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Abstract ─ Efficient Z-transform implementation 
of the Complex Frequency-Shifted Perfectly 
Matched Layer (CFS-PML) using the D-B
formulations are proposed to truncate open region 
multi-term dispersive Finite-Difference 
Time-Domain (FDTD) lattices. These formulations 
are independent of material properties of the FDTD 
domains and hence can be used for modeling 
general media because of the D-B constitutive 
relations. A Three-Dimensional (3-D) simulation of 
the two-term Lorentz dispersive FDTD domain has 
been carried out to demonstrate the validity of the 
proposed formulations. Furthermore, in order to 
show the validity of the proposed algorithm, the 
second 3D inhomogeneous problem has also been 
used for validating the proposed formulations. It is 
clearly shown that the new formulations with the 
CFS-PML scheme are efficient in attenuating 
evanescent waves and reducing late-time 
reflections. 

Index Terms - D-B constitutive relations, 
Finite-Difference Time-Domain (FDTD),
multi-term Lorentz, Perfectly Matched Layer 
(PML) and Z-transform. 

I. INTRODUCTION 
Since 1994, the Perfectly Matched Layer 

(PML) concept proposed by Berenger [1], has been 

a highly effective absorbing-material Absorbing 
Boundary Condition (ABC) to terminate the 
Finite-Difference Time-Domain (FDTD) domains, 
the innovation of the PML ABC is that plane waves 
of arbitrary incidence, polarization and frequency 
are matched at the boundary between PML and the 
physical domain. What’s more important is that the 
PML can be used as an absorbing boundary to 
terminate domains comprised of inhomogeneous, 
dispersive, anisotropic and even nonlinear media. 
Among the various implementations of PMLs, the 
stretched coordinate PML (SC–PML) by Chew and 
Weedon [2], has the advantage of simple 
implementation in the corners and edges of PML 
regions. The SC-PML [2] was proposed through 
mapping Maxwell’s equations into a complex 

stretched coordinate space. As in the original 
Berenger’s PML; however, the implementation of 
the SC-PML in [2] needs splitting the field 
components and modifying Maxwell’s equations.
Several unsplit-field implementations of the 
SC-PML formulations have been presented. These 
algorithms can be classified into three categories: (1) 
the Convolutional PML (CPML) [3] is based on 
applying the convolution theorem to the SC-PML 
formulations, (2) the Auxiliary Differential 
Equation (ADE) PML [4-6] is based on 
incorporating the ADE method into the SC-PML 
formulations and (3) another SC-PML 
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implementation presented [7-11] is based on the 
Z-transform methods that have been successfully 
incorporated into the FDTD algorithm. As in the 
original Berenger’s PML; however, the SC-PML 
formulations are ineffective at absorbing 
evanescent waves and various efforts have been 
attempted to overcome this limitation [12-14]. 
Among these, the Complex Frequency-Shifted 
PML (CFS-PML) [14], implemented by simply 
shifting the frequency dependent pole off the real 
axis and into the negative-imaginary half of the 
complex plane has drawn considerable attention, 
due to the fact that this PML is efficient in 
attenuating low-frequency evanescent waves and 
reducing late-time reflections. In [3, 15-17], various 
modified SC-PMLs based on the convolution 
theorem, the ADE method and the Z-transform 
methods, respectively, were presented in detail to 
efficiently implement the CFS-PMLs. Recently, the 
proposed SC-PML formulations in 2011 [18] based 
on the ADE method, have been presented for 
effectively modeling a linear multi-term Lorentz 
dispersive material in the 2-D simulation. However, 
as described in the preceding section, the SC-PML 
formulations are not capable of absorbing 
evanescent waves in the 2-D simulation and have 
even worse absorption performance in 3-D
numerical tests. Besides, the SC-PML formulations 
based on the transpose direct form II proposed in 
[18], are difficult to extend to the case with more 
than two dispersive terms, because the direct form 
II structure [19] is extremely sensitive to parameter 
discretization in general and is not recommended in 
practical applications.

In this paper, the unsplit-field and efficient D-B
CFS-PML algorithm, based on the Z-transform 
method, are proposed to truncate linear multi-term 
dispersive open-region FDTD domains. In the 
proposed formulations, an appropriate combination 
of the Z-transform methods with the D-B
constitutive relations is used for truncating arbitrary 
media without any modifications of Maxwell’s curl 
equations. A 3-D numerical test for a linear 
two-term Lorentz dispersive problem is given to 
validate the proposed D-B CFS-PML formulations; 
as the investigation on the performance of the D-B
CFS-PML for linear multi-term Lorentz dispersive 
problem is very rare in the literature. Only the 
two-term Lorentz dispersive case is described in 
this paper, but this approach is easy to apply to any 

number of dispersive terms. For convenience, these 
PMLs including the proposed CFS and SC-PMLs 
and the proposed PML in [18], are referred to here 
as the ZT-CFS-PML, the ZT-SC-PML and the 
ADE-SC-PML, respectively. 

II. FORMULATIONS 
In Three-Dimensional (3-D) SC-PML regions, 

the z component of Ampere’s law for the 

frequency-domain modified Maxwell’s equations,
can be written as: 

0 0( ) y x
r z

x y

Hc c Hj E S x S y�� �
� �� �
� � , (1) 

where 0c is the speed of the light in free space,

xS and yS are the complex stretched coordinate 

metrics and for the conventional PML, they are 
defined as: 

,    /  or S j x y� � �� 	 �� �� 
 � , (2) 

where � is the permittivity of the FDTD domain, 

0�	 � is the conductivity profile different from 

zero only in the PML region to provide attenuation 

for the propagating waves and 1�� � is different 

from 1 only in the PML region to attenuate the 
evanescent waves. 

The conventional PML has been explained for a 
poor absorption of evanescent waves in [12-13].
With the CFS scheme, proposed by Kuzuoglu and 

Mittra in [14], S� is defined as: 

( )S j� � � �� 	 � ��� 
 
 , (3) 

where �� is positive real and � 1 and �� is

assumed to be positive real and introduced to better 
absorb the evanescent waves. Several algorithms 
with this metric have been proposed to successfully 
validate the capability of the CFS-PML in the 
absorption of evanescent waves [3, 15-17].

To make the PML completely independent of 
the material properties of the FDTD computational 
domains, (1) can be rewritten as: 

0 0y x
z

x y
D

Hc c Hj S x S y�
� �� �
� � . (4) 
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In terms of the electric flux density D defined as: 
( )z r zD E��� , (5) 

where ( )r� � is the relative permittivity of the 

FDTD computational domain. 
Consider a linear isotropic multi-term Lorentz 

dispersive media with an electrical permittivity 
( )r� � of: 

2

2 2
1

( )
( )

( ) k

M k s pk
r

ok k

G
j j

� � �
� � � � � �




�

�
� 
 � 
 � 
 , (6) 

where M is the number of dispersive terms, 
(0)s r� �� , ( )r� � � , kG is the pole amplitude, 

1 1M
k kG� �� , pk� is the plasma frequency, 0k� is 

the resonance frequency and k� is the damping 

factor. Substituting (6) into (5), we obtain: 
2

2 2
1

( )
( ) k

M k s pk
z z

ok k

G
D Ej j

� � �
� � � �




�

� �
� � �

� �� �

�

 � 
 � 
 . (7) 

Transforming (7) from the frequency domain to 
the Z-domain [19], we obtain: 

1

1 2
1

~
exp( )sin( )

1 2exp( )cos( ) exp( 2 )

z z

k k k
z

k k k

M

k

D E
G t t z Et t z t z

�
� �

� � �


�

� �
�

� 

� � �

� � � � � 
 � �
,(8) 

where 
1 2

~
( )k s pkkG t G� � � ��

� � � ,
2 2
0( /k k k� �� ��

1/24) and / 2k k� � � . Consequently, this PML can 

be applied to truncate an arbitrary medium and all 

that is needed is to modify ( )z zrD E� �� under 

consideration. The method is available in [8] to 
obtain E from D .

Transforming (4) from the frequency domain to 
the Z-domain, we obtain: 

1

0

1 ( ) ( )y x
x zz

H Hz D S z S zc t x y
� � �� � � � �

� � � , (9) 

where t� is the time step and ( )S z� , ( , )x y� �� is 

the Z-transform of 1 S� , which can be obtained by 

first transforming 1 S� to the s-domain using the 

relation j s� � and then applying the bilinear

Z-transform method [19] using the relation 
1 1(2 ) (1 ) (1 )s t z z� �� � � 
 : 

1

1
( ) ( , )

1
1

z x y
b

a z
S C

z� �
�

�

�
�

�

� �
� �� �
� �
�  

�
�

� , (10) 

where: 0 0(1 / 2 ) / (1 / 2 )t ta� � �� � � �� �� 
�

0 0(1 ( / 2)( / / )) / (1 ( / 2)( /t tb� � � � �� � 	 � � �� � � 
 
 �

0 0/ ))� �� 	 � �

1

0 0(1 / 2 ) / (1 ( / 2)( /C t t� � � � �� � � � � 	�� 
 � 
 � 


0/ ))�� � .

Substituting (10) into (9), we obtain: 
11

1
0

11
1

y
x y

x
z

xb

Ha zz D C Cc t xz
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.

Introducing two auxiliary variables zxP and zyP : 

1

1

1

1
y

y

x

x
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b

b
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1
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y
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b

b

HP C yz
Hz P C y
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�� �
��

�� �
�

. (13) 

Equation (11) can be written as: 
1

1 1

0

( ) ( )
1 1 1z x zx y zy

z D a z P a z Pc t
�

� �� � � � �
� . (14) 

Considering that the 1z� operator corresponds 
to a single-step delay in the discrete time domain, 
(12) – (14) can be written in the FDTD form, 
respectively, as (15) – (17), where: 

1
, , 1/2 ( ) , , 1/2

n n
zx i j k x i zx i j kbP P



 
�  (15) 

( ) 1/2 1/2
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1
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1 1
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1
( ) , , 1/2 , , 1/2 ( ) , , 1/2( )
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� � �

� � �
. (17) 

To obtain zE from zD , we now introduce two 

auxiliary variables, kQ and kL ( 1,2,.., )k M� , so that 

we can solve for 
1n

zE



by: 

1 1
, , 1/2 , , 1/2

, , 1/2 , , 1/2 , , 1/2
1

1

1
( )

n n
z i j k z i j k

n n n
k k i j k k i j k k z i j k

M

k

E D

a Q L b E

�

�


 


 





 
 

 �

� �

� 
�
, (18) 

1
, , 1/2 , , 1/2 , , 1/2 , , 1/2

n n n n
k i j k k k i j k k i j k k z i j kQ a Q L b E



 
 
 
� � 
 , (19) 

1
, , 1/2 , , 1/2exp( 2 )n n

k i j k k k i j ktL Q�


 
� � � , (20) 

where 2exp( )cos( )k k kt ta � �� � � � ,
~

expk kG tb � �

( )sin( )k kt t� �� � � and ( 1,2,.., )k M� . We can 

calculate 
1n

zE



, the current value of E from the 

current of D, the previous value of E and the 
previous values of Q and L. The real advantage 
comes when we deal with more complicated 
materials. A similar method can be used for other 
regions of SC-PML. 

III. NUMERICAL RESULT 
To show the validity of the proposed D-B

CFS-PML formulations, we implement a 3-D 
FDTD simulation for the linear two-term Lorentz 
dispersive problem in a cubic FDTD grid. A
modulated Gaussian pulse with a vertically 
polarized point electric dipole source, was excited 
at the center of a 40 40 40x y z� ! � ! � electrically 

dispersive computational domain, entirely 
composed of a two-term Lorentz material with the 

following parameters: M=2, � =2, s� =4, 1G =0.8,
9

1 01 2 14 10p� � "� � ! ! rad/s, 1 010.06�� � , 2G =0.2,

9
2 02 2 20 10p� � "� � ! ! rad/s and 2 020.07�� � .

The excited Gaussian pulse is given by: 

2 2
0sin(2 )exp( ( ) / )z c wE f t t t t"� � � , (21) 

where cf =25 GHz, wt =31 ps and 0t =4 wt . The 

simulation is done with a 40! 40! 40 grid including 
10-cell thick PML layers at each edge, as shown in 
Fig. 1. The space is discretized with the FDTD 

lattice with x� = y� = z� =120 m# and the time step 

is t� =0.324 ps. Within the PML, �	 and �� are 

scaled using a fourth-order polynomial scaling and 

�� is a constant, as in [3]. The relative reflection 

error (in decibels) versus time is computed at an 
observation point located at (48, 48, 48), using error 

zref_max10 z zref20log (| ( ) ( ) | / | |),E t E t E� � where 

z ( )E t is the field computed using the test domain, 

zref ( )E t is the reference field based on an extended 

lattice and zref_maxE is the maximum value of the 

reference solution over the full-time simulation. 
The relative reflection error of the ZT-CFS-PML is 
computed first over 6000 time iterations for 

max� =16, �� =0.07 and max	 =93.78 S/m. This 

same example is repeated with the ZT-SC-PML 

( max� =16, �� =0, and max	 =106.28 S/m) and the 

ADE-SC-PML ( max� =10, �� =0, and max	 =112.54 

S/m). These optimum parameters are chosen 
empirically to obtain the lowest reflection. The 
difference of the optimum parameters of 
ZT-CFS-PML and ADE-SC-PML results from 
different schemes (i.e., the coefficients of (15)-(17)
are different from the counterpart of proposed 
SC-PML in [18]).

Fig.1. the FDTD grid geometry in this simulation. 

These results are illustrated in Fig. 2. It is 
shown in Fig. 2, that the maximum relative errors of

193 ACES JOURNAL, Vol. 29, No. 3, MARCH 2014



the ZT-CFS-PML, the ZT-SC-PML and the 
ADE-SC-PML are -78 dB, -63 dB and -63 dB, 
respectively. It can be concluded from Fig. 2, that 
the absorbing performance of the ZT-CFS-PML has 
15 dB improvement in terms of the maximum 
relative error as compared with the ZT-SC-PML 
and the ADE-SC-PML and much lower reflection 
error for the late-time region; whereas the 
ZT-SC-PML and the ADE-SC-PML have 
comparatively high reflection errors over the entire 
simulation, due to the oblique incidence of the 
waves and low-frequency evanescent fields that are 
interacting with the PML interfaces. 
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Fig. 2. Relative reflection error versus time: the 
ZT-CFS-PML, the ZT-SC-PML and the 
ADE-SC-PML, for a linear two-term Lorentz 
dispersive FDTD problem. 

In the second example, in order to show the 
validity of the proposed algorithm, the second 3D 
inhomogeneous problem is used for validating the 
proposed formulations. We implement the 3D 
problem of the electromagnetic scattering by a 
highly elongated object, is studied in [20]. 
Particllarly, a thin 100 mm ! 25 mm plate is 
immersed in a background media [20] with 
constitutive parameters � and	 , shown in Fig. 3.

Fig. 3. The FDTD grid geometry in this simulation. 

For the purposes of this study, constitutive 
parameters for soil are assumed, giving 	 =0.273 

and r� =7.73. The plate is illuminated by a 

vertically polarized electric current source placed 
just above one corner of the plate. The current 
source is given a differentiated Gaussian time 
signature with a 6 GHz bandwidth. The simulation 
is done with a 126 51 26! ! grid, including 
10-cell-thick PML layers placed only three cells 
from the scatter on all sides with the space steps 

x� = y� = z� =1 mm. To study the reflection error 
due to the proposed ZT-CFS-PML, a reference 
problem is also simulated. To this end, the same 
mesh is extended 50 cells out in all dimensions, 
leading to a 226 151 126! ! cell lattice. The fields 
within the lattice are then excited by an identical 
source and the time-dependent fields are recorded 
within the region representing the original lattice. 
The relative reflection error (in dB) versus time is 
computed at an observation point in the corner of 
the computational domain using equation in [20]. 
The relative reflection error is first computed over 
1800 time iterations. The relative reflection error 
computed with 10 cells PML is recorded in Fig. 4. 
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Fig. 4. Relative reflection error versus time: the 
ZT-CFS-PML, the ZT-SC-PML and the 
ADE-SC-PML.

These results are illustrated in Fig. 4. It is 
shown in Fig. 4, that the maximum relative errors of
the ZT-CFS-PML, the ZT-SC-PML and the 
ADE-SC-PML are -85 dB, -54 dB and -54 dB, 
respectively. It can be concluded from Fig. 4, that 
the absorbing performance of the ZT-CFS-PML 
has31 dB improvement in terms of the maximum 
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relative error, as compared with the ZT-SC-PML 
and the ADE-SC-PML and much lower reflection 
error for the late-time region; whereas the 
ZT-SC-PML and the ADE-SC-PML have 
comparatively high reflection errors over the entire 
simulation, due to the oblique incidence of the 
waves and low-frequency evanescent fields that are 
interacting with the PML interfaces. 

IV. CONCLUSION 
The D-B CFS-PML based on the unsplit-field 

formulations and the Z-transform method has been 
presented for truncating open-region multi-term 
Lorentz dispersive FDTD domains. These 
formulations are fully independent of the material 
properties of the FDTD computational domain and
hence arbitrary media, like the Debye and Drude 
models, can be truncated without any modification 
and all that is needed is to modify the D-B
constitutive relations under consideration. It is 
clearly shown in the numerical tests that the 
proposed formulations with the CFS-PML scheme,
are efficient in the absorption of evanescent waves
and in the reduction of the late-time reflections.
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