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Abstract ─ A compact dual-passband three-dimensional 

(3D) frequency selective surface (FSS) is proposed 

based on multiple square coaxial waveguides (SCWs), 

which exhibits good angular stability and both-side fast 

roll-off characteristics. The unit cell of the proposed 3D 

FSS is composed of one parallel plate waveguide (PPW) 

propagation path and two SCW propagation paths. By 

etching a centered annular slot, each SCW path forms 

two identical short SCWs. Each short SCW inherently 

generates one square slot resonance. In each SCW path, 

on the account of electromagnetic coupling between two 

square slot resonators provided by two short SCWs,  

the square slot resonant mode will split into even-/odd- 

resonant modes. Accordingly, each SCW path can provide 

a flat second-order passband with two transmission poles. 

Due to the reflection and out of phase of electromagnetic 

waves, four transmission zeros located at both sides  

of the passbands are introduced for high frequency 

selectivity, realizing both-side fast roll-off performances. 

In order to explain the operating principle, the electric-

field distributions at transmission-zero/pole frequencies 

are investigated. Finally, an FSS prototype is fabricated 

and measured, and the results exhibit good angular 

stability for both TE and TM polarizations under incident 

angles from 0° to 60°. In addition, the proposed 3D FSS 

has a compact unit cell. 

 

Index Terms ─ Both-side fast roll-off, dual-passband, 

dual polarizations, Frequency Selective Surface (FSS), 

three-dimensional (3D). 
 

I. INTRODUCTION 
During the past decade, frequency selective surfaces 

(FSSs) have been widely investigated due to their superior 

spatial filtering characteristics for some practical 

applications [1-4]. To meet the demands of satellite 

communications, dual-passband FSSs are attracting more 

and more attention. Dual-passband FSSs are usually 

realized by using complementary structure [5], convoluted 

structure [6], and composite structure [7]. However, 

these first-order dual-band FSSs in [5-7] have limitations 

of flatness of the passbands due to the lacking of  

more transmission poles. Two dual-band FSSs with one 

second-order passband are proposed based on shunted 

SIW cavity technology in [8] and multilayered cascaded 

technology in [9], respectively. To further promote the 

flatness, a dual-band FSS with second-order bandpass 

responses is achieved by the multi-layered array of sub-

wavelength inductive wire grids and capacitive patches 

[10]. By using circular aperture-coupled patches, another 

second-order dual-passband FSS is realized in [11]. As 

an alternative approach, a dual-band bandpass FSS  

with arbitrary band ratios is designed by using three-

dimensional (3D) composite topology composed of an 

array of three-layer parallel strip lines with inserted 

metallic rods, as well as two identical single-layer patch 

arrays [12]. Moreover, a profile, dual-band FSS with two 

third-order passbands is designed in [13]. Nevertheless, 

these FSSs in [10-13] without any transmission zeros 

(TZs) suffer from slow roll-off out of the passbands, 

resulting in poor frequency selectivity. To overcome such 

a limitation, a dual-band FSS with three transmission 

zeros is presented by utilizing a hybrid structure of 

double square loop slots and substrate integrated 

waveguide cavities, which exhibits higher frequency 

selectivity and passband insensitivity to the incident 

angles and polarizations [14]. In [15], a dual-band FSS 

with close band spacing is proposed by cascading a two-
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layer periodic array, two transmission zeros at upper side 

of each passband are introduced for high frequency 

selectivity. With the aid of the couplings between the 

back-to-back annular ring resonators, a dual-band FSS 

with quasi-elliptic bandpass responses is realized in  

[16]. Unfortunately, these FSSs in [14-16] have large 

electrical size, leading to poor angular stability. In [17], 

we present a dual-passband 3D FSS with high selectivity 

and small band ratio based on the combination of an  

air-filled square waveguide and a cuboid dielectric  

block with double square loops, achieving good angular 

stability and small electrical size. However, there are no 

transmission zeros at the left side of the lower passbands 

in [14-17]. Furthermore, a via-based dual-passband 2.5D 

FSS is realized in virtue of electromagnetic coupling  

in [18], three transmission zeros are located at both  

sides of two passbands, exhibiting both-side fast roll-off 

performances, but it only operates under single 

polarization. Consequently, there is still a challenge for 

the dual-passband FSS design to achieve flat passbands, 

both-side fast roll-off characteristics, good angular 

stability, dual polarizations, and compact electrical size 

simultaneously. 

In this paper, a compact dual-passband 3D FSS  

with good angular stability and both-side fast roll-off 

characteristics is proposed based on multiple square 

coaxial waveguides (SCWs). The electric-field 

distributions at transmission-zero/pole frequencies are 

analyzed for better explaining the operating principle. 

Finally, an FSS prototype is fabricated and measured, 

and its experimental results are well coincided with 

simulated ones. 

 

II. UNIT CELL DESIGN AND SIMULATION 
Figure 1 (a) gives the perspective view of the 

proposed 3D FSS, whose unit cell consists of two SCW 

propagation paths and one parallel plate waveguide 

(PPW) propagation path. These two SCW paths, namely, 

path 1 and path 2, are filled with dielectric 1. By etching 

two centered annular slots on the inner and middle tubes, 

each SCW path forms two identical short SCWs. The 

PPW path (i.e., path 3) is supported by two adjacent 

outer tubes combined with dielectric 2. The relative 

dielectric constants of the dielectric 1 and dielectric 2  

are expressed as r1 and r2, respectively. The detailed 

geometry is shown in Figs. 1 (b) and (c). The period  

and thickness of the unit cell are denoted by p and t, 

respectively. The parameters a, b and c represent side 

lengths of three tubes. The parameters s1 and s2 are the 

widths of two centered annular slots.  

 

 
(a) 

    
(b)                                             (c) 

 

Fig. 1. Unit cell of the proposed 3D FSS: (a) perspective 

view, (b) top view, and (c) side view. 

 

Figure 2 provides the simulated transmission and 

reflection coefficients of the presented 3D FSS by full-

wave simulator HFSS. The design parameters of the 

proposed 3D FSS are listed in Table 1. It is observed that 

two flat second-order passbands are obtained around f1 

(3.55 GHz) and f2 (5.145 GHz). In the lower band, two 

transmission poles are realized at fp1 (3.53 GHz) and fp2 

(3.6 GHz). In the higher band, the other two transmission 

poles are produced at fp3 (5.08 GHz) and fp4 (5.19 GHz). 

Moreover, four transmission zeros at fz1 (3.11 GHz),  

fz2 (3.82 GHz), fz3 (4.65 GHz) and fz4 (5.82 GHz), are 

located at both sides of the passbands, resulting in  

both-side fast roll-off characteristics. As expected, its 

frequency selectivity is greatly improved. The 3dB 

bandwidths of the lower and higher bands are 0.24 GHz 

(3.43-3.67 GHz) and 0.41 GHz (4.94-5.35 GHz), and 

corresponding fractional bandwidths are 6.76% and 

7.97%, respectively. 

 

Table 1: Design parameters of the proposed 3D FSS 

p a b c 

12 mm 11 mm 8 mm 6 mm 

t s1 s2 r1, r2 

11 mm 8 mm 7.4 mm 7.5, 2.2 
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Fig. 2. Simulated transmission and reflection coefficients 

of the proposed 3D FSS. 

 

III. OPERATING PRINCIPLE 
Figure 3 gives the electric-field distributions at four 

transmission-pole frequencies. As shown in Fig. 3 (a), 

when the electromagnetic waves strike upon the proposed 

3D FSS, the path 2 is mainly excited. From the top view, 

the electric-field vectors at fp1 are basically concentrated 

upon the square slots on external end-faces of the two 

short SCWs in path 2. From the side view, as it can  

be observed that the electric-field vectors reach largest 

value in two short SCWs in path 2, whereas the other 

areas become very weak, and the direction of the 

electric-field vectors keeps unchanged along the z-axis. 

As a result, fp1 is provided by even-resonant mode 

between two square slot resonators in two short SCWs, 

and the center location of the path 2 is equivalent to an 

ideal magnetic wall. At fp2, the path 2 is also excited,  

as illustrated in Fig. 3 (b). The electric-field vectors  

with the same magnitude and opposite direction are 

distributed in two short SCWs in path 2, which reveals 

fp2 is produced by odd-resonant mode between two 

square slot resonators in two short SCWs, and the center 

location of the path 2 can be considered as an ideal 

electric wall. Similarly, it can be seen from Figs. 3 (c) 

and (d) that fp3 and fp4 are generated by even- and odd-

resonant modes in path 1, respectively.  

Figure 4 shows the electric-field distributions at four 

transmission-zero frequencies. In Fig. 4 (a), it is worth 

noticing that the path 2 under even-resonant mode and 

path 3 are excited simultaneously. The electromagnetic 

waves are reflected at the end of the short SCW in path 

2 because of the open-end discontinuity. Additionally, 

the electric-field vectors in path 2 and path 3 have opposite 

directions at the output ports, where the electric-field 

vectors are combined out of phase, leading to generate 

one transmission zero at fz1. Figure 4 (b) shows that the 

path 1 and path 2 under odd-resonant modes are excited 

at the same time. The electromagnetic waves are also 

reflected in path 2, and the electric-field vectors in path 

1 and path 2 are combined out of phase, which provides 

the other transmission zero at fz2. Figures 4 (c) and (d) 

show the generation mechanism of the transmission 

zeros fz3 and fz4 respectively. The electromagnetic waves 

are reflected at the end of the short SCW in path 1, and 

the directions of electric-field vectors in path 1 and path 

3 are opposite at the output ports, which contributes to 

the transmission zeros fz3 and fz4. 
 

   

                             (a)                          (b) 

           
         (c)                                       (d) 

 

Fig. 3. Electric-field distributions at four transmission-

pole frequencies: (a) fp1, (b) fp2, (c) fp3, and (d) fp4. 
 

     

             (a)                                   (b) 

      

           (c)                                   (d) 

 

Fig. 4. Electric-field distributions at four transmission-

zero frequencies: (a) fz1, (b) fz2, (c) fz3, and (d) fz4. 
 

IV. FABRICATION AND MEASUREMENT 
The fabricated FSS prototype is composed of five 

kinds of the building parts, as shown in Fig. 5 (a). The 

building part A is one piece of double sided board made 

of F4B material with relative permittivity of 2.2, loss 

tangent of 0.001 and thickness of 1.0 mm, in which 17 

opening slots cut half way along the board are periodically 
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created. The building parts B1 and B2 are two types of 

single sided boards, which are made of TP-2 composite 

material (r1=7.5, tan=0.003) with a thickness of 1.5 mm. 

Similarly, the building parts C1 and C2 are also single 

sided boards made of TP-2 composite material (r1=7.5, 

tan=0.003) with a thickness of 1.0 mm. Each building 

part is manufactured by using printed circuit board 

technology. In Fig. 5 (b), for assembly, firstly, the pieces 

(part A) are cross-joined together through the opening 

slots to construct a frame, which achieves path 3. 

Subsequently, the pieces (parts B1 and B2) are inserted 

into the frame, one by one, for forming path 2. The same 

operation is carried out for parts C1 and C2 to construct 

path 1. Additionally, the junctions of the printed coppers 

are covered by conductive silver pulp for good electrical 

contact. Finally, the size of the fabricated 3D FSS is 213 

mm× 213 mm with 16×16 (256) unit cells, as displayed 

in Fig. 5 (c). The electrical size of the unit cell (p×p×t) is 

as compact as 0.14λ0×0.14λ0×0.13λ0, where λ0 denotes 

the free-space wavelength at f1. The free-space method is 

applied to obtain the frequency response of the proposed 

3D FSS, and its measurement setup contains two horn 

antennas (from 1 to 18 GHz), one FSS prototype, one 

vector network analyzer, as well as one rotatable screen 

covered by absorbers. The FSS prototype is placed 

within the rectangular through-hole window in the center 

of the rotatable screen for the measurement of incident 

stability. Two horn antennas connected by the vector 

network analyzer are located about 1.2 m apart from each 

side of the centered rotatable screen. In addition, the 

measurement setup is surrounded by using the absorbing 

screens. TE or TM polarization wave is obtained when 

the long side of the two horn antennas is parallel or 

perpendicular to the ground in our measurement setup. 

For the transmission coefficients measurement, the 

propagation loss is firstly eliminated by the normalization 

of the measured results without the FSS, and the 

environment noise is eliminated by the measured results 

of an identically sized metallic plate. Furthermore, for 

considering the multipath effects, the time-domain gating 

function of the vector network analyzer is applied to 

calibrate the measured results. 
 

     

         (a)                                        (b) 

     

                     (c)                                      (d) 

 

Fig. 5. Fabrication and measurement of the proposed 3D 

FSS. (a) Building parts and dimensions, (b) assembly 

process, (c) FSS prototype, and (d) measurement setup. 

 

The measured results under different incident angles 

and polarizations are depicted in Fig. 6 compared with 

the simulated ones. It is clear that the transmission 

coefficients keep very stable versus variable incident 

angles up to 60° for transverse electric (TE) and transverse 

magnetic (TM) polarizations. The measured insertion 

losses within passbands gradually become larger as  

the incident angle increases, because of the variations of 

wave impedances for the incident waves. The measured 

insertion losses at the center frequency of the lower  

and higher bands are 0.8 and 1.0 dB under the normal 

incidence, respectively, which are larger than the 

simulated ones. It results from the conductor losses 

unconsidered in the simulated model. The other 

discrepancies between the measurement and simulation 

result from fabrication tolerance, assembly tolerance and 

measurement error. However, the measured results have 

demonstrated the desired performances of the proposed 

3D FSS. Table 2 shows the comparison between the 

presented FSS and recently published researches with 

similar performances. Obviously, the proposed 3D FSS 

has an overwhelming advantage in flat passbands, both-

side fast roll-off characteristics, good angular stability, 

dual polarizations, and compact unit cell. 

 

 
   (a) 
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   (b) 

 

Fig. 6. Measured and simulated results of the proposed 

3D FSS. (a) TE polarization. (b) TM polarization. 

 

Table 2: Comparison of the FSS designs with similar 

responses 

Ref. 
Unit Cell Size 

and Thickness 

TZs 

Num. 
Polarization 

Angular 

Stability 

(TE/TM) 

[10] 
0.094λ0×0.094λ0 

×0.23λ0 
0 Dual 45°/45° 

[11] 
0.495λ0×0.495λ0 

×0.05λ0 
0 Dual 

30°/30° 

(only sim.) 

[12] 
0.07λ0×0.055λ0 

×0.09λ0 
0 Single 40° 

[14] 
0.49λ0×0.49λ0 

×0.032λ0 
3 Dual 30°/30° 

[15] 
0.37λ0×0.37λ0 

×0.22λ0 
4 Dual 45°/45° 

[16] 
0.38λ0×0.38λ0 

×0.135λ0 
4 Dual 30°/30° 

[17] 
0.188λ0×0.188λ0×

0.094λ0 
4 Dual 60°/60° 

[18] 
0.27λ0×0.096λ0 

×0.03λ0 
3 Single 

60° 

(only sim.) 

This 

work 

0.14λ0×0.14λ0 

×0.13λ0 
4 Dual 60°/60° 

 

V. CONCLUSION 

A compact, dual-polarized, dual-passband 3D FSS, 

exhibiting good angular stability and both-side fast roll-

off characteristics, has been presented based on multiple 

SCWs. Thanks to the electromagnetic coupling between 

two square slot resonators provided by two short  

SCWs in the SCW path, each SCW path can provide a 

flat second-order passband. Four transmission zeros  

are introduced for realizing both-side fast roll-off 

performances with the aid of the reflection and out of 

phase of electromagnetic waves. For explaining the 

operating principle of the proposed 3D FSS, the electric-

field distributions at the frequencies of the transmission 

zeros/poles are investigated. Finally, an FSS prototype  

is fabricated and measured. The consistency between 

measurement and simulation validates our design. 
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