
Fast ISAR Imaging based on High Frequency Scattered Fields from 

Quadratic Patches 

An Wen Wu 1, Yu Mao Wu 1,*, Ya-Qiu Jin 1, Hongcheng Yin 2, Chonghua Fang 3, 

and Nan Zhang 1 

1 Key Laboratory for Information Sciences of Electromagnetic Waves (MoE) 

School of Information Science and Technology, Fudan University, Shanghai, 200433, China 

2 National Electromagnetic Scattering Laboratory, 100854, Beijing, China 

3 Science and Technology on Electromagnetic Compatibility Laboratory 

China Ship Development and Design Center, Wuhan, 430064, China 

awwu17@fudan.edu.cn, yumaowu@fudan.edu.cn*, yqjin@fudan.edu.cn, yinhc207@yahoo.com.cn, 

27634073@qq.com, zhangnan16@fudan.edu.cn 

Abstract ─ This paper implements the two-dimensional 

(2D) non-uniform Inverse Fast Fourier Transformation 

(NUFFT) to Inverse Synthetic Aperture Radar (ISAR) 

imaging. The complexity of two-dimensional NUFFT is 

O(MNlog2MN), which is better than direct calculation with 

complexity O(M2N2) and has controllable interpolation 

error. As for the echo scattered fields acquisition with 

respect to multiple frequencies and azimuth angles, we 

use physical optics (PO) method based on quadratic 

discretization to reduce the patch number to two orders 

of magnitude, compared with planar discretization. 

Three examples prove that the 2D imaging process has 

nearly equal accuracy and higher efficiency. 

Index Terms ─ ISAR imaging, non-uniform FFT, 

physical optics, quadratic discretization. 

I. INTRODUCTION
Inverse Synthetic Aperture Radar (ISAR) imaging 

is an important technique for further automatic target 

recognition (ATR) by acquiring high resolution two-

dimensional or three-dimensional radar image with 

targets’ detailed information like size, shape, structure 

and posture [1]. The Polar Format Algorithm (PFA) is 

one of the earliest imaging algorithms adopted for 

spotlight SAR and extensively applied in practical 

monostatic SAR systems [2]. The imaging algorithm 

contains two steps: 1) Store the scattered fields in polar 

form with respect to multiple frequencies and azimuth 

angles; 2) Apply two-dimensional inverse Fourier 

transform of the scattered data matrix after interpolating 

the scattered data into equally spaced grid.  

In the electromagnetic (EM) scattering, when the 

target size is much larger than the wavelength, the EM 

scattered problems can be solved by high frequency 

methods [3,4]. Macdonald [5] proposed the physical 

optics (PO) approximation method to simulate high 

frequency electromagnetic scattered fields from large-

scale radar targets. The PO method is executed based on 

three assumptions: 1) The target is meshed by sizeable 

planar or curved patches. The induced currents on every 

illuminated patch determined by the incident field and 

independent with each other. 2) Far-field approximation, 

the radius of curvature of the target is much larger than 

the incident wavelength. 3) Kirchhoff approximation for 

calculating the scattered fields. As for solving the surface 

integral of scattered fields, Ludwig [6] and Gordon [7] 

derived the analytical expression to calculate the PO 

scattered fields from the planar patch. Rius [8] proposed 

GRECO method considering the GPU’s rendering 

function and converting the surface integral into a 

coherent addition of pixels. Conde [9] used the 

Stationary Phase Method (SPM) to radiation pattern of 

antennas. Wu and Chew [10,11] extended the steepest 

descent path method into calculating the PO integrals 

from the quadratic patches. In order to meet the second 

assumption, the planar patch size is nearly λ/8, while the 

quadratic patch size is 1λ or larger. The quadratic patch 

size is much larger than planar patch, the memory 

consumption is reduced with higher frequency. As for lit 

patch judging, Ling and Bhalla [12,13] proposed the 

shooting and bouncing ray technique (SBR), which 

calculates the intersections between the incident rays and 

surface element and compares the distance to determine 

the illuminated or shadowed part. To this day, the 

GPU’s zbuffer technique is introduced to accelerate the 

shadowing process and applied in many electromagnetic 

calculation softwares. 
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Fast Fourier transforms (FFT) are widely used 

for many applications in engineering, science, and 

mathematics, which should be implemented on the 

uniform distributed data. However, the polar format [14] 

sampled scattered fields are non-uniform in Cartesian 

coordinate. Appropriate interpolation methods need to 

be implemented to transform the data into uniform 

distributed space. For interpolation on complex data, the 

complex values are divided into absolute and phase 

part, the interpolation method operates on two parts 

respectively. Therefore, the interpolation function 

requires linear phase response. Different from the 

traditional interpolation method which interpolates the 

complex form scattered fields, Dutt and Rokhlin [15] 

proposed non-uniform Fast Fourier Transformation 

(NUFFT) which interpolates the sequence of Fourier 

exponential function. [16-19] discussed the algorithm 

improvement and relative applications. Song and Liu 

implement the NUFFT into radar imaging [20] and 

radially encoded MR imaging (MRI) [21]. The NUFFT 

method interpolates the sequence of exponential function 

rather than the complex form scattered fields, which has 

least square error and higher efficiency.  

In this work, the PO method for calculating scattered 

fields on quadratic patches is illustrated in Section II. 

The NUFFT method in ISAR imaging is described in 

Section III. Section IV shows the numerical results of 

three different targets with different shape and size. 

II. THE PO SCATTERED FIELD ON

QUADRATIC DISCRETIZATION PATCHES 

A. The PO scattered fields

We consider a perfectly conducting (PEC) target

illuminated by a time harmonic plane wave with time 

impedance 𝑒−𝑖𝑤𝑡 . The PO scattered field can be derived

from the Stratton-Chu formula: 

𝐄𝑠(𝐫) =
−𝑖𝑘𝑍0𝑒𝑖𝑘𝑟

4𝜋𝑟
𝐫̂ × 𝐫̂ × ∫ 𝑑𝑆(𝐫′)𝐉PO(𝐫′)𝑒−𝑖𝑘𝐫̂∙𝐫′

,
𝜕Ω

 (1) 

where, 𝜕Ω is the illuminated region of the target, 𝐫′ is the 

position vector of the point on the region 𝜕Ω, 𝐫̂ and r are 

the unit vector and the amplitude of the scattered 

direction, k is the wave number, 𝑍0 is the wave impedance

of free space. The surface induced PO current 𝐉PO(𝐫′) is
approximated by: 

𝐉PO(𝐫′) = {
2𝐧̂(𝐫′) × 𝐇(𝑖)(𝐫′),   𝐫′ ∈ ∂Ω
0,                                  𝐫′ ∉ ∂Ω

 ,         (2)

𝐧̂(𝐫′)  is the outward unit normal vector of region

𝜕Ω, 𝐇(𝑖)(𝐫′) is the incident magnetic field on the target 

surface. The incident wave has the following form: 

𝐇(𝑖)(𝐫′) =
1

𝑍0
𝐫̂(𝑖) × 𝐄(𝑖)

(𝐫′),   𝐄(𝑖)
(𝐫′) = 𝐄0

(𝑖)𝑒𝑖𝑘𝐫̂
(𝑖)⋅𝐫′

.  (3)

Then, we substitute equations (2), (3) into equation 

(1) and obtain the general scattered fields calculation

formula:

𝐄𝑠(𝐫) ≈ ∫ 𝑑𝑆(𝐫′)𝑔(𝐫′)𝑒𝑖𝑘𝑓(𝐫′)

𝑆

 ,  (4) 

with the phase function 𝑓(𝐫′)  and amplitude function 

𝑔(𝐫′) that, 

𝑔(𝐫′) =
−𝑖𝑘𝑒𝑖𝑘𝑟

2𝜋𝑟
𝐫̂ × 𝐫̂ × (n̂(𝐫′) × 𝐫̂(𝑖) × 𝐄0

(𝑖)),    (5) 

𝑓(𝐫′) = (𝐫̂(𝑖) − 𝐫̂) ∙ 𝐫′ .  (6) 

B. The quadratic discretization

For solving the integral equation (4) on quadratic

patches, we have to apply affine transformation to 

transform every arbitrary quadratic patch into a standard 

square patch with parameters (𝜉, 𝜂). For standard square 

patch, the interpolation formula for a quadratic patch: 

𝐫′(𝜉, 𝜂) = ∑ 𝑁𝑗(𝜉, 𝜂)𝐫𝑗 ,  (7)

8

𝑗=1

 

𝐫𝑗  is the three-dimensional coordinates of the critical

points of quadratic patch with respect to coordinate 

(x, y, z) and 𝐫′(𝜉, 𝜂) is the three dimensional coordinates 

with respect to parameter (𝜉, 𝜂). 
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Fig. 1. The affine transformation from an arbitrary patch 

into a standard square patch with 8 nodes. 

The standard square patch is shown in Fig. 1 above. 

For nodes in different place, the shape function 𝑁𝑗(𝜉, 𝜂)

are different. For the four vertexes (j=1,2,3,4), the shape 

function is: 

𝑁𝑗(𝜉, 𝜂) =
1

4
(1 + 𝜉𝑗𝜉)(1 + 𝜂𝑗𝜂)(𝜉𝑗𝜉 + 𝜂𝑗𝜂 − 1), (8)

for the middle nodes on the edge where 𝜉𝑗 = 0 (j=5,6),

the shape function is: 

𝑁𝑗(𝜉, 𝜂) =
1

2
(1 − 𝜉2)(1 + 𝜂𝑗𝜂),  (9) 

for the middle nodes on the edge where 𝜂𝑗 = 0 (j=7,8),

the shape function is: 

𝑁𝑗(𝜉, 𝜂) =
1

2
(1 − 𝜂2)(1 + 𝜉𝑗𝜉).  (10) 

We substitute equations (7-10) to equation (4), the 

scattered field expression of a quadratic patch is: 

𝐄𝑠(𝐫) ≈ ∑ ∫ ∫ 𝑔𝑛(𝐫′(𝜉, 𝜂))𝑒𝑖𝑘𝑓𝑛(𝐫′(𝜉,𝜂))𝐷𝑒𝑑𝜉𝑑𝜂, (11)
1

−1

1

−1

𝑁

𝑛=1
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with integral infinitesimal 𝐷𝑒 = |𝐫′
𝜉(𝜉, 𝜂) × 𝐫′

𝜂(𝜉, 𝜂)| .

𝐫′
𝜉(𝜉, 𝜂) =

𝜕𝐫′(𝜉,𝜂)

𝜕𝜉
and 𝐫′

𝜂(𝜉, 𝜂) =
𝜕𝐫′(𝜉,𝜂)

𝜕𝜂
 are the partial 

derivative of 𝜉 and 𝜂. 

For approximating the integral which has fixed 

integral domain [-1,1]  × [-1,1], we use the Lagrange 

interpolation polynomials to approximate the integral 

into closed-form formulation: 

𝐄𝑠(𝐫) ≈ ∑ ∫ ∫ 𝑮𝑛(𝜉, 𝜂)𝑒𝑖𝑘𝐹𝑛(𝜉,𝜂)𝑑𝜉𝑑𝜂
1

−1

1

−1

𝑁

𝑛=1

,  (12) 

where the function 𝑮𝑛(𝜉, 𝜂) and 𝐹𝑛(𝜉, 𝜂) have the

polynomials form on n-th patch as: 

𝐹𝑛(𝜉, 𝜂) = 𝐹0 + 𝐹1𝜉 + 𝐹2𝜉
2 + 𝐹3𝜂 + 𝐹4𝜂

2

𝑮𝑛(𝜉, 𝜂) = 𝑮0 + 𝑮1𝜉 + 𝑮2𝜉
2 + 𝑮3𝜂 + 𝑮4𝜂

2.     (13) 

We choose 5 points 𝐫1, 𝐫5, 𝐫2, 𝐫8, 𝐫3  and substitute

the coordinates to equation (13) to calculate the 

coefficients (𝐹0, 𝐹1, 𝐹2, 𝐹3, 𝐹4) and (𝑮𝟎, 𝑮𝟏, 𝑮𝟐, 𝑮𝟑, 𝑮𝟒).

C. The stationary phase method

The Stationary Phase Method (SPM) [22-24] is

applied to solve the double integrals. From the 

geometrical theory of diffraction, when the target size is 

much larger than the incident wavelength, the radar 

scattered fields of the target is equivalent to the 

superposition of multiple scattering centers. Similar to 

the GTD model [25], the scattered field of quadric patch 

can be approximated by the sum of critical points: 

stationary phase points (points that satisfy equation (14) 

below and showed in Fig. 2 in detail), boundary points 

(𝐫5, 𝐫6, 𝐫7, 𝐫8 from Fig. 1 and shown in detail in Fig. 3)

and vertex points (𝐫1, 𝐫2, 𝐫3, 𝐫4 from Fig. 1 and shown in

detail in Fig. 4).  

𝐫̂ ∙ 𝐫′
𝜉(𝜉, 𝜂) = 0  and  𝐫̂ ∙ 𝐫′

𝜂(𝜉, 𝜂) = 0.        (14)

The contributions of the stationary phase point 

𝒔(𝜉𝑠 , 𝜂𝑠) is:

𝑰𝒔 =
𝜋𝑮𝑠

𝑘
𝑒−𝑖𝑘𝐹𝑠

√
1

|𝐹𝜉𝜉
𝑠 𝐹𝜂𝜂

𝑠 − (𝐹𝜉𝜂
𝑠 )

2
|
𝑒−𝑖𝑘

𝜋
4
𝜎(𝛿+1)

, (15)

where 𝑮𝑠 = 𝑮(𝜉𝑠, 𝜂𝑠)  and𝐹𝑠 = 𝐹(𝜉𝑠, 𝜂𝑠) .  𝐹𝜉𝜉 ,𝐹𝜂𝜂 , 𝐹𝜉𝜂

are the second parametric derivatives of 𝐹 (𝜉, 𝜂 ). σ =

sign(𝐹𝜂𝜂) and δ = sign(𝐹𝜉𝜉𝐹𝜂𝜂 − (𝐹𝜉𝜂)
2).
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Fig. 2. Stationary phase point 𝒔(𝜉𝑠, 𝜂𝑠) on a quadratic

patch. 

The contributions of the boundary point 𝒄(𝜉𝑐 , 𝜂𝑐) is:

𝑰𝒄 = −𝑖(−1)𝛼
𝑮𝑐

𝑘
𝑒−𝑖𝑘𝐹𝑐 1

𝐹𝛼
𝑐 √

2𝑖𝜋

𝑘𝐹𝛽𝛽
𝑐  ,             (16)

where 𝛼 ≡ 𝜉, 𝛽 ≡ 𝜂 at the boundaries 𝜉 = 0 and 𝜉 = 1, 

and 𝛼 ≡ 𝜂, 𝛽 ≡ 𝜉 at the boundaries 𝜂 = 0 and 𝜂 = 1.  
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Fig. 3. Boundary point 𝒄(𝜉𝑐 , 𝜂𝑐) on a quadratic patch.

The contributions of the vertex point 𝒗(𝜉𝑣 , 𝜂𝑣) is:

𝑰𝒗 = −𝑮𝑣𝑒−𝑖𝑘𝐹𝑣 (−1)𝜉𝑣+𝜂𝜈

𝑘2𝐹𝜉
𝑣𝐹𝜂

𝑣
 ,                  (17)

where 𝑮𝑣 = 𝑮(𝜉𝑣 , 𝜂𝑣)  and 𝐹𝑣 = 𝐹(𝜉𝑣 , 𝜂𝑣) . 𝐹𝜉  and 𝐹𝜂

are the parametric derivatives of 𝐹(𝜉, 𝜂). 
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Fig. 4. Vertex point 𝒗(𝜉𝑣 , 𝜂𝑣) on a quadratic patch.

Considering all the critical points’ contribution, the 

scattered field can be written as: 

𝐄𝑠(𝐫) ≈ ∑ 𝑰𝒔
𝒏 + 𝑰𝒄

𝒏 + 𝑰𝒗
𝒏.  (18)

𝑁

𝑛=1

 

PO method calculates the scattered field of the 

illuminated area of the target. For lit-judging, Rius [26] 

used GPU’s zbuffer storage to simplify the lit-judgement 

of the target. Fan and Guo [27] implemented the fast 

patch-lit-judge method in hybrid EM method with the 

efficient open graphics library (OpenGL).  

III. NON-UNIFORMED FFT (NUFFT)

IMAGING ALGORITHM 
The ISAR image can be calculated by [28]: 

𝐼(𝑥̂, 𝑦̂)

=
1

(2𝜋)2
∬S(𝑓, 𝜃) 𝑒𝑗2𝜋𝐾𝑥(𝑓,𝜃)𝑥+𝑗2𝜋𝐾𝑦(𝑓,𝜃)𝑦̂𝑑𝑓𝑑𝜃, (19)

where S(𝑓, 𝜃) is the scattered field with respect to the 

different incident frequency 𝑓  and azimuth angle 𝜃 , 𝑥̂ 

and 𝑦̂ are the pixel index in image domain. 𝐾𝑥 =
2cos𝜃

𝜆

and 𝐾𝑦 =
2sin𝜃

𝜆
, the target reconstruction function is the 

2D-IFFT with respect to 𝐾𝑥 and 𝐾𝑦. The sample number

of frequency 𝑓  is M and azimuth angle 𝜃  is N, the 
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complexity of 2D-IFFT is O(MNlog2MN). 

Discretize equation (19) and we form equation (20), 

which can be used to calculate the value of every pixel 

of the image. For solving the summation, the complexity 

is O(M2N2): 

𝐼(𝑥̂, 𝑦̂)

=
1

(2𝜋)2
∑ ∑ S(𝑓, 𝜃)𝑒𝑗2𝜋𝐾𝑥(𝑓,𝜃)𝑥+𝑗2𝜋𝐾𝑦(𝑓,𝜃)𝑦̂

𝜃𝑚𝑎𝑥

𝜃𝑚𝑖𝑛

𝑓𝑚𝑎𝑥

𝑓𝑚𝑖𝑛

.   (20) 

As shown in Fig. 5 below, the sampled scattered 

fields are uniform on frequency−azimuth angle 𝑘 − 𝜃 

domain (blue points) and non-uniform on 𝐾𝑥 − 𝐾𝑦  

domain (red points).  
 

 
(a)                                     (b) 

 

Fig. 5. The sampled scattered fields distribution: (a) non-

uniform distributed in 𝐾𝑥 − 𝐾𝑦 domain, and (b) uniform 

distributed in 𝑘 − 𝜃 domain. We take 18 sampling points 

for k and 𝜃, respectively. 
 

Different from traditional interpolation algorithms, 

NUFFT method interpolates the sequence of exponential 

function rather than the sampled scattered fields matrix. 

Two-dimensional NUFFT equals to two one-dimensional 

NUFFT implemented in two dimensions [29,30], that is, 

2D-NUFFT is the tensor product of two one-dimensional 

NUFFT. We just need to consider the one-dimensional 

Inverse Discrete Fourier Transform: 

𝑋𝑛 =
1

𝑁
∑ 𝑥(𝑘)𝑒𝑗

2𝜋
𝑁

𝑛𝜔𝑘 ,

𝑁

𝑘=1

                (21) 

where 𝜔𝑘 ∈ [−
𝑁

2
,
𝑁

2
− 1] , 𝑘 = 1,2,… , 𝑁 , 𝑛 = −

𝑁

2
, −

𝑁

2
+

1,… ,
𝑁

2
− 1. Consider the equations that every exponential 

function 𝑒𝑗
2𝜋

𝑁
𝑛𝜔𝑘 can be written as the sum of the nearest 

(2Q+1) terms uniformly-spaced Fourier series: 

𝑠𝑛𝑒𝑗
2𝜋
𝑁

𝑛𝜔𝑘 ≈ ∑ 𝑥𝑘(𝜔𝑘)𝑒
𝑗
2𝜋
𝐺𝑁

𝑛𝑘,

𝑘=[𝐺𝜔𝑘]+𝑄

𝑘=[𝐺𝜔𝑘]−𝑄

        (22) 

where G is the oversampling factor and (2Q+1) is  

the length of interpolation kernel. 𝑠𝑛 > 0 is chosen to 

minimize the approximation error. For this work, we 

choose 𝑠𝑛 = cos
𝜋𝑛

𝐺𝑁
. [] is the rounding operation. We 

substitute 𝑛 = −
𝑁

2
, −

𝑁

2
+ 1,… ,

𝑁

2
− 1 and write the equation 

as equation (23). 

Equation (23) is an overdetermined equation set  

of N linear equations with (2Q+1) unknowns and 

(2Q+1)≪N. We use the least square solution as the 

approximation of the solution of the overdetermined 

equation set. We write the equation set in simplified form: 

𝐵 = 𝐴𝑥,                                    (24) 

and the least-square solution 𝑥∗ is: 

𝑥∗ = 𝑥𝑘(𝜔𝑘) =

[
 
 
 
 

𝑥[𝐺𝜔𝑘]−𝑄(𝜔𝑘)

𝑥[𝐺𝜔𝑘]−𝑄+1(𝜔𝑘)

⋮
𝑥[𝐺𝜔𝑘]+𝑄(𝜔𝑘) ]

 
 
 
 

= (𝐴†𝐴)
−1

𝐴†𝐵, (25) 

where 𝐴†  denotes the complex-conjugate transpose of 

matrix 𝐴 . Substitute 𝑥𝑘(𝜔𝑘)  into equation (21) and 

transform the non-uniform data into uniform space, as 

equation (26) illustrates below: 

[
 
 
 
 
 
 (𝑠

−
𝑁
2
)𝑒𝑗

2𝜋
𝑁

𝜔𝑘(−
𝑁
2
)

(𝑠
−

𝑁
2+1

)𝑒𝑗
2𝜋
𝑁

𝜔𝑘(−
𝑁
2
+1)

⋮

(𝑠𝑁
2−1

)𝑒𝑗
2𝜋
𝑁

𝜔𝑘(
𝑁
2
−1)

]
 
 
 
 
 
 

=

[
 
 
 
 
 𝑒

𝑗
2𝜋
𝐺𝑁(−

𝑁
2)([𝐺𝜔𝑘]−𝑄) 𝑒𝑗

2𝜋
𝐺𝑁(−

𝑁
2)([𝐺𝜔𝑘]−𝑄+1)

⋯ 𝑒𝑗
2𝜋
𝐺𝑁(−

𝑁
2)([𝐺𝜔𝑘]+𝑄)

𝑒𝑗
2𝜋
𝐺𝑁(−

𝑁
2+1)([𝐺𝜔𝑘]−𝑄) ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋮

𝑒𝑗
2𝜋
𝐺𝑁(

𝑁
2−1)([𝐺𝜔𝑘]−𝑄) ⋯ ⋯ 𝑒𝑗

2𝜋
𝐺𝑁(

𝑁
2−1)([𝐺𝜔𝑘]+𝑄) ]

 
 
 
 
 

∙

[
 
 
 
 

𝑥[𝐺𝜔𝑘]−𝑄(𝜔𝑘)

𝑥[𝐺𝜔𝑘]−𝑄+1(𝜔𝑘)

⋮
𝑥[𝐺𝜔𝑘]+𝑄(𝜔𝑘) ]

 
 
 
 

.                                                                                  (23) 

Then, IFFT can be implemented on equally-spaced 

𝑥′(𝑘). For 2D ISAR imaging, operate one-dimensional 

IFFT on range and cross range direction respectively.  

For actual measurement, the incident signal is 

considered as step-frequency signal, pulse signal with a 

fixed frequency step. The amplitude and initial phase of 

each sample point are consistent. 

𝑋𝑛 =
1

𝑁
∑ 𝑥(𝑘)𝑒𝑗

2𝜋
𝑁

𝑛𝜔𝑘

𝑁

𝑘=1

=
1

𝑁𝑠𝑛

∑ 𝑥(𝑘) ( ∑ 𝑥𝑞+[𝐺𝜔𝑘](𝜔𝑘)𝑒
𝑗
2𝜋
𝐺𝑁

𝑛(𝑞+[𝐺𝜔𝑘])

𝑄

𝑞=−𝑄

)

𝑁

𝑘=1

=
1

𝑁𝑠𝑛

∑ 𝑥′(𝑘)𝑒
𝑗
2𝜋
𝐺𝑁𝑛𝑘

𝐺𝑁
2

−1

𝑘=−
𝐺𝑁
2

.                                             (26) 

As for the resolution, the range resolution 𝛿𝑟  is 

related to the bandwidth of the incident wideband signal, 

the cross range resolution 𝛿𝑐𝑟 is related to azimuth range 

scan: 

 𝛿𝑟 =
𝑐

2𝐵
, 𝛿𝑐𝑟 =

𝜆𝑐

2sinΔ𝜑
,                   (27) 

where c is light speed in vacuum, B is the bandwidth of 

the incident wideband signal, 𝜆𝑐 is the center wavelength 

corresponding to center frequency 𝑓𝑐, Δ𝜑 is the angular 

scan. The resolution denotes the actual distance  

represented by every pixel in image.  
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III. NUMERICAL RESULTS
We bring three targets with different size and shape 

to discussion, two perfect electric conductor (PEC) 

spheres with different radius, a glider most consisting of 

curved surfaces, a finely modeled ship with lots of flat 

surfaces. Under spherical coordinate system, 𝜃  (elevation 

angle) is the angle between the scattered direction and 

+𝐳̂  axis. φ  (azimuth angle) is the angle between the

projection of the scattered direction in the xOy plane and

the +𝐱̂  axis. The scattering pattern is monostatic and

incident electric field 𝐄0
(𝑖)

polarizes along 𝒆̂𝜽 direction.

In order to meet the Far-field approximation, the 

radius of curvature of the target is much larger than 

the incident wavelength, the planar patch size is nearly 

λ/8, while the quadratic patch size is 1λ or larger. We 

use Altair HyperMesh 14.0 software to discretize the 

geometry at “second order” and “quads only” mode. Table 

1 shows the patch number using planar discretization 

and quadratic discretization respectively. Quadratic 

discretization reduces the patch number to two orders 

of magnitude. Table 2 shows the information of the 

incidence and the size of three different targets. 

Table 1: The numbers and sizes of patches by using the 

quadratic discretization and plane discretization for the 

different targets 

Targets Planar Patch 

(𝛌/𝟖) 

Quadratic Patch 

(1𝛌) 

Two spheres 365432 5748 

Glider 8901418 100389 

Ship 39144518 120929 

Table 2: The parameters of the incident wave and the size 

of three targets 

Target 1: Two spheres 

Radius: 0.5m 1m 

Center distance: 10m 

Patch number: 5748 

Target 2: A glider 
Size: 14m×14m×2m 

Patch number: 100389 

Target 3: A ship 
Size: 30m×3.5m×4.6m 

Patch number: 120929 

Frequency center (𝑓𝑐) 10GHz 

θ 60° 
φ 43.5°~46.5° 

Bandwidth (B) 600MHz 

Angular scan (∆φ) 3° 
Frequency samples 128 

φ samples 128 

Range resolution 
𝑐

2𝐵
=0.25m 

Azimuth resolution 
𝜆

2𝑠𝑖𝑛∆φ
=0.29m 

As for the accuracy comparison, we choose the 

image formed by NUFFT equation (19) and by directly 

calculating the double integral in equation (20). For 

estimating the performance of the NUFFT method, we 

introduce the relative L2 error to discuss: 

𝑒2 = 𝑎𝑣𝑔 (
‖𝐼 − 𝐼‖

2

2

‖𝐼‖2
2 ),  (28) 

where 𝐼  is the image of direct calculation and 𝐼  is the

image generated by NUFFT. We calculate the average 

error of every pixel. The results are showed in Table 3 at 

the end of this chapter. 

A. Two PEC sphere

Firstly, we take two PEC spheres with different

radius as example. The geometry and the quadratic 

discretization are shown in Fig. 6. The detailed parameters 

are illustrated in Table 2. 

Fig. 6. The geometry and the quadratic discretization of 

two different size spheres. 

From Fig. 7 below, the 2D image generated by 

NUFFT and direct calculation agree well. The image 

tells that center sphere has smaller radius and lower 

amplitude. From Fig. 8, the range profile shows agreement 

and the two spheres can be well distinguished. 

(a)  (b) 

Fig. 7. The comparison between: (a) NUFFT and (b) 

direct calculation of ISAR imaging of two PEC spheres. 

 (a)  (b) 

Fig. 8. The range profile: (a) amplitude and (b) dBsm 

comparison between NUFFT and direct calculation of 

ISAR imaging of two PEC spheres. 
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B. A glider 

The glider geometry and quadratic discretization  

are showed in Fig. 9. The geometry mostly consists of 

curved surface and simple struction like the streamline 

airframe and light wings to reduce the air friction. The 

comparison between NUFFT and direct calculation is 

illustrated in Fig. 10. 

 

 
 

Fig. 9. The quadratic discretization of a glider.  
 

 
 (a)                                        (b) 

 

Fig. 10. The comparison between: (a) NUFFT and (b) 

direct calculation of ISAR imaging of a glider. 

 

From Fig. 10, the 2D image of NUFFT and direct 

calculation of the glider agree very well. The image tells 

the detailed structure of the glider. The shape is well 

represented and the empennage has relatively obvious 

contribution. Figure 11 further verifies the scattered 

characteristic of the glider from range profile. 
 

 
 (a)                                   (b) 

 

Fig. 11. The range profile: (a) amplitude and (b) dBsm 

comparison between NUFFT and direct calculation of 

ISAR imaging of a glider. 

 

C. A ship 

We take a finely modeling ship as the third example. 

As Fig. 12 shows, the ship is mostly composed of plane 

elements like the deck and control rooms in the ship. 

When the ship is discretized into quadratic patches, some 

are quite close to planar patches. We choose the same 

incident plane wave for test. 

 

 
 
Fig. 12. The geometry and the quadratic discretization of 

a finely modeling ship.  

 

 
(a)                                          (b) 

 

Fig. 13. The comparison between: (a) NUFFT and (b) 

direct calculation of ISAR imaging of a finely modeled 

ship. 

 

 
(a)                                  (b) 

 

Fig. 14. The range profile: (a) amplitude (b) dBsm 

comparison between NUFFT and direct calculation of 

ISAR imaging of a finely modeled ship. 

 

From Fig. 13, the 2D image of NUFFT and direct 

calculation of the ship agree well. From the ISAR image 

and the range profile in Fig. 14, we can tell that the 

middle part of the ship has the strongest contribution  

to the image compared with other parts. However, the 

structure of the ship is not very clear. The reason possibly 

is that the basic component of the finely modeling ship 

is flat, like deck and hull. The quadratic discretization 

generates error. We may conclude that for targets 

consisting of large flat surfaces, we need to choose 

quadratic patches combined with planar patches to finely 

describe the target.  
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The relative L2 error shows in Table 3 below. We 

can tell from it that the relative L2 error is overall quite 

small and increases very slowly as the increase of the 

interpolation kernel size Q. It indicates that the NUFFT 

method generates minor error, which is introduced by 

solving the overdetermined equations utilizing the least 

square solution.  

Table 3: The relative L2 error defined in equation (27) on 

different size of interpolation kernel determined by Q 

Targets 

G=2 

Q=2 Q=4 Q=8 Q=16 

Two spheres 0.77% 1.09% 1.26% 1.34% 

Glider 0.23% 0.43% 0.61% 0.73% 

Ship 0.12% 0.19% 0.25% 0.30% 

The time comparison shows in Table 4 below. 

NUFFT method reduces the time consumption a lot. The 

time consumption contains obtaining the interpolation 

coefficients by solving the overdetermined equations, so 

that the theoretical time comparison from the complexity 

is not fully achieved. As for the memory consumption, 

NUFFT has less memory usage. The CPU is Intel(R) 

Core (TM) i7-4790 at 3.6GHz, the simulation software 

is Matlab R2015b. 

Table 4: The time consuming comparison between direct 

calculation and NUFFT on G=2, Q=4; in order to make 

difference more obvious, we choose the total time and 

memory consumption of 100 tests 

Direct 

Calculation 

NUFFT 

Time (second) 30.214s 14.646s 

Memory (kilobyte) 296kB 212kB 

IV. CONCLUSION
This work implements the two-dimensional non-

uniform Inverse Fast Fourier Transformation to Inverse 

Synthetic Aperture Radar imaging. The complexity of 

two-dimensional NUFFT is O(MNlog2MN), compared 

with direct computation with complexity O(M2N2), has 

higher computational efficiency and nearly equal imaging 

accuracy. The error is controllable, generated by least 

squares method solving overdetermined equations. The 

physical optics (PO) method based on quadratic 

discretization reduces the patch number to one hundredth, 

compared with planar discretization. In general, the work 

achieves fast simulation for ISAR imaging on complex 

targets, providing basis for further automatic radar 

recognition (ATR). 
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