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Abstract – Direction of arrival (DOA) estimation of
coherent sources with a uniform circular array (UCA)
is an intractable problem. The method-of-direction-
estimation (MODE) algorithm has strong superiority in
handling coherent sources compared with the classical
MUSIC, and ESPRIT algorithms. However, MODE is
sensitive to source numbers and does not work well
in the UCA scenario. In order to improve the perfor-
mance of MODE, a robust DOA estimation method
named UCA-PUMA (principal-eigenvector-utilization-
for-modal-analysis) is proposed. The complicated non-
Vandermonde structured steering vector of UCA is trans-
formed into a virtual Vandermonde structured steering
vector in mode space. The proposed method gives a
closed-form solution compared with the original UCA-
MODE algorithm. The performance of the UCA-PUMA
method is evaluated by simulations. Simulation results
demonstrate that the UCA-PUMA is more robust to
source numbers than the UCA-MODE, and coherent
sources can be handled without spatial smoothing. In
addition, the UCA-PUMA fully takes advantage of the
UCA, which is able to discriminate sources coming from
a 360◦ azimuthal field of view.

Index Terms – PUMA, coherent, DOA estimation, UCA,
MODE.

I. INTRODUCTION
Direction-of-Arrival (DOA) estimation is attracting

considerable critical attention from the array signal pro-
cessing community. Several classical algorithms have
been developed such as MUSIC [1], ESPRIT [2, 3],
and Maximum Likelihood (ML) estimation [4, 5] in the
past decades. Meanwhile, various array geometries have
been considered, such as the uniform linear array (ULA),
uniform circular array (UCA), and uniform rectangu-
lar array (URA), etc. Among many array configurations,
the UCA has attracted much attention due to its advan-
tages such as offering a 360◦ azimuthal field of view,

being easy to set up, etc. However, the widespread mul-
tipath effect of electromagnetic waves leads to coherent
sources impinging on the array [6]. Some efforts have
been tried in [7, 8] to deal with the problem of DOA
estimation of coherent sources. Unfortunately, this prob-
lem becomes even trickier in the context of UCA [9],
because of the non-Vandermonde structure of its steering
vector.

Thanks to the mode space transformation method
[10], the UCA can be treated as a virtual ULA and the
azimuthal isotropy of UCA are retained. The mode space
transformation, also known as beam space transforma-
tion, is widely used to solve DOA estimation problems in
UCA. In [11, 12], the mode space transformation method
has been adopted to improve the accuracy of DOA esti-
mation in the UCA. Also in [13], the authors have pro-
posed a low complexity sparse beamspace DOA esti-
mation method for UCA. The above two works focus
on the one-dimensional DOA estimation of uncorre-
lated sources in the UCA, and the mode space trans-
formation technique is used to improve the estimation
performance.

Furthermore, the mode space transformation tech-
nique can also play a great role in the context of DOA
estimation of coherent sources in UCA. Since the covari-
ance matrix is rank deficient in the scenarios of coherent
sources, spatial smoothing techniques have been devel-
oped to address this problem [14]. Notably, the spatial
smoothing technique requires the covariance matrix to
be equipped with a Toeplitz structure, which is achieved
by the ULA [15] or the URA [16]. Obviously, the mode
space transformation technique provides the opportunity
to convert the UCA into a virtual ULA, hence a simi-
lar method is also applied in the UCA scenario [17, 18].
However, in the process of implementing the spatial
smoothing technique, the whole ULA or virtual ULA
is divided into multiple sub-arrays, which reduces the
effective array aperture and leads to severe performance
degradation [19].
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Particularly, the authors in [20] have proposed a
ML-based approach to deal with the DOA estimation of
coherent sources. Furthermore, with sophisticated math-
ematical proofs, this paper has shown that the proposed
method does not require spatial smoothing in dealing
with coherent sources. The MODE [21] is an ML type
algorithm which is only required moderate computation.
The MODE takes advantage of the autoregressive mov-
ing average model (ARMA) of the snapshot vector when
the array steering vector has a Vandermonde structure
realized by the ULA. In [22], the MODE algorithm has
been extended to the UCA scenario by making full use of
the mode space transformation. Nevertheless, the UCA-
MODE algorithm is not robust to source number. The
UCA-MODE performs well in the even source num-
ber scenario, but its performance is severely degraded in
the odd case. Moreover, it performs even worse in the
regime where coherent sources are hybrid with uncorre-
lated ones.

In this letter, we focus on the robust realization
of the MODE algorithm for DOA estimation in UCA
based on the recently proposed principal-eigenvector-
utilization-for-modal-analysis (PUMA) method [23]
combined with the mode space transformation of UCA.
In this scheme, the problem of sensitivity to source num-
ber is overcome, and coherent sources can be directly
handled without spatial averaging. The proposed method
is named UCA-PUMA. It is worth noting that the UCA-
PUMA can also deal with the scenario of complicated
hybrid sources. Computer simulation is performed, and
the results demonstrate that UCA-PUMA has a strong
superiority over UCA-MODE [22], UCA-Smoothing
[18], UCA-ESPRIT [10, 24] and UCA-Root-MUSIC
[25]. The main contributions of this work are summa-
rized as follows:

1. A robust DOA estimation algorithm, named UCA-
PUMA, is proposed for coherent or hybrid sources
impinging the UCA. Meanwhile, the UCA-PUMA
does not require standard spatial smoothing steps
that lead to loss of effective aperture.

2. The proposed UCA-PUMA algorithm takes advan-
tage of the mode space transformation technique of
UCA, and DOAs are obtained by finding the roots
of a polynomial.

3. Computer simulations in various scenarios are car-
ried out to demonstrate the superior performance of
the proposed UCA-PUMA.

The remainder of this paper is organized as fol-
lows. Section II describes the UCA signal model and
mode space transformation. In Section III, the proposed
UCA-PUMA algorithm is introduced. The simulation
results and related discussions are included in Section
IV. Finally, Section V concludes the paper.
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Fig. 1. System model of UCA.

Notations: In this letter, superscripts (·)−1, (·)∗, (·)T ,
and (·)H denote the inverse operation, complex conju-
gate, transpose, and conjugate transpose, respectively.
diag{·} and tr{·} are diagonal matrix and trace opera-
tors, respectively. Boldface lowercase letters such as a,
b denote vectors, and boldface uppercase letters such as
A, B denote matrices. IN is the N ×N identity matrix. ⊗⊗⊗
is the Kronecker product operator of matrices. ∠z means
taking the argument of the complex number z.

II. SYSTEM MODEL
As shown in Fig. 1 and 2, consider D far-field nar-

rowband sources from directions ϕϕϕ = [ϕ1,ϕ2, · · · ,ϕD]
T

impinging on a UCA, which consists of N identical
antenna elements uniformly distributed over a circle with
radius R. The angle coordinate of the n-th antenna ele-
ment is given by

αn =
2π(n−1)

N
. (1)

The manifold matrix A of the UCA is expressed as
A = [a(ϕ1),a(ϕ2), · · ·,a(ϕD)] ∈ CN×D, (2)

where

a(ϕd) =


exp

[
j2πR̃cos(ϕd −α1)

]
exp

[
j2πR̃cos(ϕd −α2)

]
...

exp
[

j2πR̃cos(ϕd −αN)
]

 , (3)

is the d-th steering vector in A, and R̃ = R/λ is the
radius normalized by wavelength. The k-th snapshot of
the received signal is expressed as

x(k) = As(k)+n(k), k = 1,2, · · · ,K, (4)
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Fig. 2. Block diagram of the DOA estimation system.

where s(k) is the source signal vector, and
n(k)∼ C N (0,σ2

n IN), (5)
is the additive white Gaussian noise vector, which is
independent of the source signals.

When electromagnetic waves have multipath in
space, coherent sources will appear at the receiving sys-
tem. Without loss of generality, assume that there are Dp
uncorrelated sources, and there are Dc sources that are
coherent with previous Dp sources. The total number of
sources is D = Dp +Dc. Then the covariance matrix of
the D incoming sources is given by

Rss = E
[
ssH] ∈ CD×D. (6)

The above assumption implies that Rss is rank deficient,
i.e. its rank is Dp < D. Moreover, the covariance matrix
of the array signal which is given by

Rxx = E
[
xxH]= ARssAH +σ

2
n IN ∈ CN×N . (7)

By means of Cholesky factorization, the covariance
matrix of the incoming sources is written as

Rss = TTH , (8)
with P ∈ CDp×D. Then the following relation can be
immediately obtained from 8, which is

T =

[
IDp

C

]
L = PL, (9)

where LLH = Q ∈ CDp×Dp and C ∈ CDc×D. Based on
the above notations, Rxx can be rewritten as

Rxx = ATTHAH +σ
2
n IN ,

= (AP)Q(PHAH)+σ
2
n IN ,

= APQAH
P +σ

2
n IN .

(10)

By taking the eigenvalue decomposition of Rxx, we have
Rxx = EDpΛΛΛDpEH

Dp +EnΛΛΛnEH
n , (11)

where EDp = [e1, · · · ,eDp ] denotes the signal subspace
formed by Dp eigenvectors corresponding to the Dp prin-
cipal largest eigenvalues.

The maximum likelihood method [4, 5] maximizes
the following loss function

f (ϕ) = tr{AP[AH
P AP]

−1AH
P W}, (12)

where
W = EDpΓΓΓDpEH

Dp , (13a)

ΓΓΓDp = diag{γ1, · · · ,γDp} (13b)

γd =
(λd −σ2

n )
2

λd
. (13c)

The above cost function (12) can be casted as
f (ϕ) = tr{AP[PHAHAP]−1PHAHW},

= tr{[PH(AHA)P]−1PH(AHWA)P},
(14)

According to the extended Rayleigh quotient theorem,
we obtain the following inequality

f (ϕ)≤
Dp

∑
p=1

ξp, (15)

and when

PS = K = [k1, · · · ,kDp ], (16)
is satisfied, the equal sign is obtained. Notably, S is
an arbitrary nonsingular matrix, moreover, {ξp}

Dp
p=1

and {kp}
Dp
p=1 denote the Dp principal eigenvalues
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and their associated eigenvectors of the matrix
(AHA)−1(AHWA).

Since EDp and A span the same subspace, which
implies EDp = AG with the help of some matrix G ∈
CN×Dp . Note that

EH
DpEDp = (EH

DpA)G = IDp , (17)
implies that

rank[EH
DpA] = Dp. (18)

Notably, observe that
rank[(AHA)−1(AHWA)] = rank(EH

DpA) = Dp. (19)

In other words, the Dp principal eigenvalues {ξp}
Dp
p=1 is

also all eigenvalues of (AHA)−1(AHWA). Therefore we
obtain that

Dp

∑
p=1

ξp = tr{(AHA)−1(AHWA)}. (20)

To sum up, maximizing the cost function (12) is equiva-
lent to minimizing the following function:

g(ϕ) = tr{[IN −A(AHA)−1(AH)]W}. (21)

A. UCA mode space transformation
DOA estimation in UCA based on the mode space

transformation method is first proposed in [10]. Let M
denote the highest order mode that can be excited on a
circle of radius R at a reasonable strength which is given
as

M = ⌊2πR̃⌋, (22)
where ⌊·⌋ is the round-down operator. The m-th, ( |m| ≤
M ) phase mode is excited by the normalized beamform-
ing vector in terms of

bH
m =

1
N
[e jmα1 ,e jmα2 , · · · ,e jmαN ]. (23)

The resulting far field beam pattern of the UCA for mode
m is

fm(ϕ) = bH
ma(ϕ)

=
1
N

N

∑
n=1

e jmαne j2πR̃cos(ϕd−αn)

= jmJm(2πR̃)e jmϕ

+
∞

∑
c=1

[
jpJp(2πR̃)e− jpϕ + jqJq(2πR̃)e− jqϕ

]
,

(24)
where p = cN −m and q = cN +m. In order to make the
item jmJm(2πR̃)e jmϕ of (24) be the dominant one, the
number of antenna N should meet the following condi-
tion

N > 2M . (25)
The property J−m(2πR̃) = (−1)mJm(2πR̃) of Bessel
functions is used, and the residual items are omitted [10],
then the far field beam pattern UCA for mode m can be
expressed as

fm(ϕ)≈ j|m|J|m|(2πR̃)e jmϕ |m| ≤ M . (26)

The phase mode excitation matrix is defined as
WH

B = CJBH , (27)
where

CJ = diag{ j−M, · · · , j−1, j0, j−1, · · · , j−M} (28a)

B =
√

N[b−M, · · ·,b0, · · ·,bM]. (28b)
Then the resulting beamspace steering vector synthe-
sized by WB is given as

aB(ϕ) = WH
B a(ϕ) =



JM(2πR̃)e− jMϕ

...
J1(2πR̃)e− jϕ

J0(2πR̃)
J1(2πR̃)e jϕ

...
JM(2πR̃)e jMϕ


. (29)

The above relation can be rewritten as
aB(ϕ) = Jav(ϕ), (30)

where
J = diag{JM(2πR̃), · · · ,J1(2πR̃),

J0(2πR̃),J1(2πR̃), · · · ,JM(2πR̃)},
(31)

is the diagonal matrix of Bessel functions, and
av(ϕ) = [e− jMϕ , · · · ,e− jϕ ,1,e jϕ , · · · ,e jMϕ ]T (32)

is the Vandermonde structured steering vector of the vir-
tual linear array.

To sum up, the total transforming matrix is defined
as

TB = J−1WH
B , (33)

and the transformed k-th snapshot vector is
yv(k) = TBx(k)

= Avs(k)+nv(k),
(34)

where Av = [av(ϕ1),av(ϕ2), · · ·,av(ϕD)] is the vir-
tual manifold matrix with Vandermonde structure, and
nv(k) = TBn(k) is the transformed noise vector. The K
transformed snapshots can be packed into a matrix with
the following form

Yv = [yv(1),yv(2), · · ·,yv(K)] ∈ CNv×K , (35)
where Nv = 2M+1 is the number of elements in the vir-
tual linear array.

The sample covariance matrix R̂v is calculated as

R̂v =
1
K

YvYH
v . (36)

However, the transformed noise vector nv(k) is no
longer a white noise vector; in this case, the signal and
noise subspace can be solved based on the following
Generalized Eigenvalue Decomposition (GEVD) prob-
lem:

R̂vu = λ (TBTH
B )u. (37)

Afterward, sort the Nv generalized eigenvalues in
descending order; the signal subspace is formed by
the generalized eigenvectors corresponding to the first
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Dp = D−Dc+1 (Dc is the number of coherent sources.)
large eigenvalues. The signal subspace Us, noise sub-
space Un and corresponding generalized eigenvalues ΛΛΛs,
ΛΛΛn have the following forms

Us = [u1, · · ·,uDp ], (38a)

Un = [uDp+1, · · ·,uNv ], (38b)

ΛΛΛs = diag{λ1, · · · ,λDp}, (38c)

ΛΛΛn = diag{λDp+1, · · · ,λNv}. (38d)

B. MODE algorithm
In this subsection, we briefly introduced the core

idea of the MODE algorithm [5, 21, 22]. The MODE
algorithm is an efficient implementation of ML type
algorithm which explores the ARMA structure of the
observed snapshot vector. The ML algorithm estimates
DOA by minimizing the following cost function:

f (Av) = tr{ΠΠΠ
⊥
Av

R̂v}, (39)
where

ΠΠΠ
⊥
Av

= INv −ΠΠΠAv

= INv −Av(AH
v Av)

−1AH
v ,

(40)

is the orthogonal projection of Av. Moreover, the cost
function in (39) can be replaced with a parameter vector

g = [g1,g2, · · · ,gD]
T ∈ CD, (41)

and the connection between g and DOAs {ϕd}D
d=1 in

terms of the following polynomial
F(z) = g0zD +g1zD−1 + · · ·+gD (42a)

= g0

D

∏
d=1

(z− e jϕd ) = 0. (42b)

Then a matrix G ∈ CNv×(Nv−D) is defined as

G =



g∗D 0 · · · 0
... g∗D

. . .
...

g∗0
...

. . . 0

0 g∗0
... g∗D

...
. . . . . .

...
0 · · · 0 g∗0


, (43)

and a link between G and Av is established as follows
ΠΠΠ

⊥
Av

= ΠΠΠG = G(GHG)−1GH . (44)
By substituting (44) into (39), a reparameterized cost
function is cast as

f (g) = tr{ΠΠΠGUsΓ̂ΓΓUH
s }, (45)

where
Γ̂ΓΓ = diag{γ̂1, · · · , γ̂Dp}, (46a)

γ̂d =
(λd − σ̂2

n )
2

λd
, (46b)

σ̂
2
n =

1
Nv −Dp

tr(ΛΛΛn). (46c)

III. PROPOSED ALGORITHM
Comparing the cost function (39) and (45), a com-

plicated searching Av problem is reduced to an efficient
searching g problem based on the MODE method. How-
ever, additional assumptions on g such as conjugate sym-
metry is requested by the original MODE algorithm. This
additional assumption causes the MODE algorithm less
robust to the number of sources. Fortunately, in litera-
tures [26, 27], it has been proved that the solution of cost
function (45) is equivalent to the solution of the follow-
ing weighted least square (WLS) problem:

g = arg min
g

(Fg−h)HŴ(Fg−h), (47)

where F, h and the weighting matrix Ŵ are given as

F =



F1
...

Fd
...

FDp

 , h =



h1
...

hd
...

hDp

 , (48)

and Fd ∈ C(Nv−D)×D is the d-th submatrix in F:

Fd =


(ud)D (ud)D−1 · · · (ud)1
(ud)D+1 (ud)D · · · (ud)2

...
...

. . .
...

(ud)Nv−1 (ud)Nv−2 · · · (ud)Nv−D

 , (49)

hd =−[(ud)D+1, · · · ,(ud)Nv ]
T ∈ CNv−D, (50)

Ŵ = Γ̂ΓΓ⊗⊗⊗ (GHG)−1. (51)

Moreover, the solution to (47) is given by

ĝ = (FHŴF)−1FHŴh. (52)

As we can see, there are no additional requirements in
(52), and it is easy to update Ŵ and ĝ iteratively. The
DOAs can be calculated by

ϕ̂d = ∠ẑd , (53)

where ẑd is the d-th root of the polynomial (42). The
detailed steps of the proposed algorithm are summarized
in Algorithm 1.
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Algorithm 1 UCA-PUMA Based DOA Estimation
Require:

Transformed Snapshots Yv,
Source Number D,
Coherent Source Number Dc,
Maximum Number of Iterations NIter,
Tolerance ε;

Ensure:
Estimated DOAs {ϕ̂1, ϕ̂2, · · · , ϕ̂D}

1: Calculate R̂v and its GEVD via (36) and (37);
2: Calculate F and h via (48)-(50);
3: Initialize ĝ as ĝ0 = (FFH)−1FHh;
4: for i = 1,2, · · · ,NIter do
5: Ŵi+1 = Γ̂ΓΓ⊗⊗⊗ (GH

i Gi)
−1;

6: ĝi+1 = (FHŴi+1F)−1FHŴi+1h;
7: Gi+1 is formed via (43);
8: if ∥ ĝi+1 − ĝi ∥2 / ∥ ĝi ∥2 < ε then
9: break

10: end if
11: end for
12: Calulate DOAs with ĝi+1 based on (53).

IV. SIMULATION RESULTS
In this section, we evaluate the performance of the

proposed UCA-PUMA algorithm in different scenarios
by numerical simulations. The root-mean-square error
(RMSE) is adopted to evaluate the estimated DOAs,
which is defined as

RMSE =

√√√√ 1
PD

P

∑
p=1

D

∑
d=1

(ϕ̂d(p)−ϕd(p))2, (54)

where P = 500 is the number of Monte-Carlo trials.

A. Single source
In this simulation, we evaluate the performance

of the UCA-PUMA algorithm with respect to different
SNRs and numbers of snapshots K in the single source
(D = 1) scenario. The DOA of the single source is ran-
domly selected from ϕ ∈ [0◦,360◦) in each Monte-Carlo
trail. The array parameters are N = 7, R/λ = 0.5, and
M = 3. The UCA-MODE, UCA-Root-MUSIC, UCA-
ESPRIT algorithms, and Cramér–Rao Lower Bound
(CRLB) are compared with the UCA-PUMA algorithm.

The RMSE performance versus SNR (Snapshots
K=128) and snapshots (SNR=10 dB) are plotted in Fig.
3 (a) and Fig. 3 (b), respectively. As shown in Fig.3,
the proposed UCA-PUMA algorithm performs better
than the UCA-Root-MUSIC, the UCA-ESPRIT, and the
UCA-MODE. Moreover, the RMSE curve of the pro-
posed UCA-PUMA is closest to CRLB for all SNRs and
snapshots being simulated, which proves the superiority
of our method in the case of a single source.
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Fig. 3. Source number D=1.

B. Coherent sources
In this simulation, we focus on the complicated

scenarios of multiple coherent sources. Moreover, the
aforementioned classical method of processing coher-
ent signals, namely spatial smoothing [18], is also used
as a comparison. In the first example, two coherent
sources whose DOAs (ϕ1, ϕ2) are randomly selected
from [0◦,360◦), and the separation between ϕ1 and ϕ2 is
∆ϕ = |ϕ1-ϕ2| ≥ 5◦. As shown in Fig. 4 (a) and Fig. 4 (b),
the RMSE of the UCA-PUMA, the Spatial-Smoothing,
and the UCA-MODE are lower than 10◦, and the RMSE
of the UCA-MODE is slightly lower than the Spatial-
Smoothing when the SNR is lower than 0 dB The pro-
posed UCA-PUMA algorithm has the best performance
among these methods, and converges to a tolerable value
(1.6◦) when SNR is greater than 5 dB Furthermore, we
fix the SNR to a moderate value (10 dB), the UCA-
PUMA still performs the best under various numbers of
snapshots. The UCA-MODE and the Spatial-Smoothing
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Fig. 4. Source number D=2 (coherent sources).
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Fig. 5. Source number D=3 (coherent sources).

behave similarly to the UCA-PUMA in this scenario,
yet both the Spatial-Smoothing and the UCA-MODE
algorithms show larger RMSEs over the UCA-PUMA.
Meanwhile, the performance of the classical subspace-
type algorithms (UCA-ESPRIT and UCA-Root-MUSIC)
fail significantly.

In the second example, three fully coherent sources
with DOAs being ϕ1,ϕ2 and ϕ3 are simulated; mean-
while the three DOAs are randomly selected from
[0◦,360◦) and the angular separation between two DOAs
is ∆ϕ = |ϕi-ϕ j| ≥ 5◦ (i, j ∈ {1,2,3}, i ̸= j). The sim-
ulation results are shown in Fig. 5 (a) and Fig. 5 (b),
respectively. In this scenario with the odd number of
sources, the UCA-MODE gives RMSE more than 10◦

which is severely degraded compared with the even
source number scenario. There is also a decrease in
the performance of the Spatial-Smoothing compared to

the scenario of two sources. However, the UCA-PUMA
algorithm still works well. Moreover, the RMSE of
the Spatial-Smoothing converges to 4◦ while the UCA-
PUMA converges to 2.2◦, and the reason is that the effec-
tive aperture of the UCA is reduced in the process of
spatial smoothing.

Furthermore, the results depicted in Fig. 6 (a) and
Fig. 6 (b) are in the regime where coherent sources
are hybrid with uncorrelated ones (Hybrid Sources Sce-
nario). Concretely, the first two sources are coherent,
and the third one is uncorrelated from the previous. The
DOAs of these three sources are selected in the same way
as above. In this hybrid sources scenario, the RMSE of
the UCA-MODE is roughly equivalent to 20◦, and the
RMSE of the Spatial-Smoothing converges to 5◦ which
is slightly higher than the result in the scenario of three
coherent sources. Furthermore, the UCA-ESPRIT along
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Fig. 6. Source number D=3 (hybrid sources).

with the UCA-Root-MUSIC is completely failed (RMSE
≈ 100◦). However, the UCA-PUMA gives considerable
RMSE (1.5◦) and performs best among the above algo-
rithms whether in scenarios of fully coherent sources or
hybrid sources. This also verifies that the UCA-PUMA
algorithm is robust to source numbers and performs bet-
ter than the UCA-MODE or the Spatial-Smoothing.

V. CONCLUSION
In this paper, a robust algorithm named UCA-

PUMA for DOA estimation of coherent sources in
UCA has been proposed. In order to take advantage
of the ARMA model of the snapshot vectors, the non-
Vandermonde structured steering vector of UCA is trans-
formed into a virtual Vandermonde structured steering
vector in mode space. After that, the recently devel-
oped PUMA algorithm performs well in UCA with-
out spatial smoothing. Simulation results demonstrate
that the proposed UCA-PUMA algorithm is robust to
various numbers of sources. Moreover, the proposed
UCA-PUMA exhibits significantly better performance
than the algorithms including the UCA-MODE, the
Spatial-Smoothing, the UCA-ESPRIT, and the UCA-
Root-MUSIC.
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