectric-metal (MDM) and hybrid pattern were 

proposed [3-9]. 

Among the above plasmonic waveguide structures, 

the V-shaped groove structure has been shown that a 

strong lateral confinement on the SPP at the bottom of 

the groove resulted in low transmission loss in the optical 

communication bands [10-14]. In addition, the silicon 

waveguides are well compatible with complementary 

metal oxide semiconductors (CMOS), and it can be used 

as the basic module for the transmission, confinement 

and process of optical signals in photonic integrated 

circuits. The mode confinement ability of SPP structure 

can be further enhanced by combining metal waveguides 

with silicon devices [15-17]. However, SPPs mode 

transmits on the nanowire surface, the propagation 

constant is denoted as β = 2 π neff / λ [18], and the 

propagation length can be defined as Lp = 1/2Im(β) [18]. 

Therefore, the propagation length of the metal-high 

refractive index dielectric was higher than that of the 

metal-low refractive index dielectric structure. In other 

words, the hybrid SPPs mode is confined to the low 

refractive index layer more efficiently. For the above 

reasons, based on the traditional structure [19-20], a 

modified waveguide model consisting of a metal 

nanowire covered with a dielectric film of low refractive 

index in a V-shaped silicon groove is proposed. FEM is 

used to numerically analysis the symmetrical hybrid SPP 

mode transmission due to its flexibility in geometrical 

modeling [6]. Furthermore, the factors on the modal 

properties are analyzed to facilitate the feasibility design 

of the waveguide structure, such as the size of the 

dielectric and metal nanowires, the angle of the V- 

shaped groove, et al. 

II. GEOMETRY OF THE PROPOSED

HYBRID V-GROOVE WAVEGUIDE AND 

THEORETICAL ANALYSIS 
Based on the analysis above, the hybrid plasmonic 

waveguide model is proposed as shown in Fig. 1. In 

order to increase transmission distance, the V-shaped 

silicon groove waveguide was embedded with the metal 

ACES JOURNAL, Vol. 34, No. 6, June 2019

1054-4887 © ACES

Submitted On: August 29, 2018 
Accepted On: January 26, 2019

991

mailto:ziranisbest@163.com,
mailto:ziranisbest@163.com,
mailto:xycaobl@163.com


nanowire, which is coated with low refractive index 

dielectric layer. 

Fig. 1. Geometry of the proposed hybrid groove 

waveguide. The silicon slice (height h = 600 nm, width 

L = 800 nm, εc = 12.25) is used as the V-groove substrate 

with the angle (θ), and the silver nanowire (the radius is 

denoted by r, εm = -129+3.3i) [9] is coated with low-

index dielectric SiO2 (the radius is denoted by R), thus, 

the thickness of the SiO2 (εr = 2.25) layer is denoted by 

d = R - r. 

The surface plasmon mode transmits on the 

nanowire surface along z-axis. The vector field Φ can be 

expressed as: 

    (, , , , ) , ) ,) ( (j z j z

t zx y z x y e x y x y e    Φ Φ Φ Φ  (1) 

where, Φt(x,y) and Φz(x,y) are respectively represented 

by the horizontal and vertical field components. In 

this case, the wave equation is degenerated into two-

dimensional cross section, which can be shown as: 

 2 2 2 2(2 / ) 0,neffn   Φ Φ (2) 

where n and neff denote the refractive index of material 

and the modal effective refractive index, respectively. 

The mode characteristics are analyzed by wave equation. 

The propagation length can be defined as: 

 1/ 2 .pL Im  (3) 

The modal properties also include the normalized mode 

area Aeff/A0, which can be defined by the ratio of a 

mode’s total energy density per unit length and its peak 

energy density. Here, 
2

2

0

2( ) ( ) ; ( / 2) ,e f A Af W r dA W rA dA A  
  
   (4) 

where W(r) represents the effective energy density [18]. 

III. MODAL CHARACTERISTICS OF THE

PROPOSED HYBRID V-GROOVE

WAVEGUIDE 
FEM method is carried out to simulate the plasmon 

characteristics with a wavelength at 1550 nm. The wave 

equation (2) is solved by combining the boundary 

condition of the above proposed model. Simulation 

results of the electric field energy flux density Sz for the 

fundamental hybrid plasmonic mode are shown in Fig. 

2. Compared with different geometries, energy began to

spread from the bottom of the groove to the surface of 

the metal nanowire, and was ultimately confined to the 

vicinity of the lower refractive index layer. Moreover, 

from Table 1, it is found that the proposed hybrid V-

groove waveguide has the maximum value of the energy, 

which implies that the proposed waveguide structure 

has higher mode field confining ability for the strongest 

coupling between the channel plasmon polaritons (CPPs) 

mode and dielectric mode. 

Fig. 2. Sz distributions of the fundamental mode of hybrid 

groove waveguide with different geometries: (a) 

conventional V-groove waveguide (θ = 300), (b) V-

groove waveguide with metal nanowire (θ = 300, r = 20 

nm), and (c) the proposed hybrid V-groove waveguide 

(θ= 300, [R, r] = [100, 20] nm). 

Table 1: The maximum value of the electric field energy 

flux density Sz 

Modal (a) (b) (c) 

Sz (V/m) 9.9814e7 1.4776e8 2.7261e8 

Fig. 3. Sz distributions of the fundamental mode with 

different r = 20, 40, 60, 90 at θ = 300 and R = 100 nm. 

The influence of different thickness of the dielectric 

layer on the fundamental hybrid plasmonic mode is 

shown in Figs. 3 (a)-(b). For configurations with a 

relatively radius of the dielectric layer and nanowire 

(e.g., R = 100 nm), as the radius r of the nanowire 

increases, one can find that the distribution of energy 

gradually shifted from the entire groove area to the 

dielectric layer. Moreover, from Table 2, the maximum 

value of the electric field energy flux density Sz has 

increased with the decrease in the thickness of dielectric 

layer, which shows that the hybrid plasmonic mode can 

be confined to the thinner dielectric layer. 

Table 2: The maximum value of the electric field energy 

flux density Sz 

Sz 
(V/m) 

r = 20 

(nm) 

r = 40 

(nm) 

r = 60 

(nm) 

r = 80 

(nm) 

R = 100 

(nm) 
2.7261e8 3.2873e8 4.3811e8 7.9982e8 

(a) (b) (c) 
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It is of practical significance to investigate the 

influence of groove angle on the fundamental hybrid 

plasmonic mode. For configurations with [R, r] = [100, 

60] nm, the electric field distribution of the fundamental

plasmonic modes are shown in Fig. 4. While θ = 00 (e.g.,

Fig. 4 (a)), the proposed structure is similar to a DMD

hybrid plasmonic waveguide structure [9]. While θ = 1800

(Fig. 5 (c)), the proposed structure is similar to a hybrid

waveguide structure consisting of a dielectric base and

metal nanowire [18]. Through comparing the maximum

energy electric field components (Ex and Ey) in Table

3, it can be seen that the hybrid mode appears as a

symmetric quasi-TM mode with Ex as the dominant

electric field components for θ < 900. However, a further

increase in the groove angle results in the confinement

of symmetric quasi-TM mode. With more energy

penetrating into the metal area, Ex decreases with the

energy loss. When |Ex|max and |Ey|max are comparable for

θ = 900, both the symmetric quasi-TE and quasi-TM

hybrid modes are supported. The value of |Ex|max

continuously decreased along with the increased the

groove angle from θ > 900 to θ < 1800. It can be obtained

that the hybrid mode appears as a symmetric quasi-TE

mode with Ey as the dominant electric field components,

indicating a transformation of the quasi-TE mode to

quasi-TM mode, and polarization rotation can be realized

by adjusting the groove angle.

 (a) (b) (c) 

Fig. 4. Field distributions of the dominant electric 

component Ex and Ey on various angle. 

Table 3: The maximum value of the electric field energy 

θ = 00 θ = 900 θ = 1800 

|Ex|max (V/m) 4.0724e8 3.2086e8 1.6468e8 

|Ey|max (V/m) 1.4162e8 3.2585e8 5.7815e8 

Next, comparison is carried out between the proposed 

CPPs, V-groove waveguide with metal nanowire (R = r) 

and conventional V-groove waveguide (R = r = 0) [8-11]. 

Simulation results reveal that the proposed CPPs model 

has low effective refractive index (neff), long-distance 

transport (Lp) and strong mode confinement (Aeff /A0) in 

Figs. 5 (a)-(c). One can further prove the strongest 

coupling between the plasmonic and dielectric mode. 

Further, these factors of R, r and θ on the impact 

of the modal properties have been investigated. For 

configurations with θ (e.g., θ = 300), Figs. 5 (a)-(c) 

illustrates that the value of neff increases monotonically; 

the value of Lp and Aeff /A0 decreases when r gets bigger 

with the same R. Correspondingly; the value of neff, Lp 

and Aeff/A0 have the same trend when R gets smaller with 

the same r. Meanwhile, compared with different angles, 

performance gets better in accordance with bigger θ. 

So the hybrid plasmonic waveguide model with low 

loss and strong mode confinement can be realized by 

adjusting the values of the R, r and θ. 

 (a) 

 (b) 

 (c) 

Fig. 5. Dependence of the modal properties of the 

fundamental hybrid mode with the different R and r; (a) 

the effective refractive index (neff), (b) the propagation 

length (Lp), and (c) normalized the effective area (Aeff /A0). 
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IV. CONCLUSION
In this paper, a novel hybrid silicon groove 

waveguide model is proposed. FEM is used to 

numerically simulate the electric field energy for the 

fundamental hybrid plasmonic mode. Compared with 

conventional groove waveguide, more energy are 

confined on the low refractive index dielectric layer 

because of the strong coupling between plasma mode 

and dielectric mode. Meanwhile, these factors of R, r 

and θ on the impact of the modal properties have been 

investigated. The proposed model with low loss and 

strong mode confinement can be realized by adjusting 

the values of the R, r and θ, and polarization rotation of 

the hybrid mode can be achieved by changing the θ. 

Therefore, the proposed hybrid waveguide structure is 

compatible with traditional fabrication technologies, 

and has the potential to be used in highly integrated 

waveguide circuits. 
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