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Abstract – This paper describes a low power, low phase
noise CMOS voltage controlled oscillator (VCO) with
a cascoded cross-coupled pair (XCP) configuration for
high data rate 5G New Radio (5G-NR) applications. The
core consists of a primary auxiliary VCO built as a neg-
ative conductance circuit to improve phase noise and a
secondary core with a cascoded formation to increase
output voltage swing. A switched varactor array (SVA)
wideband tuner is integrated for a wide bandwidth appli-
cation in a low power implementation. The dual-core
VCO was designed in CMOS 130 nm technology and
occupies only 1.05 mm2 of space. With a supply voltage
of 1.2 V, the VCO achieved a tuning range of 32.43%
from 3.45 GHz to 4.47 GHz. At 3.96 GHz carrier center
frequency with 1 MHz offset, the total power consump-
tion is 0.7 mW with a corresponding phase noise (PN) of
−121.25 dBc/Hz and a Figure of Merit (FoM) of 193.25
dBc/Hz. The results are validated using Cadence Spectra
RF simulations.

Index Terms – cascode, CMOS, cross-coupled pair, 5G,
New Radio, Q enhancement, switched varactor array
(SVA), Voltage Controlled Oscillator.

I. INTRODUCTION
The 5th generation radio system is entirely depen-

dent on fast data rates and low latency. This raises the
bar for improved front-end system performance, particu-
larly in the transceiver system. In general, any transceiver
system requires a stable oscillator that provides low

noise performance while also consuming little power.
The power consumption should be low enough to avoid
exorbitant maintenance costs, such as frequent battery
replacement and higher manufacturing costs. It is still
a challenge today, as many oscillators with low power
consumption have difficulty achieving low phase noise
and wide bandwidth applications. Wideband applications
have made extensive use of switched active cores [1–
2]. The switched inductor array, which greatly increased
the chip’s area is the most widely used for bandwidth
extension. Many digital switches experience a variety
of issues, which contribute to the complexity of tuning
voltages as well as the risk of tuning range gaps [3–
5]. However, a novel varactor [6] has been proposed to
broaden the tuning range using a single varactor with-
out the need for digital control signal tuning achieving
a tuning range of 40.3%. Some work encounters a dis-
advantage in improving phase noise at the expense of
increased die area and a low quality factor (Q). Work
[7] implements a Q enhancement and filtering technique
without affecting the tank circuit’s inductor component.
To reduce the noise, a narrow band filter with a capacitor
is placed on the current source [8].

Another method is to bias the capacitor placed
between the gate and drain of the tail current source at
twice the oscillation frequency of the resonant tank in
order to suppress the flicker noise cause by the active
devices. The transistor has been cleverly designed to be
cycled between strong inversion and accumulation mode
operation to reduce flicker noise contribution [9]. Aside
from that, another technique has been implemented that
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involves operating the transistor in the weak inversion
(WI) region to achieve low power performance at the
expense of poor process, voltage and temperature (PVT)
variation [10]. The current reuse technique has been pro-
posed to reduce power consumption, but the drawback is
that it causes some asymmetrical output in the amplitude
of the oscillation swing, which triggers flicker noise up-
conversion and degrades the performance of the VCO’s
phase noise [11–15]. Another approach, on the other
hand, has been taken to properly model the varactor noise
in order to reduce an avalanche phenomenon that can
cause controllable phase noise [16].

However, extreme action is required at the varactor
device to avoid device degradation caused by enormous
high breakdown when VCO output swing is large. As a
low phase noise VCO, being unaware of the effect of var-
actor breakdown noise may result in difficult simulation
results. In this work a dual-core VCO is implemented,
with the primary core acting as a Q enhancement circuit
without affecting the structure of the tank inductor and
the secondary core acting as a high swing trigger. Both
cores have an adequate biasing scheme and have attained
a suitable biasing point for better phase noise under low
power consumption. The remainder of the paper is struc-
tured as follows. The principle of operation and its design
concept are explained in detail in section II. Section III
presents the performance reliability results and section
IV concludes.

II. PRINCIPLE OF OPERATION AND
DESIGN CONCEPT

A. Dual core VCO circuit design
Figure 1 illustrates the design flow chart that

describes the top-down approach which starts with math-
ematical analysis on determining the Q factor for the
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Fig. 1. Flow chart of the design flow for the proposed VCO. 
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Fig. 2. Proposed LC-VCO with dual core VCO. 
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B. Theory of operation of primary core
As observed in Fig. 3 which shows the circuit oper-

ation of the primary core where Fig. 3 (a) shows the
detail representation of the primary core of a cross cou-
ple structure (XCP) whereas Fig. 3 (b) shows a model of
the cross-couple structure’s small signal equivalent. Two
feedback-biased cross-coupled devices which linked to
the feedback-biased voltage, VP provide the drain cur-
rent flows of I1,3 and I2,4 respectively. When oscillation
begins, the differential oscillator signal, Vout+ and Vout−
determine the conduction mode of the stacked transistor
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N1-N4. Figure 4 shows the drain current of transistors
N1 and N4 become zero when the local oscillator (LO)
switches to Φ1. The conduction period of the LO signal
is shown in Fig. 5.

Hence, when the LO switches during the Φ2 inter-
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inverted since the pair of transistors have been switched
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mechanism, which changed the polarity of the VCO out-
put signal. According to the small signal equivalent cir-
cuit shown in Fig. 3 (b), the transconductance of the cross
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the circuit’s Q factor. The Q factor’s large output swing
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cascode construction of the primary core, transconduc-
tance is determined as follows:
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trans-conductance of N2 and N4 respectively. The gmb2
is the bulk transconductance of N2. The intrinsic output
resistance, Ro form at the node V2 is denoted as:

RO = r02 + r04 + r02r04(gmb2 +gm2). (2)

R02 and r04 refer to the output resistance of N2 and
N4 respectively. The equivalent parallel conductance of
the inductor, GL is expressed as:

GL =− 1
Rs

(
Q2

IN +1
) ≈− Rs

ω2
(

L1
2

)2 . (3)

where QIN and Rs represents the internal quality factor of
the inductor, L1 and series equivalent resistance respec-
tively. In the primary core, especially under wide band-
width operation, the output of the node of V2 is affected
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by the total parasitic capacitance, CT computed as:

CT =−
jω3(Cgs1Cgd2)

ω2(Cgs1(Cgd2 +Cgs3)+Cgd2
. (4)

The negative transconductance, GP then can be
expressed as:

GTOT =−GL +GP. (5)
Hence in its full form expressed as:

GTOT =− gm4ro4(ro2(gm2 +gmb2)+1
2(1+(gm2 +gmb2)ro2 +2ro4

+
jω3Cgs1Cgd2

2ω2L1(Cgs1(Cgsd2 +Cgsd3)+Cgsd2))
. (6)

Therefore the overall Q factor of the VCO can be
evaluated as:

QTOT =
1

GTOT

√√√√ CT√
RS
GL

. (7)

In equation (7), the total Q factor, QTOT expressed
and increased with a lower total transconductance, GTOT .
Figure 6 shows the comparison of the Q factor in
schematic and post layout. The Q factor in the post
layout simulation (post.sim) result appears higher than
the schematic simulation (sch.sim) due to the slight
increase contribution of the parasitic capacitance. How-
ever, under a sweet spot VP bias, the Q factor can be
maintained without impacting the phase noise. There-
fore, the phase noise improved proportionally affecting
towards a higher voltage amplitude under a high Q factor
environment.
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in a cascode configuration. In the half signal analysis
depicted in Fig. 7 (b), the gain of each circuit is denoted
as follows:

AVS = gm7rds7[(gm5 +gmb5)rds5 +1)]. (8)

The high gain allows the auxiliary core to increase
the signal’s amplitude, preserving the transistor’s satura-
tion mode condition. Figure 8 depicts a balanced ampli-
tude as opposed to the mismatched amplitude of a con-
ventional class-C VCO.
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III. PERFORMANCE RELIABILITY
RESULTS

Figure 9 depicts the layout of the proposed VCO.
The VCO occupies an active silicon area of 1.05 mm2

and consumes only 0.7 mW with supply voltage 1.2 V
supply headroom.
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Figure 10 shows the simulated dual core in which
Fig. 10 (a) shows the performance of the FoM and
Fig. 10 (b) depicts the PN across the tuning voltages
(VTUNE1 - VTUNE4) where at under a suitable tuned bias
of Vp and Vs at 647 mV and 600 mV respectively. The
highest FoM obtained is at 193.79 dBc/Hz whereas the
lowest PN is −122 dBc/Hz at frequency of 3.45 GHz
under the tuning voltage of VTUNE1. The relationship
is further illustrated in Fig. 11. This 3D diagram shows
the highest region of the phase noise, represented as
blue, comprised the lowest phase noise level achieved,
contributing to the highest FoM reading, while the red
region comprised the higher phase noise reading reflect-
ing towards a lower FoM level. With this tuned vari-
able bias, it would be a degree of freedom to obtain
for the best PN and FoM performance. Figure 12 shows
the result of the PN and frequency across temperatures
−40 to 125 ◦C. At room temperature of 25 ◦C, the
phase noise achieved is in the range of −122 dBc/Hz
to −122.5 dBc/Hz, however at the highest temperature
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Fig. 10. Simulated performance of the dual core VCO (a)
FoM and (b) PN performance across the varactor tuning
voltages VTUNE1- VTTUNE4.
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Table 1: Performance comparison of the dual core VCO with other recent related works
Performance Parameters This Work [16] [17] [18] [19] [20]

Frequency Range (GHz) 3.45−4.47 2.05−2.75 3.7−4.2 6.80− 3.8−5.6
8.86−
13.4

Tuning Range (%) 32.43 29 13 12 42 41
VDD(V) 1.2 1.8 1.5 0.55 1.2 1.1

CMOS Tech (nm) 130 180 55 65 130 40
Power Consumption (mW) 0.7 18 6.3 5.0 5 6

Vneakk-to-peak (V) 2.3 - 2.1 1 - -
PN (dBc/Hz)@1MHz −121.25 −119.5 −121 −117.5 −119.21 −112.63
FoM(dBc/Hz)@1MHz 193.25 174.6 185.05 187.2 184.9 185

FoM =−PN+20log(fo/∆f)−10log(PDC/1 mW) [21]

of 125 ◦C, the PN achieved is around −120.2 dBc/Hz.
Nevertheless, for the frequency, the variation is only 300
MHz of difference across the temperatures. This shows
that the performance of the PN and frequency are less
impacted during the change in temperature, clearly prov-
ing its reliability. Figures 13 (a) and 13 (b) represent
the frequency and the output power across the tuning
voltages (VTUNE1 - VTUNE4) respectively. The frequency
bandwidth acquired results from 3.45 GHz to 4.47 GHz,
whereas the boosted signal output power results from 5.7
dBm to 7.5 dBm. In this simulation, freedom is given to
have multiple desired frequency and output power.

Table 1 tabulates the performance comparison of
the dual core VCO with other recent reported works.
The proposed architecture leads other VCO perfor-
mances by attaining high output swing and better
phase noise reading performance using minimal power
consumption.

performance. Figure 12 shows the result of the PN and 

frequency across temperatures -40 to 125 ºC. At room 

temperature of 25 ºC, the phase noise achieved is in the 
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Fig. 13. Performance of the dual core VCO (a) frequency
(GHz) and (b) output power (dBm) across the varactor
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IV. CONCLUSION
In this simulation work, a dual core VCO’s design

has been demonstrated. Low phase noise performance is
achieved by employing a Q enhancement technique in
a cascoded structure in the primary auxiliary core. The
VCO output swing is also improved by the secondary
core merger. The proposed dual core VCO exhibits an
output voltage swing of more than 2.0 V with a mini-
mal supply voltage headroom of 1.2 V without signifi-
cantly worsening its VCO phase noise across the operat-
ing bandwidth of 3.45 GHz to 4.47 GHz, as confirmed by
both schematic and post layout simulation, which agrees
well. Therefore, the presented architecture qualifies for
use in 5G New Radio operations due to its low phase
noise and low power consumption characteristics.
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