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Abstract ─ A compact and broadband circularly 

polarized antenna is proposed. A linear-to-circular 

polarization conversion metasurface is designed to 

broaden the 3-dB axial ratio bandwidth and the 

impedance bandwidth of the proposed antenna, with the 

mechanism of the metasurface investigated. Different 

with the conventional metasurface antenna designed by 

using uniform unit cells, this design makes use of two 

metasurface arrays with different unit cells. Full wave 

simulations show that the 10-dB impedance bandwidth 

of the proposed antenna is from 4.32 to 6.5 GHz (40.3%), 

and the 3-dB AR bandwidth is from 5 to 5.61 GHz 

(11.5%). Compared with that using the uniform elemental 

array, this design leads to more than 10% improvement 

in the 10-dB impedance bandwidth and more than 11.7% 

improvement in the axial ratio bandwidth. The proposed 

antenna has been fabricated and the simulated results 

have been verified with the measurements. 

Index Terms ─ Circularly polarized antenna, linear-to-

circular polarization conversion, metasurface.  

I. INTRODUCTION
Metasurface (MS) has attracted much attention due 

to its unique properties in the past few years [1]. It is 

usually formed by regular or irregular periodic planner 

arrays and presents EM properties not found in natural 

materials. With advantages of planar structure and strong 

capability of manipulating electromagnetic waves, MS 

can be easily integrated on traditional antennas and 

provide a promising approach for new antenna designs 

with improved performances [2-13]. 

For radar, wireless, and satellite communication 

applications, circularly polarized (CP) antennas [14, 15] 

are widely used because of their immunities to multipath 

distortion and polarization mismatch losses. MS can be 

utilized to improve the CP performance or to convert a 

linearly polarized radiation from antennas to a circularly 

polarized one without deteriorating the radiation 

performance [3]. Dual-band conversion can also be 

realized by a single metasurface [4]. By properly 

combining the transmitted wave from the antenna and 

the reflected wave from the metasurface, broadband 

circular polarization can be obtained [5-7]. In [8-10], the 

metasurfaces work as polarization convertors and the E-

field can be resolved into two orthogonal components. In 

this way, the circularly polarized wave can be possibly 

generated with wider bandwidth. In order to enhance the 

impedance-matching and the AR bandwidths, surface 

waves are excited on the MS to generate additional 

resonances with minimum AR points [11, 12]. Based on 

the mushroom antenna [1], a new wideband CP antenna 

can be realized by rotating the angle of the feed slot for 

a polarization-dependent MS superstrate [13].  

The above MS antennas are all based on periodic 

MS arrays with the same unit cells. In this paper, 

we demonstrate by combining two linear-to-circular 

polarization conversion MS (PCMS) arrays, the 3-dB 

axial ratio (AR) bandwidth and impedance bandwidth 

can be further broadened. Simulation shows that the 10-

dB impedance bandwidth for the proposed MS antenna 

is 40.3% from 4.32 to 6.5 GHz, and the 3-dB AR 

bandwidth is 11.5% from 5 to 5.61 GHz. Compared with 

the same element array, more than 10% improvement 

for 10-dB impedance bandwidth and more than 11.7% 

improvement for 3-dB AR bandwidth can be obtained. 

As the design verification, the proposed antenna is 

fabricated and measured. The measurement results agree 

with the simulation results. 

II. ANTENNA DESIGN

A. Linear-to-circular polarization conversion MS

A linear-to-circular PCMS is made of arrays of the

unit cell as shown in Fig. 1 (a). The unit cell consists of 

a metallic patch with a 45 degree-oriented rectangular 

slot and a substrate board with the thickness of 3 mm 

and the relative permittivity of 4.4. The dimensions of 

the unit cell specified in Fig. 1 (a) are as follows: 
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px = py = 11mm, l = w = 10mm, ls = 11mm, and ws = 

0.65mm. Consider an x-polarized plane wave normally 

illuminated on the bottom of the PCMS. This means the 

incidence only contains Ex component. The amplitudes 

of the transmitted E-field components are simulated  

by commercial software Ansoft HFSS. Master/slave 

boundaries are utilized based on a unit-cell model. The 

simulation results show that the amplitude intersections 

of Ex and Ey can be obtained and the corresponding 

frequency of the matching point varies with the length of 

the slots on the patch (Ref. Fig. 1 (b)).  
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Fig. 1. (a) A unit cell of the PCMS, and (b) the 

amplitudes of the transmitted E-field components. 
 

This indicates that, after the x-polarized plane wave 

transmits through the MS, both Ex and Ey components 

are generated with equal amplitudes in the transmitted 

wave. In this way, circularly polarized wave can be 

possibly generated when the MS array is properly 

designed. Accordingly, by considering the PCMS as a 

half-wavelength resonant cavity, the resonant length of 

slot can be qualitatively estimated by the following 

equation 

 / 2 / 2e rls     ,            (1) 

where ls is the wavelength in the dielectric substrate and  

r  is the relative permittivity of the substrate. 

As shown in Fig. 2, at 5.75GHz, the currents on slot 

with 11 mmls   are better excited than that on slot with 

ls = 10mm, which further verifies the linear-to-circular  

polarization conversion function of the slot. 
 

    
   (a) ls = 10mm (b) ls = 11mm 
 

Fig. 2. Simulated surface current amplitudes of the 

PCMS at 5.75 GHz for different slot lengths. 
 

B. CP Antenna incorporating two CPMSs 

Based on a MS-based broadband low-profile 

mushroom antenna as presented in [1], by simply 

replacing the mushroom EBG with the aforementioned 

PCMS arrays on a planar slot-coupling antenna, we 

obtain the proposed CP antenna. In order to obtain 

broader 3-dB AR and impedance bandwidths, the 4 by 4 

PCMS array are separated into two 2 by 4 arrays as 

depicted in Fig. 3. After optimization, the dimension 

parameters of the PCMS arrays are determined as 

follows (in unit of mm): l = 8.25, w = 8, px = 9.45, py = 

9.2, ls1 = 9.45, ws1 = 0.65, ls2 = 8.8, and ws2 = 0.65. The 

tilt angles for the two CPMSs are q1 = 52.5 ̊ and q2 = 57 ̊ 

respectively. The parameters of the feeding slot antenna 

are (in unit of mm): le = 25, we = 2, lf = 27.5, wf = 2.1,  

lg = 16, wg = 5, and gf = 1.55. Here, FR4 ( 2.2r  ) is 

used as substrate for both the PCMS and the antenna. 

The thicknesses of the PCMS substrate and the antenna 

substrate are h = 3mm and t = 1mm respectively. A 

waveguide port is assigned to the coplanar waveguide as 

excitation in the HFSS model as shown in Fig. 3 (b). 

Figure 4 (a) shows the simulated S11 for the MS antenna. 

The simulated impedance bandwidth for S11< −10 dB is 

4.32–6.5 GHz (40.3%). Figure 4 (b) shows the simulated 

axial ratio and gain in the boresight direction for the 

proposed antenna. It shows the PCMS array resulted in 

stable left-hand circular polarization (LHCP) radiation. 

The 3-dB AR bandwidth is from 5 to 5.61 GHz, about 

11.5%. In Fig. 4 (c) the simulated radiation patterns of 

the proposed antenna at 5.3 GHz is provided.   

The simulation results show that, as the time 

changes, the surface currents located at the azimuth 

angle turn in a clockwise manner. Figure 5 shows 

snapshots of the surface currents of the proposed antenna 

at 5.2 GHz for three different time phases ( t ), from 0  

to 90 , with an interval of 45 . At 0t  , the dominant 

surface current can be found in the y-direction, while  

as t  changes to 45t   and then 90t  , the 

dominant surface currents can be observed in the 

diagonal direction and then in the x-direction. Hence, the 

polarization characteristic is the LHCP in +z-direction. 
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It also can be seen in Fig. 5 that the current intensities  

on PCMS on different locations are different. It is 

understood that the discrepancy in the unit cells of 

CPMSs will decrease the resonance of the CPMSs in the 

center zone where strong mutual coupling occurs, 

however, strong resonance can still be formed on the 

edge of the structure, rendering the improved antenna 

performance. 
 

  
 (a) 

 
 (b)  

 

Fig. 3. Illustration of the geometry with the design 

parameters of the proposed antenna: (a) the top view; (b) 

the back view and the side view. 
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    (c) 

 

Fig. 4. (a) The simulated S11, (b) AR and broadside gain, 

and (c) the radiation pattern at 5.3GHz of the proposed 

antenna. 

 

   
 (a) 0t   
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 (b) 45t                              

 
 (c) 90t   
 

Fig. 5. Simulated surface current distributions of the 

proposed antenna at 5.3 GHz for different time instants. 

 

III. EXPERIMENTAL RESULTS 
In Fig. 6, the simulated axial ratio (AR), the 

broadside gain, and the S11 parameter of the proposed 

antenna based on two different dimensions of PCMS 

arrays are compared with those of the two antennas with 

uniform PCMS arrays. The key parameters which are 

different among the three antennas are specified in the 

figure. The rest parameters are the same with those in 

Section II. It can be seen that wider 3-dB AR bandwidth 

and impedance bandwidth can be achieved by properly 

adjusting the length and rotating the angle (in degrees) 

of the rectangular slots without deteriorating the 

radiation performance. Parametric studies are performed 

to identify the effect of separating to two PCMS arrays 

on the impedance bandwidth, AR bandwidth in the 

boresight direction and the results provide a useful 

strategy to broaden the bandwidth for practical design. 

Compared with the antenna used by same elements  

with the wider bandwidth, more than 10% improvement 

for 10-dB impedance bandwidth and more than 11.7% 

improvement for 3-dB AR bandwidth can be obtained by 

adopting the combination of the two PCMS arrays. 

The proposed antenna as shown in Fig. 7 is etched 

on FR4 substrate with a relative permittivity of 4.4 and a 

loss tangent of 0.02. Its characteristics are measured as 

design verification. As depicted in Figs. 8 (a) and (b),  

the measured results show that the 10-dB impedance 

bandwidth for the proposed MS antenna is 38.3% from 

4.56 to 6.72 GHz, and the 3-dB AR bandwidth is 11.3% 

from 5 to 5.6 GHz. Figures 8 (c) and (d) show the 

simulated and measured radiation patterns at 5.3GHz. As 

can be found in Fig. 8, the measured results show good 

agreement with the simulated ones, and the deviations 

could be attributed to the fabrication and measurement 

tolerance. 
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Fig. 6. (a) The AR, broadside gain and (b) the S11 of  

the proposed antenna and the two reference antennas 

with uniform PCMS array (the proposed antenna: 

(ls1,ls2,q1,q2)=(9.45mm, 8.80mm, 52.5o, 57o); Ref. 

Antenna 1: (ls1, q1)=(9.45mm, 52.5o); Ref. Antenna 2: 

(ls2, q2)=(8.80mm, 57o)). 
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Fig. 7. Photographs of the fabricated antenna prototype. 
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Fig. 8. (a) The S11, (b) the axial ratio, (c) the radiation 

patterns normalized by maxima at 5.3 GHz of the 

proposed antenna at o0   plan, and (d) the radiation 

patterns normalized by maxima at 5.3 GHz of the 

proposed antenna at o90   plan. 

 

IV. CONCLUSION 
An efficient method is presented to broaden the 3-

dB AR bandwidth and the impedance bandwidth based 

on two PCMS arrays with different parameters in this 

paper. The proposed antenna design exhibits more than 

10% improvement for 10-dB impedance bandwidth  

and more than 11.7% improvement for the 3-dB AR 

bandwidth compared with that composing the PCMS 

array with uniform elements. The simulated and measured 

results are in good agreement to verify the proposed 

antenna. 
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