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Abstract – A perfect metamaterial absorber (MMA) is
designed and evaluated numerically for solar energy
harvesting applications. A dielectric layer separates the
top structured metallic plane and the bottom ground
metallic plane that make up the MMA. The MMA
structure is primarily presented in the range of 100-
1000 THz, which corresponds to 3000-300 nm in wave-
length, for the efficient utilization of solar energy. The
results obtained in the band 441-998 THz correspond
to a visible and ultraviolet wavelength range of 680-
300 nm. It has achieved a maximum absorption rate
of 99.9% at 700 THz and 99% between 500 and 800
THz, respectively. In the desired frequency bands, the
structure has achieved polarization and angle-resolved
behavior. The MMA-based absorber has a high absorp-
tion rate of over 90% in the broadest visible (400-700
nm) and UV (100-300 nm) spectra. Also shown are the
absorption characteristics of the MMA-based solar cell
in the infrared (IR) region. The band 345-440 THz, cor-
responding to 870-690 nm, has 75% absorption. The
other IR band (240-345 THz), which corresponds to
1250-880 nm, has achieved absorption of nearly 50%.
So it can be utilized for the entire visible solar spec-
trum, including infrared to ultraviolet. If the proposed
MMA structure were equipped with the appropriate elec-
trical circuitry, it could be utilized for solar energy
harvesting.

Index Terms – absorber, energy harvesting, metamate-
rial, solar.

I. INTRODUCTION
The distinction between renewable and

nonrenewable energy sources is made. Included in
fossil fuels are coal, oil, and petroleum. Excessive
use depletes resources. Natural gas will last 60 years,
petroleum 40 years, and coal 200 years [1]. The com-
bustion of these fuels in automobiles and power plants
produces greenhouse gases that contribute to global
warming. Renewable energies such as geothermal,
tidal, hydroelectric, solar, and wind are all free. These
resources are plentiful, non-perishable, and environ-
ment friendly. Energy demand has increased due to
technological advancements, rising populations, and
industrial expansion. Available fossil fuels cannot
meet energy demands [2]. Solar energy is a renewable
substitute for fossil fuels Solar can be divided into
three major regions: infrared (52%), visible (39%),
and ultraviolet (9%), approximately. In one hour, solar
emissions can meet the world’s annual energy needs
[3–4]. However, this source is difficult to harvest. Solar
cells convert incident solar energy into electricity, but
their low conversion efficiency presents a challenge for
scientists. The material’s bandgap corresponds to the
absorption of incident photon energy. Solar cells convert
absorbed electrons into electric current. The correspond-
ing frequency band is in the range of 100-1000THz
[7]. To improve absorption, scientists are researching
nanomaterials and nanostructure-based absorbers, solar
cell concentrators, embedded solar cell systems, etc.
Solar trackers enhance absorption in accordance with

Submitted On: November 19, 2022
Accepted On: June 8, 2023

https://doi.org/10.13052/2023.ACES.J.380606
1054-4887 © ACES

https://doi.org/10.13052/2023.ACES.J.380606


417 ACES JOURNAL, Vol. 38, No. 6, June 2023

environmental conditions. A device with improved
absorption characteristics is required to absorb incident
energy regardless of polarization or angle. These issues
must be addressed by solar cells. Non-natural metama-
terials possess extraordinary properties, such as negative
refraction and cloaking [8–9]. Metamaterials are used
to construct electromagnetic (EM) energy absorbers
that are more efficient. Metamaterials are synthetic
materials with peculiar properties and benefits, such as
evanescent wave amplification, invisibility cloaking,
superlenses, electromagnetic filters, sensors, antennas,
high-frequency polarization rotators, a negative refrac-
tive index, and negative permeability [10–15]. This is
not normal. Recently, there has been increased interest
in metamaterials as absorbers [16–20]. A metamaterial
absorber (MMA) can collect sunlight to increase the effi-
ciency of solar cells. In the THz and microwave regions,
MMA was developed for shielding, sensing, etc. Perfect
index sensing based on MMA is also described [21]. The
resonance of MMA is governed by geometric parameters
and material properties [22]. Exotic, high-frequency
MMA is created between the visible and ultraviolet
regimes [23–30]. Similar outcomes are observed in the
infrared [31–34]. These are narrowband designs. Many
MMA competitors used low-frequency techniques.
Therefore, the design of solar MMA must have broad
absorption. Solar energy harvesting will require a broad-
band metamaterial absorber. In this paper, a new MMA
structure with broadband absorption characteristics is
designed. Variations in the geometric parameters of the
structure produce different absorption characteristics. It
absorbs infrared, visible, and ultraviolet radiation. The
engineered structure possesses pseudo-plasmon frequen-
cies. By optimizing the model’s geometric parameters
and dielectric substrate, its resonance is modified. 90%
of visible light is absorbed, with a peak absorption of
99% in the 500-800THz band. As a reflector, the bottom
metal plate increases absorption.

II. MATERIALS AND STRUCTURE
The perspective view of the proposed MMA and the

boundary conditions are shown in Figs. 1 (a) and (b),
respectively. The numerical simulation of the designed
structure is carried out using CST Microwave Studio
software in a high-frequency finite element analysis
approach. The structure has three layers: a structured
top metallic patch, a bottom metallic ground plane, and
an intermediate dielectric substrate. The metal is tung-
sten (W), and the substrate is silicon dioxide (SiO2). The
properties of these materials at the desired frequencies
are used as given by Ghosh (1999) and Palik (1997).
The advantages of using tungsten are that it has a higher
melting point and better solar absorption characteris-
tics than the other metals. Furthermore, SiO2 allows

for greater flexibility in solar cell integration, which
improves absorption even further. This eases the fabri-
cation process as well.

absorb incident energy regardless of polarization or 

angle. These issues must be addressed by solar cells. 

Non-natural metamaterials possess extraordinary 

properties, such as negative refraction and cloaking [8-

9]. Metamaterials are used to construct electromagnetic 

(EM) energy absorbers that are more efficient. 

Metamaterials are synthetic materials with peculiar 

properties and benefits, such as evanescent wave 

amplification, invisibility cloaking, superlenses, 

electromagnetic filters, sensors, antennas, high-

frequency polarization rotators, sensors, a negative 

refractive index, and negative permeability [10-15]. This 

is not normal. Recently, there has been increased interest 

in metamaterials as absorbers [16-20]. A metamaterial 

absorber (MMA) can collect sunlight to increase the 

efficiency of solar cells. In the THz and microwave 

regions, MMA was developed for shielding, sensing, etc. 

Perfect index sensing based on MMA is also described 

[21]. The resonance of MMA is governed by geometric 

parameters and material properties [22]. Exotic, high-

frequency MMA is created between the visible and 

ultraviolet regimes [23-30]. Similar outcomes are 

observed in the infrared [31-34]. These are narrowband 

designs. Many MMA competitors used low-frequency 

techniques. Therefore, the design of solar MMA must 

have broad absorption. Solar energy harvesting will 

require a broadband metamaterial absorber. In this paper, 

a new MMA structure with broadband absorption 

characteristics is designed. Variations in the geometric 

parameters of the structure produce different absorption 

characteristics. It absorbs infrared, visible, and 

ultraviolet radiation. The engineered structure possesses 

pseudo-plasmon frequencies. By optimizing the model's 

geometric parameters and dielectric substrate, its 

resonance is modified. 90% of visible light is absorbed, 

with a peak absorption of 99% in the 500-800THz band. 

As a reflector, the bottom metal plate increases 

absorption. 

 

II. MATERIALS AND STRUCTURE 

The top and perspective views of the proposed 

MMA are shown in Figs. 1(a) and (b), respectively. The 

numerical simulation of the designed structure is carried 

out using CST Microwave Studio software in a high-

frequency finite element analysis approach. The 

structure has three layers: a structured top metallic patch, 

a bottom metallic ground plane, and an intermediate 

dielectric substrate. The metal is tungsten (W), and the 

substrate is silicon dioxide (SiO2). The properties of 

these materials at the desired frequencies are used as 

given by Ghosh (1999) and Palik (1997). The advantages 

of using tungsten are that it has a higher melting point 

and better solar absorption characteristics than the other 

metals. Furthermore, SiO2 allows for greater flexibility 

in solar cell integration, which improves absorption even 

further. This eases the fabrication process as well. 

 
Fig. 1. (a) Geometry of the unit cell of the proposed 

MMA, perspective view. [Geometrical parameters: L1  = 

W1 = 500 nm, W = 80 nm, L = 450 nm, r = 80 nm, tp = 

15 nm, td = 60 nm, tg = 100 nm]. 

 

 
Fig. 1. (b) Boundary conditions. 

 

III. ABSORPTION AND SIMULATION 

STUDIES 
In simulation, unit cell periodic boundary conditions 

in the x and y directions and open space in the z-direction 

are utilized. The wave is incident on the top metallic 

patch using the floquet port, and the output is measured 

at the backside of the bottom ground plane. This kind of 

setup avoids any near-field problems. By using 

parametric analysis, the best dimensions for the 

proposed MMA can be found and are shown in Fig. 1(b). 

The electromagnetic spectrum is divided into different 

regions, but the majority of solar energy that reaches the 

earth belongs to the visible, infrared, and ultraviolet 

(UV) regions. So this region, i.e., 100-1000 THz, is 

chosen for the analysis, and the MMA is designed. The 

(a)

absorb incident energy regardless of polarization or 

angle. These issues must be addressed by solar cells. 

Non-natural metamaterials possess extraordinary 

properties, such as negative refraction and cloaking [8-

9]. Metamaterials are used to construct electromagnetic 

(EM) energy absorbers that are more efficient. 

Metamaterials are synthetic materials with peculiar 

properties and benefits, such as evanescent wave 

amplification, invisibility cloaking, superlenses, 

electromagnetic filters, sensors, antennas, high-

frequency polarization rotators, sensors, a negative 

refractive index, and negative permeability [10-15]. This 

is not normal. Recently, there has been increased interest 

in metamaterials as absorbers [16-20]. A metamaterial 

absorber (MMA) can collect sunlight to increase the 

efficiency of solar cells. In the THz and microwave 

regions, MMA was developed for shielding, sensing, etc. 

Perfect index sensing based on MMA is also described 

[21]. The resonance of MMA is governed by geometric 

parameters and material properties [22]. Exotic, high-

frequency MMA is created between the visible and 

ultraviolet regimes [23-30]. Similar outcomes are 

observed in the infrared [31-34]. These are narrowband 

designs. Many MMA competitors used low-frequency 

techniques. Therefore, the design of solar MMA must 

have broad absorption. Solar energy harvesting will 

require a broadband metamaterial absorber. In this paper, 

a new MMA structure with broadband absorption 

characteristics is designed. Variations in the geometric 

parameters of the structure produce different absorption 

characteristics. It absorbs infrared, visible, and 

ultraviolet radiation. The engineered structure possesses 

pseudo-plasmon frequencies. By optimizing the model's 

geometric parameters and dielectric substrate, its 

resonance is modified. 90% of visible light is absorbed, 

with a peak absorption of 99% in the 500-800THz band. 

As a reflector, the bottom metal plate increases 

absorption. 

 

II. MATERIALS AND STRUCTURE 

The top and perspective views of the proposed 

MMA are shown in Figs. 1(a) and (b), respectively. The 

numerical simulation of the designed structure is carried 

out using CST Microwave Studio software in a high-

frequency finite element analysis approach. The 

structure has three layers: a structured top metallic patch, 

a bottom metallic ground plane, and an intermediate 

dielectric substrate. The metal is tungsten (W), and the 

substrate is silicon dioxide (SiO2). The properties of 

these materials at the desired frequencies are used as 

given by Ghosh (1999) and Palik (1997). The advantages 

of using tungsten are that it has a higher melting point 

and better solar absorption characteristics than the other 

metals. Furthermore, SiO2 allows for greater flexibility 

in solar cell integration, which improves absorption even 

further. This eases the fabrication process as well. 

 
Fig. 1. (a) Geometry of the unit cell of the proposed 

MMA, perspective view. [Geometrical parameters: L1  = 

W1 = 500 nm, W = 80 nm, L = 450 nm, r = 80 nm, tp = 

15 nm, td = 60 nm, tg = 100 nm]. 

 

 
Fig. 1. (b) Boundary conditions. 

 

III. ABSORPTION AND SIMULATION 

STUDIES 
In simulation, unit cell periodic boundary conditions 

in the x and y directions and open space in the z-direction 

are utilized. The wave is incident on the top metallic 

patch using the floquet port, and the output is measured 

at the backside of the bottom ground plane. This kind of 

setup avoids any near-field problems. By using 

parametric analysis, the best dimensions for the 

proposed MMA can be found and are shown in Fig. 1(b). 

The electromagnetic spectrum is divided into different 

regions, but the majority of solar energy that reaches the 

earth belongs to the visible, infrared, and ultraviolet 

(UV) regions. So this region, i.e., 100-1000 THz, is 

chosen for the analysis, and the MMA is designed. The 

(b)

Fig. 1. (a) Geometry of the unit cell of the proposed
MMA, perspective view. [Geometrical parameters: L1 =
W1 = 500 nm, W = 80 nm, L = 450 nm, r = 80 nm, tp =
15 nm, td = 60 nm, tg = 100 nm], (b) Boundary condi-
tions.

III. ABSORPTION AND SIMULATION
STUDIES

In simulation, unit cell periodic boundary conditions
in the x and y directions and open space in the z-direction
are utilized. The wave is incident on the top metallic
patch using the floquet port, and the output is measured
at the backside of the bottom ground plane. This kind of
setup avoids any near-field problems. By using paramet-
ric analysis, the best dimensions for the proposed MMA
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can be found and are shown in Fig. 1 (a). The elec-
tromagnetic spectrum is divided into different regions,
but the majority of solar energy that reaches the earth
belongs to the visible, infrared, and ultraviolet (UV)
regions. So this region, i.e., 100-1000 THz, is chosen
for the analysis, and the MMA is designed. The incident
solar EM radiation may be either absorbed, reflected, or
transmitted. The absorption value is calculated indirectly
by obtaining the reflection and transmission values. For
better absorption, reflection and transmission should be
kept to a minimum. The thickness of the bottom ground
plane is kept higher to avoid any transmission through
it, i.e., a thinner layer transmits more. The transmitted
wave power is considered to be zero due to the pres-
ence of a metallic ground plane that reflects the incident
EM radiation. So the objective is to minimize the reflec-
tion. The following will be used for the calculation of the
absorption:

A(ω)= 1−R(ω) . (1)
From equation (1) it is evident that for obtain-

ing maximum absorption A(ω), the reflection R(ω) in
the structure should be kept minimum. This can be
achieved by proper impedance matching where the free
space impedance matches with the structure impedance
(Zin = Zo). Therefore, the transmission and reflection
should be negligible for obtaining better absorption
characteristics.

IV. RESULTS AND DISCUSSION
The obtained absorption, reflection, and transmis-

sion characteristics of the proposed structure for the
desired geometrical parameters are shown in Fig. 2. The
proposed MMA has obtained near-perfect absorption of
about 99.9% at the frequency of 700 THz, with broad-
band absorption behavior of about 90% in the entire solar
spectrum. The amount of light that is absorbed is more
than 90% across the entire range of visible and ultravio-
let (UV) light. The bottom metallic layer acts as a good
reflector, and in addition, the lossy nature of the dielec-
tric supports perfect absorption. The dielectric substrate
and unit cell dimensions will determine the resonance.
The structured top metallic patch determines the resonant
characteristic of the MMA. As a result, all of these must
be carefully chosen in order to achieve perfect absorption
in the desired band.

From the wavelength vs. absorption spectrum, the
respective frequency is extracted. The absorption char-
acteristics of the proposed MMA are also observed for
wider frequency ranges, including infrared (IR), visible
light, and UV regions, which are shown in Fig. 3.

It is obvious that absorption of more than 70% is
seen even in the infrared region between 300 and 430
THz, which is an indicator that the proposed structure
can also be utilized for IR photodetector applications.
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Fig. 3. The absorption rate of the proposed structure in
the solar light regime (100-1000 THz).

Likewise, it is clear that the absorption value of the
proposed MMA in the UV region is also above 90% in
the frequency range between 770 and 1000 THz. Based
on these features, it can be said that the proposed MMA
can be used not only for solar energy harvesting but also
as a photodetector.

Figures 4 (a) and 4 (b) show the absorption charac-
teristics of the designed structure for different modes at
various angles of incidence. This is evidence for the pro-
posed structure’s absorption characteristics, independent
of the incidence angles varying from 0◦ to 90◦. There-
fore, the proposed structure could be utilized for absorb-
ing the incident solar energy even at different incidence
angles for all polarizations. Since most research only
looks at transverse electric (TE) and transverse magnetic
(TM) polarization, this adds importance to the proposed
structure for analysis.
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Fig. 5. (a) absorption rate changes with respect to radius,
(b) absorption rate changes with respect to rectangle
width, and (c) absorption rate changes with respect to
rectangle length.
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VI. FIELD DISTRIBUTIONS AND ANALYSIS
For understanding the primary physical mechanism

of the proposed MMA, the distributions of the elec-
tric field at the three resonant frequencies are shown
in Figs. 6 (a-c). A similar star-shaped resonator with-
out any aperture was presented [22]. But it was focused
only on the visible region and obtained a bandwidth of
around 300 THz. In considering three bands (IR, visible,
and UV), three peak resonant frequencies (441 THz, 700
THz, and 998 THz) are chosen for analysis. The electric
field distribution confirms that only vertical and diago-
nal elements are contributing at 441 THz, but all ele-
ments are participating at 700 THz. It is noted that in
addition to the resonating elements, the circular aperture
and the substrate also contribute to the third resonance,
i.e., 998 THz. This is how the proposed design is differ-
entiated to absorb different regions of the solar spectrum
[22]. The corresponding y-component of the magnetic
field distributions is also depicted in Figs. 6 (d-f). For
the resonances at 441 THz and 700 THz, the mag-
netic field is high throughout the whole patch struc-
ture and in the dielectric substrate layer as well. Also
observed is the excitation of quad polar, octa polar, and
other higher resonances in the magnetic field distribution
analysis.

Fig. 6. (a-c) Electric field; (d-f) magnetic field; (g-i) surface current distributions for the three resonances 441 THz,
700 THz, and 998 THz, respectively.

The current distributions through the surface of
the metamaterial are also observed and shown in
Figs. 6 (g-i). At 441 THz, vertical and diagonal resonat-
ing elements are responsible. Similarly, at 700 THz and
998 THz, the circular aperture and the entire resonator
are contributing to the respective resonances.

In order to validate the importance of this work, the
results are compared with the recent literatures related to
this work and shown in Table 1.

Table 1: Comparison between the earlier studies in the
literature and proposed absorber

Ref. Band (THz) Obtained Bandwidth
(GHz)

(Absorption > 90%)
[17] 69-72 5
[19] 75-85 10
[31] 40-70 30
[29] 60-115 55
[30] 175-300 125
[22] 430-770 340
[6] 450-700 250

[34] 500-800 300
[7] 300-500 200

This work 441-998 557
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The absorption value and the bandwidth determine
the performance of the structure. The absorption rate of
a minimum of 90% is considered for the analysis. A
comparison with the literature is presented in Table 1
given above. The important point to note is that the pro-
posed structure achieved broadband operation with better
absorption characteristics than the previously reported
works. It is evident that the structure is simple and
obtained a broadband absorption of 557 GHz band-
width, which is 2-3 times better than the earlier reported
works.

The structure’s thickness is 175 nm, indicating that
it is thinner and more flexible. This absorption capability
and size makes it efficient for capturing solar radiation.
Independently, it can work as an energy harvesting mod-
ule with proper electrical circuits, or it can be integrated
with the solar cell as an absorbing medium.

Fabrication Feasibility and Real-time Character-
ization:

The proposed structure has two materials: a dielec-
tric substrate and the conducting patch/ground plane.
The conducting material, copper, can be deposited using
the sputtering technique, which can yield the nm thick-
ness easily. The major advantage of this proposed struc-
ture is that the dimensions are in the order of 100 nm with
a minimum feature of 80 nm. Using a lithography pro-
cess like E-beam or etching techniques like reactive ion
etching, the minimum feature with high resolution could
be achieved. Overall, the proposed structure is simple
to fabricate with the mentioned facilities. The real-time
measurements can be done with UV-visible spectroscopy
for the absorption characteristics.

VII. CONCLUSION
A three-layered ultra-broadband MMA is designed

and evaluated numerically. The structure absorbs 99.9%
of 700 THz and 99% of 500-800 THz. It absorbs over
90% of visible (400-700) nm and UV (100-200) nm
light. The MMA-based solar cell for the infrared absorp-
tion is also studied, i.e., 345-440 THz, or 870-680 nm
in wavelength which is having around 75% absorption.
The other IR band (1250-870 nm/240-345 THz) absorbs
nearly 50% of the incident radiation. The structure has
polarisation and angle-resolved behaviour in the desired
bands. Resonance electric and magnetic field distribu-
tion analysis investigates broadband absorption. By inte-
grating proper electrical circuits to the MMA, incident
energy can be directly converted into electrical energy.
This W-SiO2 absorber could be used for detector appli-
cation also.
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