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Homogenization of Thin Dielectric Composite Slabs:
Techniquesand Limitations

Henrik Kettunen, Jiaran Qi, Henrik Wallén, and Ari Sihvola

Department of Radio Science and Engineering
Aalto University School of Electrical Engineering

PO Box 13000, FI-00076 Aalto, Finland
henrik.kettunen@aalto.fi qi.jiaran@aalto.fi henrik.wallen@aalto.fi ari.sihvola@aalto.f

Abstract –This paper compares different methods for
retrieving the transverse effective permittivity of peri-
odic composite slabs whose longitudinal thickness is
only a few unit cells. Two computational methods are
considered, one based on simulated scattering param-
eters (S-parameters) and the other one based on fiel
averaging by integration. The effect of frequency dis-
persion is studied by comparing the results with elec-
trostatic estimates given by analytical mixing formu-
las. Furthermore, the influenc of the slab thickness is
studied. We also discuss the boundary effects on the
interfaces of the slabs.

Index Terms –Boundary transition layers, effective
permittivity, fiel averaging, S-parameters.

I. INTRODUCTION
Heterogeneous media, such as composite materi-

als, are often treated as effectively homogeneous ma-
terials [1, 2, 3]. The idea and the benefi of this ap-
proximative modeling is that the complex internal mi-
crostucture of the material can be forgotten and the
material characteristics are averaged into a macro-
scopic scale. That is, the electromagnetic behavior of
the material is described only by two (effective) pa-
rameters, the electric permittivity ǫ and the magnetic
permeability µ. Such an approximation actually ap-
plies to all conventional bulk materials, as well. Natu-
rally, the condition of such homogenization is that the
inhomogeneities of the material are very small with
respect to the wavelengths of the impinging electro-
magnetic fields

Once being able to analyze the effective behavior
of composite materials, we can go the other way round

and see the possibility of synthesizing new artificia
materials with desired effective response. In theory,
it is possible to create materials even with properties
not readily existing in nature. These so called meta-
materials have lately been under major interest [4, 5].
However, the homogenization of many proposed ma-
terials very seldom goes without problems or doubts
[6, 7].

In this paper, we focus on a homogenization of
a very simple dielectric structure in order to investi-
gate some fundamental characteristics and limitations
of material homogenization. We consider a compos-
ite slab consisting of dielectric spheres arranged in a
periodic simple cubic lattice in vacuum. The slab is
infinit in the transverse plane but in the longitudinal
dimension it is only a few layers thick. The slab is
excited with a normally incident time-harmonic plane
wave (see Fig. 1). The structure is assumed non-
magnetic, i.e., µ = µ0, which, for instance, is rea-
sonable when studying polymeric composite materi-
als [8]. Therefore, the only parameter we are retriev-
ing is the effective permittivity ǫeff, which is a dimen-
sionless number relative to the permittivity of vacuum
ǫ0. Moreover, the spheres are assumed dispersionless
and lossless.

In this article, we study the homogenization in a
dynamic case in order to see how quickly and strongly
the increase of the electrical size of the unit cell makes
the effective permittivity estimate deviate from the
(quasi)static value. Furthermore, an important objec-
tive of this paper is to study how the thickness of the
slab, i.e., the number of consecutive unit cell layers,
affects the retrieval results.

The simulations are performed using COMSOL
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Fig. 1. The original composite medium consisting of
a periodic lattice of spherical inclusions is modeled as
an effectively homogeneous material.

MULTIPHYSICS 3.5 (3D RF Module, Electromag-
netic Waves, Harmonic Propagation), which is a com-
mercial software based on the f nite element method
(FEM).

In parallel, another related homogenization study
is going on, where we more extensively consider the
effect of frequency dispersion for a composite slab
and an inf nite periodic lattice. In those simulations,
CST MICROWAVE STUDIO is used. The results of
this research are reported in [9]

II. COMPUTATIONAL MODEL OF THE
GEOMETRY

The composite slab consists of spheres in a sim-
ple cubic lattice, i.e., the unit cell is a cube with a
concentric sphere inside (see Fig. 2). The unit cell
side length is denoted by a. We consider a compos-
ite where the spherical inclusions occupy a volume
fraction of p = 1/4, i.e., the radii of the spheres be-
come r = a 3

√

3/(16π). The relative permittivity of
the spheres is ǫi = 10 and the background material is
vacuum with ǫe = 1.

Fig. 2. The unit cell is an a × a × a cube with a
dielectric sphere inside.

We only consider the case where a linearly polar-
ized transverse electromagnetic (TEM) plane wave is
normally incident on the composite slab. In this case,

the transverse periodical symmetry of the slab can be
modeled using perfect electric conductor (PEC) and
perfect magnetic conductor (PMC) boundary condi-
tions. To achieve the desired periodicity, PEC bound-
aries are placed perpendicularly and PMC boundaries
parallel to the chosen direction of the electric f eld
vector. Due to the symmetry of the unit cells, with
normal incidence, only one quarter of the unit cells
needs to be modeled in the transverse direction, which
essentially reduces the computational cost. More gen-
eral periodic boundary conditions could also be ap-
plied, but in that case the whole cells must be mod-
eled. In the longitudinal direction, i.e., the direction
of the plane wave propagation, we have to model all
the consecutive layers of cells in the slab. We con-
sider three conf gurations, slabs with thickness of 1,
5, and 9 layers of unit cells. On both sides of the
slab, the width of two unit cells of free space is added
to ensure suff cient attenuation of possible evanescent
higher order modes. The computational domain is ter-
minated with ports, which give rise to the TEM plane
wave and allow the computation of the S-parameters.
Figure 3 presents the actual modeled geometry in the
case of 5 layers.

Fig. 3. Example of the modeled geometry with 5 lay-
ers.

The geometry is discretized with a tetrahedral
mesh. The accuracy of the mesh should remain
roughly equal for all geometry conf gurations, i.e.,
slabs with a different number of layers. For a cer-
tain slab, the same mesh is applied for all frequen-
cies, that is, when we perform a frequency sweep, the
mesh needs to be created only once. The f eld so-
lution is constructed using quadratic vector elements.
In our simulations, for slabs with 1, 5, and 9 layers,
the meshes consist of 7949, 13997, and 21013 ele-
ments, yielding 55148, 97286, and 145626 degrees of
freedom, respectively. The simulations are run using
a desktop PC with Intel Core 2 Duo CPU 2.66 GHz
and 4 GB of RAM. For example, in the case of 5 lay-
ers, a sweep of 200 frequency points takes 2141 sec-
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onds, which is a little less than 11 seconds per each
frequency point.

To validate our simulation results, we also mod-
eled the 5 layered case using the frequence-domain
solver of CST MICROWAVE STUDIO (MWS). The
geometry setup and the boundary conditions are the
same as described above. The unit cell side length
was chosen a = 0.01m. Figure 4 shows the absolute
difference between the obtained S-parameter results,
which in the considered frequency range is of the or-
der of 10−3.

0 0.5 1 1.5 2 2.5
10−4

10−3

10−2

f / GHz

|∆
 S

|

 

 

S
11

S
21

Fig. 4. The difference in simulated S-parameters be-
tween COMSOL and CST MWS.

We are considering an electrodynamic case where
a propagating wave interacts with the composite ma-
terial. However, the unit cells must be small enough
with respect to the wavelength for the material to be-
have as homogeneous, so, in that sense, we are near
the (quasi)static limit. For convenience, we choose a
reference frequency where the edge length of one unit
cell equals 1/20 of the wavelength, i.e., a = λ/20.
The wavelength should not, however, be considered
the free-space wavelength but the reduced (effective)
one inside the material. Therefore, the corresponding
reference frequency,

f20 =
c

20a
√
ǫeff

, (1)

where c denotes the speed of light in vacuum, depends
on the effective permittivity, which is the unknown pa-
rameter we are solving. A reasonable a priori estimate
is considered in the following.

III. ELECTROSTATIC MIXING RULES
In the electrostatic limit, the effective permittivity

of an inf nite lattice can be estimated by various ana-
lytical mixing formulas [10]. One of the most famous
and simplest mixing rules suitable for this case is
the Maxwell Garnett (MG) formula, which using the
above-mentioned parameter values (ǫi = 10, ǫe = 1
and p = 1/4) gives

ǫeff = ǫe + 3pǫe
ǫi − ǫe

ǫi + 2ǫe − p(ǫi − ǫe)
≈ 1.6923. (2)

A more accurate estimate is given by the Lord
Rayleigh mixing rule

ǫeff = ǫe+
3pǫe

ǫi+2ǫe
ǫi−ǫe

− p− 1.305 ǫi−ǫe
ǫi+4ǫe/3

p10/3
≈ 1.6989,

(3)
and an even more accurate one by the mixing formula
derived by McPhedran and McKenzie [11], ǫeff ≈
1.6990, which we will use as a static bulk reference
value in Eq. (1).

IV. S-PARAMETER RETRIEVAL
The widely applied S-parameter retrieval method

is based on measured or simulated ref ection and
transmission data, namely S11 and S21. The method is
often referred to as Nicolson–Ross–Weir (NRW) tech-
nique named after its originators [12, 13]. Along with
the metamaterials research this method has required
certain modif cations [14, 15].

The normalized impedance z is obtained by

z = ±
√

(1 + S11)2 − S2
21

(1− S11)2 − S2
21

, (4)

where the sign must be chosen so that the real part
of z is positive. The exponent function including the
refractive index n is then given by

x = e−jnk0d =
S21

1− S11
z−1

z+1

, (5)

where k0 = ω
√
ǫ0µ0 is the free-space wave number

and d is the thickness of the slab. This method aims
at solving both ǫeff and µeff by ǫeff = n/z and µeff =
nz. However, the solution is not unambiguous due to
the branches of the logarithm function. The refractive
index becomes

n =
1

k0d
(j lnx+ 2πm), m = 0, 1, 2, . . . (6)
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If both ǫeff and µeff are unknown, or the material is
strongly dispersive, determining the integer m may
become diff cult. However, as in our case the com-
posite is assumed non-dispersive and non-magnetic,
the correct value for the integer m can simply be ad-
justed by the condition µeff = nz ≈ 1.
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Fig. 5. The retrieved effective permittivity (real part)
for different number of layers.
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Fig. 6. The retrieved effective permeability (real part)
for different number of layers.

Problems appear, when the total effective thick-
ness of the slab becomes λ/2, or any integer multiple
of it. At such frequencies, there occurs a Fabry–Pérot
type of resonance where the wave passes through the
lossless slab without any ref ection. Although the
Fabry–Pérot resonance is a natural response of the
slab, it should not affect the material parameter re-
trieval results. However, as S11 = 0 and |S21| = 1,
the impedance z cannot be solved correctly by Eq. (4),
which causes the resonances to transfer also to the

retrieved parameters ǫeff and µeff (see Figs. 5 and
6, respectively). Naturally, these resonances in per-
mittivity and permeability are not physical properties
of the studied material but a characteristic of the re-
trieval method. Moreover, the behavior of ǫeff is anti-
resonant, i.e., near the resonance the permittivity de-
creases with increasing frequency, which violates the
principle of causality (see Fig. 5).

The retrieval also yields very small imaginary
parts for ǫeff and µeff (not plotted herein). At the res-
onance, their maximum level is of the order of 10−4,
i.e., they are not numerically zero, but compared with
the real part they become negligible. However, the
imaginary parts may appear with incorrect sign, which
indicates a violation of passivity. Especially for meta-
materials, where the inclusions often are resonant and
lossy, the NRW technique tends to give unphysical
material parameters. This problem is discussed more
extensively in [7].

However, the refractive index n is not affected by
the Fabry–Pérot resonances remaining smooth over
all frequencies. This allows us to f ght the problem
by demanding µeff = 1 and solving the permittivity
directly by ǫeff = n2. This modif ed retrieval yields
smooth and physically reasonable estimates for ǫeff
(see Fig. 7).
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Fig. 7. The effective permittivity (real part) retrieved
by ǫeff = n2 for different number of layers.

As a general observation, it can be seen that as the
frequency increases, the obtained permittivity starts to
notably deviate from the static reference. Also, the
number of layers affects the permittivity. The increase
of the number of layers makes the permittivity tend to
the bulk value at the static limit. With only one layer,
the retrieved permittivity is clearly higher.
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V. FIELD AVERAGING BY INTEGRATION

0 0.5 1 1.5 2
1.695

1.7

1.705

1.71

1.715

1.72

1.725

f / f
20

R
ea

l(ε
ef

f)

 

 1L
5L total avg.
9L total avg.
bulk, static

Fig. 8. The effective permittivity (real part) retrieved
by f eld integration.
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Fig. 9. The effective permittivity values retrieved by
f eld integration in different unit cells.

Whereas the previous method observed the mate-
rial from the outside, another approach is to consider
the constitutive relation within the material. In each
individual point D(r) = ǫ(r)E(r). Then, if averaged
over the whole material, the relation between the dis-
placement current D and the electric f eld E is def ned
by the effective permittivity, 〈D〉 = ǫeffǫ0〈E〉.

Field averaging is studied, for instance, in [16].
We, however, choose a very simple and straightfor-
ward procedure where the f elds are averaged by vol-
ume integration over each unit cell. Actually, due to
the symmetry and linearly polarized normally incident

plane wave excitation, one quarter of a cell is needed.
The effective permittivity of a unit cell is obtained by

ǫeff =
〈Dt〉
ǫ0〈Et〉

=

∫

DtdV

ǫ0
∫

EtdV
, (7)

where subscript t refers to the component transverse
to the wave propagation. Finally, for the whole slab,
the permittivities of separate cells are averaged once
more over all consecutive layers. Figure 8 presents
the retrieved permittivities for different slabs.

This method allows us to investigate the permit-
tivity separately in each cell. It turns out that there
are only three different kinds of cells, as can be seen
in Fig. 9. In a one-layered case, the unit cells do not
have any neighboring cells around them. This situ-
ation yields the highest permittivity value. Another
case are the layers on the boundary that have neigh-
bors on one side and the third group are the cells inside
the slabs with neighbors on both sides. All the inte-
rior cells give the same permittivity, although only the
values of the midmost cells are plotted in Fig. 9. The
boundary permittivity is higher than the interior per-
mittivity. At the static limit, the interior permittivity
tends to the bulk value given by static mixing formu-
las. The values of the boundary and interior permit-
tivities do not depend on the number of layers.

These results support the theory of boundary tran-
sition layers, which suggests that the effective model
of the homogenized material should include separate
boundary layers with permittivity different from the
interior material [7]. This boundary permittivity be-
comes higher than the bulk value and the suff cient
thickness of the transition layer would be one unit
cell, which is in agreement with previous literature
[17, 18]. Also, [18] suggests a modif cation to the
Maxwell Garnett formula for computing the static
transverse boundary permittivity. Unfortunately, the
volume fraction p = 1/4 considered in our study is
too large for the MG formula, Eq. (2), to give ac-
curate results. Nonetheless, the predicted difference
between the boundary and the bulk permittivities be-
comes 0.006, which quantitatively agrees with the dif-
ference seen in Fig. 9 very well.

VI. COMPARISON BETWEEN THE
METHODS

Figure 10 presents the effective permittivities
retrieved by different methods. The original S-
parameter method (NRW) is suffering from the
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Fig. 10. Comparison of the retrieval methods for a
slab with 1 layer (top), 5 layers (middle), and 9 layers
(bottom).

Fabry–Pérot resonances that also contaminate the re-
trieval results. Increasing the slab thickess makes the
resonances shift lower in frequency. Despite the non-
magnetic nature of the original composite, the method
also yields effective permeability µeff, which, with in-
creasing frequency, starts to deviate from unity. More-
over, the retrieved parameters show unphysical behav-
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Fig. 11. The absolute error between the S11 (top) and
S21 (bottom) of the original 9-layered composite slab
and the homogenized model. The used models: mod-
if ed NRW with ǫeff = n2 (black), f eld averaging
method (grey), and boundary transition layer model
(light grey).

ior. Instead, assuming µeff = 1 and computing ǫeff as
the square of the refractive index n gives smooth re-
sults that are very similar to the ones given by the f eld
averaging method. In the static limit, all methods tend
to the same value. This value depends on the number
of layers.

Altogether, based on two different methods, we
have four ways to build the homogenized model for
the composite slab: the original NRW approach with
both ǫeff = n/z and µeff = nz, the modif ed NRW
with µeff = 1 and ǫeff = n2, the f eld averaging
method with homogeneous ǫeff for the whole slab, and
the piecewise homogeneous model with separate tran-
sition layers with different permittivity. If the effec-
tive model is correct, it should also have the same scat-
tering properties as the original composite. It turns out
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that the other models but the original NRW do not ex-
actly reproduce the original S-parameters.

Figure 11 presents the absolute differences be-
tween the simulated S-parameters of the original slab
and the different homogenized models in the case of
9 layers. The errors are anyway relatively small, yet
not numerically negligible, and they start to grow with
increasing frequency. Also, there are no signif cant
differences between the models.

VII. CONCLUSIONS AND DISCUSSION
Two different computational methods for homog-

enization of thin composite slabs were considered and
compared, namely the S-parameter (NRW) method
and the f eld averaging method. Both techniques also
offered modif ed ways to model the effective permit-
tivity, in S-parameter method by the non-magnetic
material assumption and in the averaging method by
using the boundary transition layers. The original
NRW method yielded both ǫeff and µeff resonant and
unphysical violating the principles of causality and
passivity. When µeff = 1 was assumed and the per-
mittivity computed as ǫeff = n2, the result was smooth
and similar to the one obtained by f eld averaging. The
f eld averaging method, however, suggested a piece-
wise homogeneous model where the boundary layers
are modeled separately using slightly higher permit-
tivity.

When the frequency, i.e., the electrical size of
the unit cells, was increased, neither of the meth-
ods proved superior. However, important fundamental
conclusions can be drawn.

Firstly, for homogenization purposes, the electri-
cal size of the unit cell should be very small. As
seen in Fig. 11, with increasing frequency, the ho-
mogenized models fail to produce the same scattering
parameters with the original composite slab. Our re-
sults suggest that the unit cell size a ≈ λ/20, where
λ is the reduced wavelength inside the material, is a
limit, after which the material cannot safely be con-
sidered perfectly homogeneous. Futhermore, from
Figs. 5–10 we see that the cells must be extremely
small, a ≈ λ/100, before the (quasi)static state is
reached. Naturally, in practical experiments a certain
tolerance for an acceptable error must be def ned. In
our case, the absolute differences are small numbers
and in many cases they may seem negligible. The fo-
cus of this paper is, however, to f nd fundamental lim-
itations of material homogenization approach in gen-

eral, and to discuss the characteristics of different ho-
mogenization methods.

Secondly, the value of material parameters should
not depend on the amount of the material. A suff cient
amount of layers is required for the slab to behave as
a bulk material. From Fig. 10, it is seen that not even
the 9-layered slab exactly converges to the bulk value.
This is explained by the effect of the boundary lay-
ers, which have higher permittivity than the interior
layers increasing the total average permittivity of the
slab. That is, a homogeneous material should include
enough layers in order to make the boundary effect
negligible. A slab with only one or two layers cannot
be considered a material at all.

Moreover, considering the applicability of the
original NRW method, we see from Fig. 10 that we
must operate with frequencies where the electrical
thickness of the slab remains below λ/2. However,
at the same time, the thickness must be large enough
in terms of unit cell layers for the slab to resemble
bulk material. These two limitations roughly imply
that for reliable usage of the NRW technique, the slab
thickness should be at least 10 layers or more, which
means that the maximum unit cell size should be of
the order of λ/50.

Furthermore, the current study is still restricted fo-
cusing only on dielectric composite and the normal
incidence. By considering oblique incidence from
different angles, possible effects of anisotropy and
spatial dispersion could be studied. Also, assum-
ing the composite non-magnetic, non-dispersive, and
lossless is quite an idealization. Moreover, especially
in metamaterials research, the inclusions are assumed
strongly dispersive and resonant having also negative
material parameter values. In these more complex
cases, extra care must be taken that the assumption of
effective homogeneity holds. Therefore, futher funda-
mental study is needed.
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Abstract—Engineered materials that demonstrate a specific
response to electromagnetic energy incident on them in an-
tenna and radio frequency component design applications are
in high demand due to both military and commercial needs.
The design of such engineered materials typically requires
numerically intensive computations to simulate their behavior
as they may have electrically small features on a large area
or often the overall system performance is required, which
means modeling the entire integrated system. Furthermore, to
achieve an optimal performance these simulations need to be
run many times until a desired solution is achieved, presenting
a major hindrance in arriving at a feasible solution in a
reasonable amount of time. One example of such applications
is the design of antireflective (AR) surfaces at millimeter wave
frequencies, which often involves sub-wavelength gratings in
an electrically large multilayer structure. This paper investi-
gates the use of field-programmable gate arrays (FPGAs) and
graphics processing units (GPUs) as coprocessors to the CPU
in order to expedite the computation time. Preliminary results
show that the hardware implementation (100 MHz) on Xilinx
Virtex4LX200 FPGA is able to outperform a single-thread
software implementation on Intel Itanium 2 processor (1.66
GHz) by 20 folds. However, the performance of the FPGA
implementation lags behind the single-thread implementation
on a modern Xeon (2.26 GHz) by 3.6×. On the other hand,
modern GPUs demonstrate an evident advantage over both
CPU and FPGA by achieving 20× speedup than the Xeon
processor.

Index Terms—Antireflective Surface, Engineered Materials,
FPGA, GPU, Parallel Computing, Reconfigurable Program-
ming, High-Performance Computing.

I. INTRODUCTION

The design of engineered materials that demonstrate a
specific response to incident electromagnetic energy often
requires the use of periodic structures with dimensions that
are much smaller than the wavelength for electrically large
structures (i.e., overall size of many wavelengths). As a result,
the accurate and fast modeling of these large scale structures
with fine features often becomes a major challenge. The
challenge is even bigger when these models have to be run
iteratively to identify an optimal solution. Recently, hardware
accelerated computing has been gaining momentum due to
its applicability to parallel computing while using a fraction
of the power requirement of the conventional microprocessors
and requiring much less cost in comparison to supercomputers.

The objective of this paper is two folds: (i) investigate the
use of FPGAs and GPUs as coprocessors to CPU in electro-
magnetic simulations, (ii) utilize the hardware acceleration in
simulating complex devices and optimizing their performance.
These objectives will be achieved in the context of the design
of antireflective (AR) surfaces with sub-wavelength gratings.

A common approach to the design of AR surfaces in
optical regimes is to coat the surface with multiple layers
of thin films with specific dielectric properties that result in
the desired performance. This approach is not practical at
millimeter wave frequencies as there is limited availability
of dielectric materials with the desired material properties.
For this purpose, alternative techniques using gratings in the
substrate can be used to simulate the same effect [1]. The
gratings in essence modify the effective dielectric property
of each layer. As a first order approximation, an effective
permittivity for each layer can be computed using the effective
media theory [2]. However, this approach is only suitable
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Table 1: Comparison between FPGA and GPU
Criterion FPGA GPU

Power Consumption Low (Virtex4LX200: ~10 W) High (GTX 480: 450 W)
Cost High (Virtex4LX200: ~$6,000) Low (GTX 480: $500)

Programming

Learning Curve Long Short
Difficulty High (Use hardware discription language) Low (Use high level language)
Flexibility High Low
Portability Low High

Floating-Point Performance Low High

for gratings with dimensions that are much smaller than the
incident wavelength. For the case of sub-wavelength gratings
(i.e., resonant regime) considered in this paper, a more precise
approach is required as the assumptions of the effective media
theory are no longer valid.

This paper uses the rigorous coupled wave (RCW) algo-
rithm, which employs an eigenmode approach as described
in [3], to model the AR surface created with sub-wavelength
gratings. RCW algorithm applies to structures with periodic
gratings. The electric field and the periodic permittivity values
inside the structure are expanded into a Fourier series in spatial
harmonics, resulting in a matrix of coupled wave equations.
With this approach, the field inside the medium is expanded
in terms of the space harmonics in the periodic structure and
phase matched to the fields outside the grating. The fields can
be treated as waveguide modes in the grating region, and the
total field is expressed as a sum of all possible modes.

The remaining part of the paper is organized as follows.
Section II describes the underlying principles of hardware
acceleration and presents the features of FPGA and GPU
with particular attention to the systems used in this imple-
mentation. The details of the RCW algorithm are provided
and its numerically intensive components are identified in
Section III. Section IV describes the implementation of the
RCW algorithm on two different platforms: a state-of-the-art
reconfigurable computer, SGI Altix RASC RC100 [4], and
the NVIDIA GPUs (i.e., Tesla C1060 and GeForce GTX480).
The platform specifications for the hardware implementation
and the interaction between the CPU and the two hardware
platforms are also presented in this section. Significant per-
formance improvement has been achieved on both FPGA and
GPU platforms compared with the software implementation
on Intel Itanium 2 and Xeon E5520 processors. Finally, the
conclusion remarks are given in Section VI.

II. HARDWARE ACCELERATION ON FPGA
AND GPU

Parallelism and pipelining are in the essence of hardware
accelerated computing. A more conventional way of hard-
ware acceleration based on von-Neuman architecture, where
instructions and data are stored in the same memory, is
typically achieved by the use of multiple processors in a
system. In this approach, instruction stream programming can
be used as in any traditional computer. An example of such a
system is the Beowulf cluster [5]. As an alternative, this paper
focuses on a different kind of hardware acceleration, where a
coprocessor is used to support the CPU for specific tasks in an
algorithm. Traditional von-Neuman architectures tend to create

bottlenecks between the CPU and the main memory. The use
of a dedicated coprocessor with its own memory can accelerate
numerically intensive computations. One of the early uses of
such coprocessors is the digital signal processor (DSP), which
is a highly specialized form of a microprocessor. While the
use of DSPs was universal for hardware acceleration in its
early stages, the growing need for flexibility for many compu-
tationally intensive applications outstripped the functionalities
offered by these chips. As a result, FPGAs, which are a form
of highly configurable hardware, began entering the market.
FPGAs contain programmable logic components called “logic
blocks”, and a hierarchy of reconfigurable interconnects that
allow the blocks to be connected together to perform custom
computation. With the abundance of available transistors,
modern FPGAs are capable of carrying out big scientific
applications. Thousands of performance speedup has been
observed on reconfigurable computers [6].

While FPGAs are highly reconfigurable and energy effi-
cient, there is a prize for the flexibility offered by these
platforms, i.e., the difficulty in hardware implementation.
Typically, hardware description languages, such as Verilog and
VHDL, are required to program the FPGAs in order to achieve
desirable performance speedup.

Recently, another platform, i.e., graphics processing unit,
has been gaining popularity due to their relatively easier
learning curve. GPU was presented as early as in 1989 as
a stream computing engine [7]. Modern GPUs from both
NVIDIA and AMD consist of hundreds of stream processing
units and are capable of achieving remarkable processing
parallelism. Both companies provide SDK to facilitate the end
user use high level languages (e.g., C language) to program
the GPUs, therefore significantly lowering the programming
difficulty.

FPGAs and GPUs, have demonstrated the ability to speed
up a wide range of applications from image processing to
encryption, as demonstrated in previous work [8]–[12]. Each
technology has its advantage and disadvantage, as listed in
Table 1. In general, GPU provides the ease of use and higher
parallelism. On the other hand, FPGA consumes much less
power, has better programming flexibility, and provides deep
pipelining, which is very useful for many applications.

III. RIGOROUS COUPLED WAVE
ALGORITHM

The rigorous coupled wave (RCW) algorithm applies to
diffraction problems from multiple layers with periodic grat-
ings. It is based on an extension of enhanced transmittance
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[
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
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×


A

Phase 1−−−−→


× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×


Hessenberg H

Phase 2−−−−→


⊗ × × × ×
0 ⊗ × × ×
0 0 ⊗ × ×
0 0 0 ⊗ ×
0 0 0 0 ⊗


Triangular S

. (2)

matrix approach in [13] and adopts Lalanne’s improved eigen-
value formalism [14]. A detailed discussion on the RCW
algorithm can be found in these references. We provide a brief
overview in this section in order to describe our motivations
for the hardware implementation.

The stacked multiple layer in RCW algorithm can consist of
any number of gratings. However, all gratings must be periodic
with the same periodicity along a given direction on the plane.
The periodicity results in a spatially periodic permittivity (and
inverse permittivity) within each layer and can be represented
as a Fourier series expansion, as follows.

εl(x, y) =
∑
g,h

εl,gh exp
(
j

2πgx
Λx

+ j
2πhy
Λy

)
, (3a)

ε−1
l (x, y) =

∑
g,h

Al,gh exp
(
j

2πgx
Λx

+ j
2πhy
Λy

)
. (3b)

where εl,gh and Al,gh are the Fourier coefficients for the lth
layer in the stack for the permittivity and inverse permittivity
respectively. The electric field inside the layers can similarly
be expressed as a Fourier series in terms of spatial harmonics.
Maxwell’s equations for the layered structure can be written
in terms of the tangential components of the electric and
magnetic fields, resulting in a coupled equation set in (1),
where Sl represents the amplitudes of the spatial harmonics
of the electric field in the lth layer, with subscripts x and y
denoting the directions of periodicity in the plane of the stack.
The parameters B and D in (1b) are matrices given as

B = kxε
−1
l kx − I, (4a)

D = kyε
−1
l ky − I. (4b)

The kx and ky in (1b) and (4) are diagonal matrices formed
by kxm

and kyn
as shown in (5), in which k0 is the free space

wave number.

kx =
kxm

k0
, (5a)

ky =
kyn

k0
. (5b)

kxm
and kyn

are the wave vector components along x and
y, respectively. They are computed from phase matching and

Floquet conditions as (6).

kxm
= k0

(
n1 sin θ cosϕ−m

(
λ0

Λx

))
, (6a)

kyn = k0

(
n1 sin θ sinϕ− n

(
λ0

Λy

))
. (6b)

Λx and Λy in (3) and (6) represent the periodicity of the
gratings along x and y respectively. α in (1b) is a grating
geometry dependent parameter, which is a real positive number
between [0, 1] as introduced in [14].

Therefore, the coupled wave equation can be solved by
finding the eigenvalues of the matrix Ωl, which is a function
of the stack properties. The rank of this matrix is M × N ,
where M and N are the number of spatial harmonics retained
along the two dimensions of periodicity in the plane of stacked
layers. Ideally an infinite number of them are needed for an
exact solution but truncation with minimal error is possible.
Despite this truncation, the rank can be in the order of mag-
nitude of 400 or more for a typical application of AR surface
design. Hence, the most numerically intensive component
of the RCW algorithm is this eigenvalue computation. The
hardware platforms will be used to implement the eigenvalue
computations of the RCW algorithm to achieve acceleration.

A. QR eigenvalue algorithm
Given a square matrix A ∈ Cn×n, an eigenvalue λ and

its associated eigenvector v are, by definition, a pair obeying
the relation Av = λv. Equivalently, (A − λI)v = 0 (where
I is the identity matrix), implying det(A − λI) = 0. This
determinant can be expanded into a polynomial in λ, known
as the characteristic polynomial of A. One common method
for determining the eigenvalues of a small matrix is by finding
the roots of its characteristic polynomial. However, a general
polynomial of order n > 4 cannot be solved by a finite
sequence of arithmetic operations and radicals. Therefore,
many numerical iterative algorithms have been proposed [15]
to solve the eigenvalue problem of high-rank square matrices,
such as power method, inverse iteration, Jacobi method, etc.
Among these, the shifted Hessenberg QR algorithm [16]–
[18] is accepted as a practical solution and adopted in most
applications to deal with general square matrices.

There are two phases in the practical QR algorithm, as
described in (2). In the first phase, the original matrix A is re-

190 ACES JOURNAL, VOL. 26, NO. 3, MARCH 2011



User Logic
(IP)

Vendor-Specific Service Logic

FPGA Device
Local Memory 

Bank 0

Local Memory 
Bank 1

Local Memory 
Bank n-1

Micro-
processor

Host
Memory Interconnect

DMA

(a) General architecture of a reconfigurable computer

 

(b) Execution model

Fig. 1. Using FPGAs as coprocessors in general-purpose
computing.

duced to the upper Hessenberg form H using the Householder
transformation [19]. The second phase involves applying the
implicit QR iteration with shifts on the unreduced Hessenberg
matrix H until it converges to a triangular matrix, i.e., the
Schur form S. The eigenvalues of a triangular matrix are listed
on the diagonal, i.e., the ⊗s in (2), and the eigenvalue problem
is solved once this form is achieved. If the corresponding
eigenvectors are required, they can be calculated using Gaus-
sian elimination and back substitution after the eigenvalues are
available.

IV. HARDWARE IMPLEMENTATION OF
THE RCW ALGORITHM

Both hardware platforms (e.g., FPGA and GPU) will be
used as coprocessors to the CPU to accelerate the most
numerically intensive part of the RCW algorithm, which is the
eigenvalue calculation for the large matrices required in the
RCWA design. Promising results are demonstrated to prove
the efficiency of the hardware implementation compared with
the software implementation of the same algorithm in C. The
acceleration in computation time allows for the design and
optimization of complex AR surfaces as numerous iterations
can be run rapidly on hardware coprocessors.

A. Implementation on Altix RASC RC100 reconfigurable
computer

Reconfigurable computers (RCs) are traditional computers
extended with coprocessors based on reconfigurable hardware
like FPGAs. These enhanced systems are capable of providing
significant performance improvement for applications in many
scientific and engineering domains, such as the electromag-
netics [20], [21]. Due to the limited size of the internal

block RAM memory, multiple SRAM modules are generally
connected to the hardware coprocessor for data storage, such
as the example shown in Figure 1(a).

The implementation of an application on a reconfigurable
computer consists of a hardware part and a software part. The
implementation on the hardware part requires the use of either
hardware description languages (e.g., VHDL, Verilog) or high
level languages, such as Impulse-C [22] or Mitrion-C [23], to
carry out the design in hardware. Multiple techniques, e.g.,
pipelining and single instruction multiple data (SIMD), can
be applied to take advantage of the hardware acceleration.
Multiple dependent tasks in an application can form a pipeline
so that the output of a producer can be forwarded to the
input of a consumer directly. Take the circuit in Figure 3(a) as
one example, multiple primitive operators form a pipeline to
accomplish an advanced operation. Another typical technique,
SIMD as shown in Figure 3(c), is to instantiate multiple
identical processing elements (PEs) so that multiple data items
can be processed in parallel. The theoretical performance of
N identical PEs is N times of a single PE.

Since the hardware implementation depends on the available
resources on the FPGA device (e.g., memory, built-in multi-
pliers, slices), it might be necessary to distribute the hardware
part into multiple FPGA configurations, each of which is
called a bitstream. Once the bitstreams are available, they can
be integrated into the software part, which is executed on the
CPU. From the point of view of a software programmer, a
bitstream can be treated as a software subroutine during the
integration process in spite of the fact that the functionality
is realized in hardware, as shown in Figure 1(b). The inte-
gration process always involves the use of vendor application
programming interfaces (APIs).

In the following text, the numerically intensive part of the
RCW algorithm, i.e., the eigenvalue solver, is described in
terms of the mathematical approach used for the implemen-
tation. This discussion is followed by the details of the im-
plementation of the eigenvalue algorithm on the Altix RASC
RC100 reconfigurable computer along with a description of
the system specifications and architecture of the platform.

1) The FPGA Platform: SGI’s Altix RASC RC100 re-
configurable computer is a blade-based heterogeneous su-
percomputer in which NUMAlink™4 interconnect is used
to connect different types of computing blades, as shown
in Figure 2(a). Each blade itself is a homogeneous node
consisting of the same type of processors, e.g., the CPU or the
FPGA coprocessors. The Altix 450 at The Catholic University
of America includes two CPU blades and one FPGA blade.
The CPU used in the system is Intel Itanium 2 (1.66 GHz).
The detailed architecture of a RASC RC100 FPGA blade
is shown in Figure 2(b). There are two FPGA devices on
a single RASC blade. Each FPGA device, Xilinx Virtex-
4LX200, is equipped with 5 banks of SRAM for local data
storage. The size of each SRAM bank is 8 MB. Every bank
has separate 64-bit read and write ports directly connected
to the FPGA device. Besides the local memory, each FPGA
device is capable of communicating with CPU blades through
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(a) Multi-paradigm computing

(b) RASC RC100 FPGA blade architecture

Fig. 2. Altix RASC RC100 reconfigurable computer.

NUMAlink™4 interconnect, achieving a theoretical 3.2 GB/s
on both directions at the same time. Since the two FPGA
devices have their separate network interface controller, their
communication with other components in the RASC system
is independent to each other. However, there is no direct
communication channel between the two FPGA device on the
same board. This limitation prevents an application from being
implemented on two devices, i.e., part of an application on one
device and part of the same application on the other device. In
other words, the hardware part of an application can be only
implemented on a single FPGA device.

There are several factors that can limit the problem size
an application can deal with when it (or part of it) is im-
plemented on FPGA device. The first one is the number of
basic lookup tables (LUTs) or combined as slices on Xilinx
FPGAs. The bigger an application is, the more hardware
resource its implementation is going to take. The second one
is the number of built-in multipliers. Many scientific and
engineering applications involve the double precision floating-
point operations, particularly multiplications. Basic LUTs can
be used to construct double precision multipliers. However, a
more economic way is to use the built-in multipliers so that
LUTs can be used for other part of the application. The third
limiting factor is the size and the bandwidth of the off-chip
memory. The size of the memory will decide how much data
(including source, intermediate and result data) can be stored.
The bandwidth of the memory will decide the data processing
parallelism the logic can achieve. In this work, it is mainly the

Algorithm 1: Hessenberg Reduction (Vector-based)
Input: A square complex matrix A with rank n
Output: The reduced Hessenberg matrix H
for k=0 to n− 3 do1.1

vk = House(Ak+1:n−1,k); /*Step 1: See Alg. 2*/1.2

Ak+1:n−1,k:n−1 =1.3
Ak+1:n−1,k:n−1 − 2vk(v∗kAk+1:n−1,k:n−1); /*Step 2:
PkAk+1:n−1,k:n−1, Pk = I − 2vkv∗k*/

A0:n−1,k+1:n−1 =1.4
A0:n−1,k+1:n−1 − 2(A0:n−1,k+1:n−1vk)v∗k ; /*Step 3:
A0:n−1,k+1:n−1Pk*/

Algorithm 2: House(x)
Input: A complex vector x
Output: The Householder vector v
α = −eiϕ‖x‖; /*ϕ is the argument of x1*/2.1

u = x− αe1 = x+ eiϕ‖x‖e1; /*e1 = [1, 0, ..., 0]T */2.2

v = u
‖u‖ ;2.3

size of the memory that decide the maximum problem size the
application can deal with, as elaborated in the following text.

2) FPGA implementation of QR algorithm: The RCW al-
gorithm in the most general sense creates a square matrix with
complex entries. Both real part and imaginary part of a matrix
entry are represented in double precision (64-bit) floating-point
format. In the hardware implementation of QR eigenvalue
algorithm on FPGA device, we combine the two physical local
memory banks into a 128-bit wide logical memory bank so
that each memory entry can store one complete matrix entry.
Therefore, the real part and the imaginary part of a complex
value can be accessed simultaneously.

As described in Section III-A, there are two phases in the
QR algorithm. The first phase, i.e., the Hessenberg reduction,
is completely implemented in one FPGA configuration. Part of
the second phase in which the computation is close to the one
in Hessenberg reduction is implemented in another separate
FPGA configuration. Since the computation in both configu-
rations is close, we focus on the description of Hessenberg
reduction in this paper.

The first phase, Hessenberg reduction, is carried out by
applying the Householder reflection for n − 2 iterations (see
Alg. 1), where n is the rank of the original matrix A. Each
iteration comprises three steps, as shown in Table 2. Each step
further includes multiple sub-steps. In our hardware design,
Steps 1, 2, and 3 comprise 4, 3, and 3 sub-steps, respectively.
All iterations, the steps in each iteration, and the sub-steps
within every step have to be carried out sequentially due to
the data dependency among them. More specifically, the 10
sub-steps are carried out in a sequence during the execution.
The advantage of hardware implementation comes from the
pipelined processing within each sub-step. For example, Step
1.1 involves multiplication, addition, accumulation, and square
root operation to calculate the norm of a vector. In hardware
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Table 2: Calculation breakdown of iteration k in Hessenberg reduction
Step Sub-step Calculation Number of clock cycles for computation∗

1

1.1 ‖x‖, ‖x1‖ n− k − 1

3k2 − 9nk + 6n2 − 3n− 2

1.2 x1 r + ‖x‖ cos ϕ, x1 i + ‖x‖ sin ϕ 1
1.3 ‖u‖ n− k − 1
1.4 u/‖u‖ n− k − 1
2.1 m = v∗kAk+1:n−1,k:n−1 (n− k)(n− k − 1)

2 2.2 N = vkm (n− k)(n− k − 1)
2.3 Ak+1:n−1,k:n−1 − 2N (n− k)(n− k − 1)
3.1 m′ = A0:n−1,k+1:n−1vk n(n− k − 1)

3 3.2 N ′ = m′v∗k n(n− k − 1)
3.3 A0:n−1,k+1:n−1 − 2N ′ n(n− k − 1)

∗Ignoring all latencies.
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MUX multiplexer
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Add adder
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Acc accumulator

Div divider

Sqrt square rooter register

Fig. 3. The computing blocks in the hardware implementation: (a) the computing block used in Step 1; (b) the computing
block used in Step 2.1, 2.2, 3.1, 3.2; (c) the computing block used in Step 2.3, 3.3. (Note: (1) all inputs and outputs are
connected to the local memory interface; (2) the control logic is not illustrated in the figure).

implementation, these four operations are carried out in four
operators, which are concatenated together to form a pipeline,
as shown in Figure 3(a). These primitive operators are all
fully pipelined in our design such that one new data item
can be fed into the pipeline every clock cycle. Therefore, it
will take roughly n − k − 1 clock cycles to finish this sub-
step (if we ignore all potential latencies). Table 2 lists the
number of required clock cycles for each sub-step. By putting
all iterations together, the total number of clock cycles required
to reduce a matrix of rank n to its Hessenberg form can be
computed as:

n−3∑
k=0

(3k2 − 9nk + 6n2 − 3n− 2) =
5
2
n3 − 9

2
n− 11. (7)

The detailed hardware implementation of the computing
blocks is illustrated in Figure 3. Since multiple steps have
to be carried out sequentially, many basic computing units are
re-used to reduce the resource cost. For example, the pipeline
chain consisting of Mul1, Mul2, Add1, Acc1, and Sqrt2 are
re-used in Step 1.1 and Step 1.3 to compute ‖x‖ and ‖µ‖,

respectively. cosϕ and sinϕ are calculated on the fly by
using division, i.e., x1r/‖x1‖ and x1i/‖x1‖. Therefore, the
outputs of Step 1.2 correspond to the output of Add2 (i.e.,
x1r + ‖x‖ · x1r/‖x1‖) and Add3 (i.e., x1i + ‖x‖ · x1i/‖x1‖).
The multiplication between matrix/vector and vector/vector in
Step 2.1, 2.2, 3.1, and 3.2 is realized using the pipeline chain
in Figure 3(b). Both the real part and the imaginary part of
a complex entry are computed simultaneously. The control
logic is not illustrated in Figure 3. It is mainly composed by
three components, i.e., (1) a finite state machine whose statuses
represent different steps and sub-steps, (2) the logic to generate
correct read and write address for memory access, and (3) the
logic to control the operations of the units in Figure 3.

The hardware implementation of Hessenberg reduction oc-
cupies 56,520 (63%) slices on the target FPGA device and runs
at 100 MHz. The primitive operators, i.e., the double precision
floating-point adder, multiplier, divider, are generated by using
Xilinx CORE Generator. The accumulator is composed of
adders and FIFOs. The hardware design is coded in Verilog,
synthesized by Xilinx XST, placed and routed by Xilinx
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Fig. 4. The general architecture of an NVIDIA GT200
GPU (SM: streaming multiprocessor, SP: streaming processor,
DFU: double-precision floating-point unit).

Fig. 5. The heterogeneous CPU-GPU board.

ISE 10.1. The operating frequency of the design is mainly
limited by the control logic. The hardware design is capable
of handling the matrix with a rank up to 480. The maximum
size of the matrix is limited by the size of the off-chip memory
in this case as a 480 × 480 complex matrix takes almost 8
MB to store its entries. The other off-chip memory is used
to store the intermediate result in the execution. During the
runtime, the rank of the object matrix is passed to the hardware
design as a parameter through a register. Before the FPGA
starts processing, the original matrix as well as its rank are
transferred from the host to the FPGA. After the processing
is finished, the upper Hessenberg matrix is transferred back to
the host memory.

B. Implementation on NVIDIA GPUs

General-purpose computing on graphics processing units
(GPGPU) is the technique of using GPUs to perform computa-
tion in applications traditionally handled by the microproces-
sors. GPUs are designed traditionally for graphics and thus are
very restrictive in terms of operations and programming. Due
to their nature, GPUs are only effective at tackling problems
that can be solved using stream processing and the hardware
can only be used in certain ways. More precisely, GPUs are
efficient to process the independent elements belonging to a
stream in a parallel fashion. Kernels are the functions that are
applied to each element in the stream. Figure 4 illustrates a

general architecture of an NVIDIA GT200 GPU consisting of
many streaming processors (SPs).

We have implemented Alg. 1 on both NVIDIA Tesla C1060
and GeForce GTX 480 (Fermi) GPUs. The Tesla C1060 is
installed on a dual-socket Intel Xeon workstation, as shown in
Figure 5. The GTX 480 is installed on an Intel Core i7 work-
station. On both workstations, GPU communicate with CPU
through PCI Express 2 ×16 bus. Tesla C1060 (architecture
code-named GT200) features 30 Streaming Multiprocessors,
each of which is further composed of eight single precision
floating-point CUDA streaming processors and one double
precision floating-point unit, with 16KB on-chip storage called
shared memory and 64KB of register windows for massive
threading. The total 240 (single precision) + 30 (double preci-
sion) floating-point processors can achieve an observed peak
performance of 78 GFLOPS for double precision operation.
The Tesla GPU is equipped with 4 GB GDDR3 memory on
board with the theoretical memory bandwidth of 102 GB/s.
The uni-directional bandwidth of the PCI Express 2 bus on
the platform is observed at 5.8 GB/s.

The latest GPU offered by NVIDIA is code-named as
Fermi, which takes a significant leap forward in architecture
highlighted by features such as improved double precision
performance and configurable cache hierarchy. The model
GTX 480 used in our experiments is composed of 15 newly
designed streaming multiprocessors (SMs). Each SM features
32 CUDA streaming processors and is capable of 16 double
precision fused multiply-add operations per clock, which is
an 8× improvement over the GT200 architecture. Another
key architectural difference is that Fermi has two instruction
dispatch units and most instructions can be dual-issued, which
is different from the HyperThreads used in the Intel Nehalem
processors. Two HyperThreads within a single core of Ne-
halem processors share a single instruction fetch and decoding
unit.

The GPU implementations are developed using CUDA [24].
The vector-based diagonal factorization is composed of a
major outer loop that factorizes one column/row per step.
Unfortunately, advanced features offered on the GPU such as
asynchronized communication/computation and concurrently
kernel execution cannot be used for such an algorithm, as
dependency exists among the outer loops and all inner steps.
Therefore the GPU implementation suffers from low occu-
pancy for small problem sizes. In order to optimize the GPU
implementation, firstly we managed to squeeze every inner
computation step except the Householder generator (i.e., Step
1 in Table 2) into the GPU to keep the entire matrix remained
in the GPU memory throughout the computation. In other
words, the Hessenberg reduction is a CPU-GPU co-design
on the hybrid platform as shown in Figure 5. Step 1 in
Table 2 is carried out on CPU and the remaining two steps are
executed on GPU. Fortunately the calculation of Step 1 only
needs the transportation of one column (or part of a column)
of a matrix. Therefore we managed to minimize the round
trip communication overhead to approximately 5% of overall
execution time. All kernels are further incrementally optimized
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Table 3: Platform Characteristics
Criteria Xeon (Nehalem) Tesla C1060 GTX 480
Cores 4 240/30 480

Frequency (GHz) 2.26 1.3 1.4
Double Precision GFLOPs 36 78 672
Memory Bandwidth (GB/s) 25.6 102 177.4

through memory coalescing, using of shared memory and
assigning more work per thread. The configurable L1 cache
on the Fermi GPU introduces more design tradeoffs for users.
In our experiments, for kernels with limited or no usage of
shared memory, configuring the L1 to be 48KB can yield an
approximately 10% improvement on GTX 480. Moreover, we
found that the multi-dimensional threads and blocks configu-
ration can also affect the cache performance, especially when
the performance differences are examined on both GT200 and
Fermi. We achieved the best performance mostly at the thread
configuration of 32×8 for the Fermi GPU.

V. RESULTS
Due to the data dependency within the QR eigenvalue

algorithm, it is found that the first phase, i.e., the Hessenberg
reduction, is able to get significant performance improvement
through hardware acceleration technologies. Therefore, we
present the performance result of Hessenberg reduction on
different platforms in this section. In order to demonstrate the
benefit of FPGA and GPU implementations, we implemented
Alg. 1 on two CPUs as reference, i.e., Intel Itanium 2 (1.66
GHz) on the RASC RC100 platform and Intel Xeon E5520
on the Tesla C1060 platform.

A. Performance comparison
For comparison of acceleration over pure software based

implementations, we coded the Hessenberg reduction phase
in C++ on two software platforms.

The first platform is the RASC RC100 workstation with
Intel Itanium 2 at 1.66 GHz. The size of L1 cache and
L2 cache of the microprocessor is 16KB and 256KB [25],
respectively. The software implementation on Itanium 2 is a
sequential and direct implementation of Alg. 1. This sequential
implementation is handcoded in C++ and single-threaded.

The second platform is a dual-socket Intel Xeon (Nehalem)
system, as shown in Figure 5. The CPU is clocked at 2.26GHz
with 8MB shared L3 cache and 12GB DDR3 memory (total
24GB for the entire system). The theoretical peak double
precision floating-point performance is 36 GFLOP/S for each
CPU. We implemented both sequential and parallel versions on
Xeon. The sequential implementation is same to the one on
Itanium processor. The parallel version is parallelized using
OpenMP [26]. The critical computing intensive paths are
parallelized by multiple threads first then further vectorized
by the compiler utilizing the SSE units per core. These
optimizations are achieved by enabling compiler optimization
flags in GCC, such as -sse4.2 -mtune=core2. Furthermore,
in order to achieve better scalability on all eight cores of
both CPUs, we manually optimized our OpenMP code for
better data locality control and further applied numactl to
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Fig. 6. Performance comparison of the vector-based Hessen-
berg reduction.

bind threads to physical CPU cores to avoid the NUMA
penalty. Such an optimization significantly improves overall
performance on two CPUs for up to 60%.

Overall, the vector-based Hessenberg reduction has been
realized in 6 different implementations on three platforms as
follows.

• The FPGA implementation;
• The Tesla C1060 GPU implementation;
• The GTX 480 GPU implementation;
• The sequential software implementation on Itanium 2;
• The sequential software implementation on Xeon E5520;
• The parallel software implementation of OpenMP.

We had another implementation by using Intel MKL library,
which runs 8 threads on the two Xeon processors. However,
the performance of the Intel MKL parallel implementation
is close to the OpenMP implementation. Therefore, the per-
formance result of MKL implementation is not included in
this paper. The comparison among these 6 implementations

195KILIC, HUANG, CONNER, MIROTZNIK: HARDWARE ACCELERATED DESIGN OF MILLIMETER WAVE ANTIREFLECTIVE SURFACES



is illustrated in Figure 6, which includes both computation
time and the speedup against the software implementation on
Itanium 2. The computation time on both FPGA and GPU
is the end-to-end time including data communication time
and data processing time on the coprocessors. The FPGA
configuration time is not counted, however.

From Figure 6(b), it can be found that the FPGA implemen-
tation is able to outperform the Itanium 2 by 20 folds. Both
Virtex-4 and Intel Itanium 2 were technologies around Year
2005, and the FPGA implementation has the big advantage
than the CPU when the device was just released to the market.
However, the performance of the FPGA implementation lags
behind the state-of-the-art microprocessor and the GPUs with
a big margin. The inferior performance of FPGA is mainly
due to three factors. (i) The FPGA device is running at
a very low frequency, i.e., 100 MHz. If the FPGA device
is running at the same speed as the microprocessor, their
performance will tie. (ii) The direct implementation of Alg. 1
is a sequential process due to the data dependency. Although
we have tried to parallelize the hardware implementation to
the extreme, its performance is easily surpassed by modern
multicore processors with improved design on cache and SSE
when dealing with applications such as Hessenberg reduction.
(iii) The 5 local memory banks on the current platform become
the limiting factor to increase the parallelism in the hardware
implementation. More memory banks are desired to achieve
higher parallelism on FPGA device.

The state-of-the-art microprocessor used in the experiments,
Intel Xeon processor, demonstrates a remarkable performance
improvement than the Itanium 2. For example, the sequential
implementation on Xeon outperforms the sequential imple-
mentation on Itanium 2 for 50 folds. Putting multiple cores in
a single processor further improves its performance, which is
contributed mainly by two factors. First, the SSE extension in
modern processor provides the vector processing capability,
which fits the computation pattern in the target application
very well. Second, the target application is a streaming ap-
plication in which the computation can be distributed onto
multiple cores to parallelize the data processing. Due to the
data distributing overhead, the benefit for using multiple cores
can be achieved only when the problem size is big enough,
e.g., the rank of the matrix reaches 150 in Fig 6(b).

It is evident that it will be beneficial to implement the
application on GPU as the matrix rank increases. The Tesla im-
plementation surpasses the sequential software implementation
on Xeon at rank 260 and then approaches the parallel software
implementation afterwards. Fermi consistently outperforms
GT200 for approximately 4×. Two factors mainly contribute
to the performance improvement on GPU architecture. The
first one is the massive parallel computing capability provided
by the hundreds of streaming processors. As the rank of the
matrix increases, the occupancy of the streaming processors
improves accordingly as well as the speedup. The second
factor is the very high bandwidth provided by the graphics
DDR memory. As shown in Table 3, the memory bandwidth
on GPU is 7 times of the memory bandwidth on CPU. The
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Fig. 7. Performance scalability of vector-based implementa-
tions of Hessenberg reduction.

high bandwidth is very beneficial when the data need to be
frequently accessed from the memory.

B. Scalability

In the previous test, we limit the matrix rank at 480 because
it is the biggest size the FPGA design can accommodate due
to the size of the off-chip memory. In the meantime, it is
clearly demonstrated that GPUs are capable of outperforming
multicore CPUs as the matrix rank increases. In order to com-
pletely show the performance potential of GPUs, we compare
them with the sequential and 8-thread x86 implementations
on the Xeon platform (shown in Figure 5) with the matrix
rank up to 4,096. By observing Figure 7, the implementation
on Tesla C1060 is generally 2 times faster than the 8-thread
Xeon implementation. The main reason has been described
as above. The GTX 480 GPU outperforms all other versions
consistently with a big margin. The Hessenberg reduction is
a computation-intensive as well as communication-intensive
problem. The abundant streaming processors and the high
memory bandwidth on the Fermi architecture evidently give
the advantage of GTX 480 compared with other technologies.

VI. CONCLUSION

Using FPGAs and GPUs as coprocessors to CPUs in
parallel computing has been demonstrated in the context of an
engineered material design, where the numerically intensive
components of the RCW algorithm were implemented on
these hardware acceleration technologies. The performance
speedup on both coprocessors compared with software
implementations on modern microprocessors are very
impressive, proving both platforms are very suitable in
scientific applications.
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Abstract ─ Diffraction of plane waves by an 
impedance wedge with surface impedances equal 
to the intrinsic impedance of surrounding medium 
is investigated for oblique incidence case. In the 
oblique incidence case, the scattering problem 
cannot be solved explicitly because of the resultant 
coupled system of functional equations unless the 
system is decoupled. Therefore under the assumed 
condition on wedge impedance, these functional 
equations are decoupled and the expression for the 
diffraction coefficient is derived as well as the 
diffracted fields.  
  
Index Terms ─ Functional equations, impedance 
wedge, Maliuzhinets theorem, Sommerfeld 
integrals.  
 

I. INTRODUCTION 
In many practical applications, scatterers are 

partly wedge shaped metallic structures covered 
by dielectric materials or metallic structures with 
finite conductivity which can be simulated with 
impedance boundary conditions. Therefore, the 
problem of diffraction by an impedance wedge is 
investigated by a number of scientists and is very 
important for both civil and military applications.  

Diffraction by an impedance wedge was first 
solved by Maliuzhinets for the normal incidence 
case [1]. In this solution, the total field was 
expressed by the integral of an unknown spectral 
function. The unknown spectral function was 
determined using the boundary conditions, the 
edge conditions, and the radiation condition. The 
fundamental contribution of the Maliuzhinets 
method is the reduction of the integral equation 

into a first order functional equation. But for the 
oblique incidence case, the problem cannot be 
solved explicitly, since the resultant equations 
form a coupled functional equations system.  

The solutions for the problem under 
consideration are available only for some limited 
wedge opening angles and only under some 
assumption for the surface impedance of this 
wedge [2-22].  

In this study, applying the Leontovich 
boundary conditions, a coupled differential 
equations system is derived for the z-components 
of the fields. Using the similarity transformation, 
the relevant matrices are diagonalized assuming 
that the surface impedance is equal to the free 
space impedance.  

The solution for the Helmholtz equation is 
sought in the form of Sommerfeld integrals. In 
order to solve the Maliuzhinets functional 
equations, the Maliuzhinets theorem is applied to 
the Sommerfeld integrals. Solving the functional 
equations, the closed form solution is derived and 
the uniform asymptotic solution is obtained by 
applying the steepest descent path method to the 
Sommerfeld integrals. The numerical results are 
obtained for different wedge opening and 
incidence angles and they are shown in Figs. 3 
through 7.  
 
II. FORMULATION OF THE PROBLEM 

The problem under consideration is a wedge 
with an opening angle of 2 , where the edge 
coincides with the z-axis. The direction of 
propagation of the incidence wave is specified by 
the angles   and 0  as shown in Fig. 1. The 
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incident field is determined by the z-components 
of the electromagnetic field.  

 

 
Fig. 1. The geometry of the problem. 

 
Due to the invariance of both the wedge 

geometry and the impedance with respect to z, the 
problem can be reduced to a two dimensional 
problem and the z-components of the electric and 
magnetic field vectors of the incident wave can be 
represented as  

    , exp cosi i
z zH H r ik z  , (1) 

               , exp cosi i
z zE E r ik z  ,            (2) 

where  
   0 0exp sin cosi

zH H ikr      , (3) 
and 

  0 0exp sin cosi
zE E ikr      .      (4) 

 Using the Maxwell’s equations, the field 
components can be expressed in terms of z-
components as follows: 

 02
0

1 1 cos
sin

z z
r

E HH Z
r riZ k




   
    

, (5) 

and  

 0
2 cos

sin
z z

r
Z H EiE
r rk




   
    

, (6) 

where 0 0k     is the free space wave number 
and 0Z  is the free space impedance given by  

 0
0

0
Z 


 . (7) 

On the surfaces of the wedge, the Leontovich 
impedance boundary condition can be represented 

as   
   1,2ˆ ˆ ˆ.E n E n Z n H  

  
. (8) 

Applying boundary conditions result in a matrix 
equation system defined as  

  1 2

,

1 1 sin

                                       cos

z

j z

zz S j
S j j

z

z

S j

H
H

ik A
EEr

H
rB

E
r












 
           
  

 
   
 

  

,(9) 

where sentence  

 0

0

0

0

j

j

Z
Z

A
Z
Z

 
 
   
 
  

, (10) 

and 

 0

0

10

0
ZB

Z

    
  

,          (11) 

and j=1,2. To obtain the unknown, this coupled 
matrix system must be diagonalized. Applying 
similarity transformation to matrix B can produce 
a diagonal matrix system. To reach this aim the 
transformation matrix can first be written as 

 z

z

H u
P

E v
   

   
  

, (12) 

where P is the similarity transform of matrix B, 
and is defined as  

 11 12

21 22

P P
P

P P
 

  
 

. (13) 

After the necessary manipulations P can be 
rewritten as 

0

0

1i
ZP

Z i

 
   
  

.        (14) 

By using this similarity transform matrix, matrices 
A and B are diagonalized as follows 

+
y 

x
(r,) 

z 

 
0 



Z1 
Z2 
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0 0

0 0 01

0 0 0

0 0

1
2 2

1
2 2

j j

j j

j j

j j

Z ZZ Zi
Z Z Z Z Z

P AP
Z ZZ Z Zi
Z Z Z Z



    
              

    
             

, (15) 

and 

 1 0
0
i

P BP
i

  
   

. (16) 

Within equation (15) the diagonalization condition 
is observed as 

 0

0
0j

j

ZZ
Z Z

  , (17) 

and finally the decoupled matrix system can be 
written as 

  1 21 01 1 sin
0 1

0
                               cos

0

j

S j
S j

S j

u
u

ik
v vr

u
i r

i v
r










 
                
  

 
          
  

. (18) 

The solutions for field components are sought in 
the form of Sommerfeld integrals as  

     sin cos1,
2

ikr
ju v f e d

i
 



  


  ,  (19) 

where  is the Sommerfeld double loops shown in 
Fig. 2, and  is the complex planes variable. The 
calculation of the unknown spectral functions 
represented by  fj is given in  the section titled far 
field solution.  

 Application of the Malyuzhinets’ theorem to 
the functions u and v gives the following equations 
for    . 

  
     

     

1

1 1

sin 1

sin 1 sin

j

j

f

f C

  

   

    
 
        
 

, (20) 

and 

 
     

     

2

2 2

sin 1

sin 1 sin

j

j

f

f C

  

   

    
 
        
 

, (21) 

where 1 1cos
sin




  
  

 
. 

 

 
 
Fig. 2. The complex  plane with Sommerfeld 
double loops and the steepest descent paths   
SDP(-) and SDP(). 
 

III. FAR FIELD SOLUTION 
 The homogeneous solutions  10f   and  20f   
for the functional equations (20) and (21) can be 
represented in terms of   functions as follows  

 

2 2

10 2 2
2 2 ,

2 2

f
 

 

      


      

            
   
            
     

 

(22) 

 

2 2

20 2 2
2 2

2 2

f
 

 

      


      

            
   
           
   

.  

(23) 

It is known that 
 
 

2
cos

2 2




 
 

       
. 

 The functional equations for  jf   should be 
supplemented by an additional condition [13] 

namely  
0

1
jf 

 



 is regular in Re   . 

Then, the solution can be represented in the 
following form to satisfy the additional condition 

Im{} 

Re{} 

+

-
- 0

SDP(-) 

SDP() 

201IKIZ, ZATEROGLU: DIFFRACTION OF OBLIQUELY INCIDENT PLANE WAVES BY AN IMPEDANCE WEDGE WITH SURFACE IMPEDANCES



        0 0 .j j jf f        (24) 
Here a new function is defined as  

      0 0 0j jF f     . (25) 

New unknown spectral functions  j   are 

introduced to facilitate the solution and  0   is 
defined as  

    
   

0
0

0

cos
sin sin

 
 

 



, (26) 

where  is equal to 
2
 


 and  j   has no 

poles and zeros in the strip Re   .The 
function  0   satisfies the following relation 

   0 0        .       (27) 

The known functions  0jF   satisfy equation 

(20) and (21) as  0jf  . Then,  j   obey the 
simple functional equations where λ is wavelength 
sentence. 

     0j j        . (28) 

Since the residue of fj at 0   must give the 
incident field, the following can be written 

   0
0

Res 1j jF
 

  


 ,     (29) 

where  
0

Res f
 




 is used for the residue of a 

function  f   at a point 0 . It follows that 

    0 0

1
j

jf
 


 . (30) 

So the solutions for the unknown spectral 
functions are given by 

  
   

 
00

0 0

j
j

j

f
f

f
  




 . (31) 

By substituting (31) into (19) and by evaluating 
the integral asymtoticly by the steepest descent 
method gives 

     
sin

2 4 4

1 1,
2 sin

i i kr i
e e eU r f f

kr

  

    
 

  

      , 

(32) 
and   
 

     
sin

2 4 4

2 2,
2 sin

i i kr i
e e eV r f f

kr

  

    
 

  

      . 

(33) 
When inverse transformation is applied to (32) and 
(33), Hz and Ez  are obtained as 

 0

0

1
z

z

iH u
Z

E v
Z i

 
              

. (34) 

zH  is also written as 

 
0

1
zH iu v

Z
  . (35) 

More specifically 
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

 

(36) 
where  D   is the diffraction coefficient given as 

     

   

4

1 1

2 2
0

2 sin

1                             ,

i
eD i f f
k

f f
Z


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 
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


       



      



 (37) 

where  jf   is defined in (24) and the related 

functions  10f  ,  20f  ,  0  , and  j   
are given in (22), (23), (26), and (30), respectively. 

 
IV. NUMERICAL RESULTS  

In this paper, diffraction of obliquely incident 
plane electromagnetic waves by impedance being 
equal to the intrinsic impedance of surrounding 
medium is considered. This study is the first to 
investigate this case. Therefore, we reduced the 
problem to the normal incidence case taking 

90o   to be able to compare our results with the 
known studies. In Figs. 3 through 5, it is obvious 
that our results and the results obtained by İkiz 
previously and by Büyükaksoy [17, 23] are very 
similar. 
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Fig. 3. Comparison of the results (=120o, 
o=30o). (*): results obtained previously by İkiz      
(): results obtained by İkiz in this study.  

 

 
Fig. 4. Comparison of the the results (=165o, 
o=45o) (*): results obtained previously by İkiz      
(): results obtained by İkiz in this study. 

 
 

 
Fig. 5. Comparison of the results by Büyükaksoy 
& Uzgören(o) and by İkiz(*) =180o. 

In Figs. 6 and 7, we represent the diffraction 
coefficients for different values of incidence and 
wedge opening angles. 
 

 
Fig. 6. Diffraction coefficient  1010 log D   

versus observation angle with =120o, o=90o , 
=30o (*), 45o (o), 60o.(), 75o (), 90o (). 

 

 
Fig. 7. Diffraction coefficient  1010 log D   

versus observation angle with =157,5o, o=120o , 
=30o (*), 45o (o), 60o.(), 75o (), 90o (). 
 

V. CONCLUSION 
The wedge surface impedance being equal to 

the intrinsic impedance of the surrounding 
medium, not only presents a convenient 
mathematical problem, but it can also correspond 
to a practical structure especially when it is 
assumed that this condition can be satisfied by 
choosing the appropriate r  and r  values for any 
composite material.  From a mathematical point of 
view, this problem should also be considered as a 
first step for solving a wedge scattering problem 
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with any surface impedance, with plane waves at 
any random incidence angle. 
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Abstract - In this work, the equivalent electro-
magnetic (EM) currents on the surface of stratified 
homogeneous bi-anisotropic media backed by a 
perfect electric conductor (PEC) layer are derived 
and investigated. By using the representation of 
Maxwell's equations with a first-order state-vector 
differential equation, the tangential field compo-
nents and the corresponding equivalent EM cur-
rents at the interface between the outmost 
bi-anisotropic media layer and the free space is 
derived analytically and can be easily degenerated 
into the single anisotropic and isotropic cases. This 
work is considered as a further step in the study of 
the EM characteristics of stratified complex media 
and the obtained results may provide a way for 
approximately fast calculation of the EM scattering 
from PEC targets coated by stratified homogene-
ous bi-anisotropic media. Simulation results are 
given to validate our analysis and conclusions. 
 
Index Terms – Bi-anisotropic media, equivalent 
electromagnetic current, high frequency method, 
scattering. 
 

I. INTRODUCTION 
    In modern warfare, stealth technology has been 
becoming one of the most important technologies 
for military targets. Besides shape stealth, coating 
is the most commonly used method. The equipped 
aircrafts and warships are usually coated with 
one-layer or multi-layer radar absorption materials 
(RAM), which are commonly anisotropic or 
bi-anisotropic. To obtain the scattering character-
istics and the evaluation of these stealth targets, 

several full-wave methods have been employed, in 
which the finite-difference time-domain (FDTD) 
method [1-3], the couple dipole approximation 
method [4], the method of moments (MoM) [5], 
and the finite element method (FEM) are the most 
representative ones. However, these methods are 
not suitable for electrically large EM scattering 
problems owing to limited computational re-
sources. Asymptotic methods, such as the physical 
optics (PO) method with its extension the physical 
theory of diffraction (PTD), the geometrical optics 
(GO) method with its extension the geometrical 
theory of diffraction (GTD), and the shooting and 
bouncing ray (SBR) method, can solve electrically 
large problems at the cost of losing precision since 
these approximate methods do not exactly capture 
the EM characteristics of complex media. Our 
work here concentrates on the hybridization of the 
full-wave and the asymptotic methods based on the 
generalized field equivalence principle. As we 
know, the PO method utilizes the induced PO 
currents on the surface of PEC objects to calculate 
the scattered field based on the high frequency 
approximation that the induced equivalent electric 
current J

  at a certain point is solely determined by 
the incident magnetic field H

  and the normal 
vector n̂  at that point with the formula ˆ2J n H= ×

  . 
Another assumption is also made in this approxi-
mation that each illuminated point is regarded as an 
infinite plane without considering the curvature at 
that point. Thus, the mutual coupling of two arbi-
trary induced currents is not taken into considera-
tion. This approximation is well suited for electri-
cally large EM scattering problems. So in this work, 
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we inherit this approximation idea for the extrac-
tion of equivalent electric and magnetic currents on 
the surface of an infinite stratified homogeneous 
bi-anisotropic media backed by a PEC layer. These 
analytical equivalence currents give us an alterna-
tive solution for fast approximate estimation of the 
EM scattering from complex coated PEC targets 
through asymptotic methods.  
    In 1950, Abelès [6] provided a solution called 
characteristic matrix to solve the problem of EM 
wave propagation in isotropic stratified medium in 
a single direction. Later in the 1970s, Teitler and 
Henvis [7] applied Abelès's characteristic matrix 
method to the stratified anisotropic media. Then, 
Berreman [8] introduced a 4 4×  matrix technique 
to solve the problem of reflection and transmission 
of EM waves in anisotropic material. Graglia [9] 
used integro-differential equations to solve the 
scattering problem in linear, lossy, anisotropic 
media. References [10] provided another approach 
that employs a first-order state-vector differential 
equation representation of Maxwell's equations 
and uses a 4 4×  transition matrix relating the 
tangential field components at the input and output 
planes of the anisotropic region to represent the 
solution. References [11-13] provide several ana-
lytical methods to the propagation problem in 
stratified anisotropic media. All of the above works 
only considered the reflection and transmission of 
EM waves in the stratified anisotropic material.  
    In this paper, we focus on the equivalent EM 
currents extraction on the surface of anisotropic or 
bi-anisotropic media backed by a PEC layer, which 
can be employed in the estimation of EM scattering 
from electrically large PEC targets coated by 
stratified anisotropic or bi-anisotropic media. In 
Section II and III, the EM wave propagation in 
multiple layered infinite bi-anisotropic media is 
studied, in which the tangential EM components in 
bi-anisotropic material are derived from Maxwell's 
equation in the form of a 4 4×  matrix. After im-
posing the boundary condition that the tangential 
EM components are continuous across the bound-
ary of two different media and the tangential elec-
tric field is zero on the surface of the PEC layer, the 
relation of the tangential EM field components of 
the outmost and inmost layer of the stratified 
bi-anisotropic is obtained. Then the total tangential 
EM fields on the surface of the outmost anisotropic 
media layer are derived analytically and the 
equivalent EM currents on the surface of the out-

most layer of bi-anisotropic are obtained. Finally, 
we show in Section III that these equivalent cur-
rents can be easily degenerated into the single an-
isotropic and isotropic cases. Simulation results are 
given in Section IV to validate our conclusions.      
 

II. PROPAGATION EQUATION IN 
STRATIFIED BIANISOTROPIC 

MATERIAL 
    In this paper, the infinite stratified homoge-
neous bi-anisotropic coating is viewed as a 
one-dimensional issue. As shown in Fig.1, that a 
monochromatic plane wave is obliquely incident 
from free space to an infinite stratified homoge-
neous bi-anisotropic media backed with a PEC 
layer. Each layer is assumed to be infinite towards 
x and y directions. The position of each layer along 
the z  direction is set as ( 0,1, 2 , )n n Nz d = ⋅ ⋅⋅= . 

1z d= 2z d= 1Nz d −= Nz d=

θ

θ

x

o z

xE

yE zE

Freespace

e⊥


/ /e

( )xE x−

( )xE x+

••••••

Bianisotropic
Media

PEC
1stLayer 2ndLayer N−1thLayer NthLayer

y

0 0z d= =

NN N Nµ x e z11 1 1µ x e z

Fig. 1. A monochromatic plane wave is obliquely in-
cident from free space to an infinite stratified ho-
mogeneous bi-anisotropic media backed with a PEC 
layer. 
 
    Imposing the phase matching condition in each 
layer, the x-component of wave vector nk should 
be equal and denoted by xk , in which the subscript 

n stands for the nth layer. Using the j te ω  time 
convention, the phasor fields in the nth layer can be 
written in a separable product form as below 

( , ) ( ) ,

( , ) ( ) ,

x

x

jk x
n n

jk x
n n

E x z E z e

H x z H z e

−

−

=

=

 

 

                   (1)                           

where 0 sinxk k θ=  is the x-component of 0k . 0k  
is the incident wave number in free space and θ  is 
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the incident angle. For bi-anisotropic materials, the 
source-free Maxwell's equations can be expressed as 

,

,
n n n n n

n n n n n

E j H j E

H j H j E

ω µ ω ς

ω ξ ω ε

−∇× = ⋅ + ⋅

∇× = ⋅ + ⋅

  

  

            (2)                        

where nε , nµ are the dyadic permittivity and per-

meability, nς , nξ  are the dyadic magneto electric 
parameters as follows: 

11 12 13

21 22 23

31 32 33

,
n n n

n n n n

n n n

εεε 
εεεε  

εεε 

 
 =  
  

 

11 12 13

21 22 23

31 32 33

,
n n n

n n n n

n n n

µ µ µ
µ µ µ µ

µ µ µ

 
 =  
  

 

11 12 13

21 22 23

31 32 33

,
n n n

n n n n

n n n

ς ς ς
ς ς ς ς

ς ς ς

 
 =  
  

  

11 12 13

21 22 23

31 32 33

.
n n n

n n n n

n n n

ξξξ 
ξξξξ  

ξξξ 

 
 =  
  

                      (3) 

    
     Substituting Eq. (1) into Eq. (2) and canceling 
the common exponential factor, six first-order dif-
ferential equations can be derived. By eliminating the 
z-component of the EM field, the above six equations 
can be reduced to four independent equations. If we 
define a state vector in terms of the transverse field 
components of nE



 and nH  
(1)

(2)

(3)

(4)

( )( )
( )( )

( ) ,
( )( )
( )( )

nxn

nyn
n

nxn

nyn

E zz
E zz

z
H zz
H zz

   Ψ
   Ψ   Ψ = =
   Ψ
   
Ψ      

             (4)                     

the four independent first-order differential equa-
tions can be expressed as 

( ) ( ),n n n
d z z
dz

Ψ = Γ ⋅Ψ                       (5)           

in which the complex elements of the 4 4× Γ ma-
trix are given in Appendix(I). 
The solutions of Eq. (5) have the form of 
non-uniform plane waves as follow 

( ) ,n n n nz B E AΨ =                             (6)          

where 1 2 3 4[ ,  ,  ,  ]n n n nz z z z
nE Diag e e e eλ λ λ λ= , in 

which njλ (j=1,2,3,4) are the eigenvalues of the 

nΓ matrix and can be easily found by solving the 
roots of the unitary complex quartic equation in 
Appendix (II). nB  is a 4 4×  matrix with its  

elements 1/nij nij n jb = ∆ ∆ , (i, j=1, 2,3,4) see nij∆  
in the Appendix (III). In general anisotropic or 
bi-anisotropic case, njλ (j=1,2,3,4) are two pairs of 
conjugate complex roots, which represent the type 
I and type II waves going in the positive and neg-
ative z directions [19]. And the column vectors of 

nB are the corresponding eigenvectors. In isotropic 

cases, njλ  (j=1, 2, 3, 4) are two identical pairs of 

conjugate complex roots and nB  has four linearly 
independent eigenvectors. So, nB is always re-
versible in any case. nA =   

( ) ( ) ( ) ( )
1 2 3 4 , , ,  

Tn n n na a a a   is the unknown column 

vector to be determined, in which ( )n
ia  (i=1, 2, 3, 

4) are the unknown coefficients of the tangential 
fields in the nth layer. It can be seen from Eq. (6) 
that once the nA  is known, the tangential compo-
nents of EM wave in the nth layer can be evaluated 
analytically. 
 

III.  DERIVATION OF THE EM 
FIELDS AND EQUIVALENT 

CURRENTS ON THE SURFACE 
OF STRATIFIED BIANISO-

TROPIC MEDIA BACKED BY A 
PEC LAYER 

    Imposing the boundary condition at the inter-
face between the nth and (n+1) th layer that the 
tangential EM fields are continuous

1( ) ( )n n n nz d z d+Ψ = = Ψ = , the following matrix 
equations can be derived 

( 1) ( 1) ( 1)

1 1
( 1) ( 1) ( 1)

,

,
n Rn n n L n n

L n n n Rn n n

B E A B E A

E B B E A A
+ + +

− −
+ + +

=

=
                (7)                         

where 
1 2 3 4

1 1 2 1 3 1 4 1

[ , , , ],

[ , , , ].

n n n n n n n n

n n n n n n n n

d d d d
Rn

d d d d
Ln

E Diag e e e e

E Diag e e e e

λ λ λ λ

λ λ λ λ− − − −

=

=
   (8)                       

By using the boundary condition at N-1 interfaces 
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(from 1z d= to 1nz d −= ) repeatedly, the relation of 
the tangential electric fields between the outmost 
and inmost layers can be derived as 

1 1 1 1
( 1) ( 1) 2 2 1 1 1 .LN N N R N L R NE B B E E B B E A A− − − −

− − ⋅⋅ ⋅ =   
  (9)                   

On the surface of the PEC layer, tangential electric 
fields are naturally set to zero that /2 0N RN NB E A = , 
in which /2NB  is a 2 4×  matrix with the ele-
ments from the first two rows of matrix BN. Thus, 
we can get 1 0C A× = , where 

1 1 1 1
/2 ( 1) ( 1) 2 2 1 1N RN LN N N R N L RC B E E B B E E B B E− − − −

− −= ⋅⋅⋅
                   (10) 

is a 2 4× matrix. 
    From Maxwell's equations, the transverse EM 
fields in the left half free space can be expressed as 
the sum of the incident wave and the reflected 
wave 

1

2

( , ) ( ) ( ) ,

( , ) ( ) ( ) ,

( , ) [ ( ) ( ) ],

( , ) [ ( ) ( ) ],

z z

z z

z z

z z

jk z jk z
x x x

jk z jk z
y y y

jk z jk z
x y y

jk z jk z
y x x

E x z E x e E x e

E x z E x e E x e

H x z E x e E x e

H x z E x e E x e

η

η

−+ −

−+ −

−+ −

−+ −

= +

= +

= − +

= −   (11) 
where 0( ) xjk x

x xE x E e−+ += , 0( ) xjk x
y yE x E e−+ +=  are 

the transverse electric fields of incident wave at
0 0z d= = , which are known, and

0( ) xjk x
x xE x E e− −= , 0( ) xjk x

y yE x E e− −=   are the re-
flected electric fields, which are unknown. 

0 coszk k θ=  is the incident field wave propaga-
tion vector in the z direction.  1 0cos / ,η θ η=

2 01/ ( cos ),η η θ= 0 120η π= Ω  is the wave 
impedance in free space. By using the boundary 
condition that the tangential electric fields must be 
continuous across the interface (z=0) of free space 
and the outmost layer of the stratified 
bi-anisotropic media, the following matrix can be 
obtained 

1 1 1 [ ( , 0), ( , 0),

( , 0), ( , 0)] .
L x y

T
x y

B E A E x z E x z

H x z H x z

= = =

= =
     (12) 

Considering Eqs. (10 and 12) and through some 
matrix operations, the unknown ( )xE x−  and 

( )yE x−  can be expressed as 

(1)
1
(1)
2
(1)
3 1 1
(1)
4 2

( )
( )

( )
,

( )
( ) 0
( ) 0

x

y

y

x

x

y

a E x
a E x
a E x

Q
a E x

E x
E x

η
η

+

+

+
−

+

−

−

   
   
   
   −

=   
   
   
   
     

111 112 113 114

121 122 123 124

131 132 133 134 1

141 142 143 144 2

11 12 13 14

21 22 23 24

1 0
0 1
0

,
0

0 0
0 0

b b b b
b b b b
b b b b

Q
b b b b
c c c c
c c c c

η
η

− 
 − 
 −

=  
 
 
 
  

    (13) 

and ijc  (i=1,2;j=1,2,3,4) are the elements of 
matrix C in Eq.(10). 
    Finally, the relation between the incident and 
reflected tangential electric fields can be simpli-
fied as 

11 12

21 22

( ) ( )
,

( ) ( )
x x

y y

E x E xs s
E x E xs s

− +

− +

    
=    

       
            (14)                       

where 

11 1 2 2( ) / ,s q q Qη= + 12 3 1 4( ) / ,s q q Qη= +

21 5 2 6( ) / ,s q q Qη= +  22 7 1 8( )s q qη= + / ,Q  

and ( 1, 2 8)jq j = ⋅⋅⋅  can be found in Appendix 
(III). 
    So far the reflected tangential EM fields on 
the surface of the outmost layer are obtained, 
which can be added to the incident fields to obtain 
the total tangential EM fields on the surface of the 
outmost layer. Thus, the equivalent EM currents 
can be derived as follows: 

0 21

22 1

11 12 2

0 11

12 1 21

22 2

ˆ ˆ| [ ( )

(1 ) ( )]

ˆ[(1 ) ( ) ( )] ,

ˆ ˆ| [(1 ) ( )
ˆ( )] [ ( )

(1 ) ( )] .

s total z x

y

x y

ms total z x

y x

y

J n H y s E x
s E x

x s E x s E x

J E n y s E x
s E x x s E x

s E x

η

η

η

η

+
=

+

+ +

+
=

+ +

+

= × = −

+ −

+ − −

= × = +

+ −

+ +

ηη

ηη

        (15)                  

Equation (15) can also be written in the following 
general forms 
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21 / / 22
0

12
11 / /

0

11 / / 12

21 / / 22

cosˆ [ cos (1 ) ]

1ˆ [(1 ) ] ,
cos

ˆ [(1 ) cos ]
ˆ [ cos (1 ) ],

i i
s

i i

i i
ms

i i

J e s E s E

se s E E

J e s E s E
e s E s E

ω

ω

θθ
η

θ η

θ

θ

⊥ ⊥

⊥

⊥ ⊥

⊥

= − + −

+ − −

= + +

− + +

η

η

   (16) 

where ˆˆˆe n eω ⊥= × , / /
iE  and iE⊥  are the incident 

electric fields those are parallel and perpendicular to 
the incidence plane, respectively, as shown in Fig. 1. 

Observing Eq. (16), the relations between sJ


 and 
msJ


can be expressed as 

0 ˆ ( ),ms s sJ n Z Jη= − × ⋅
ηη

                    (17)                     
where  

/ /ˆˆˆˆsZ Z e e Z e eω ω⊥ ⊥ ⊥= +                       (18)                
is the normalized dyadic surface impedance to the 
free space and 

22 21 / /

22 21 / /

11 / / 12
/ /

11 / / 12

(1 ) cos ,
[(1 ) cos ]cos

[(1 ) cos ]cos .
(1 ) cos

i i

i i

i i

i i

s E s EZ
s E s E
s E s EZ

s E s E

θ
θ θ

θ θ
θ

⊥
⊥

⊥

⊥

⊥

+ +
=

− −

+ +
=

− −      (19)

                            

    We remark that Eq. (16) - Eq. (19) give the 
final results of the equivalent EM currents on the 
surface of stratified homogeneous bi-anisotropic 
media backed with a PEC layer, which can be de-
generated into the single anisotropic and isotropic 
cases easily. 
    Now, we consider the single anisotropic case 
when the PEC layer is coated with stratified uni-
axial or biaxial anisotropic material and the per-
mittivity nε  and permeability nµ are diagonal 
matrixes 

0 11 22 3

0 11 22 3

[ , , ],

[ , , ].

r r r
n n n n

r r r
n n n n

Diag
Diag

εεεεε   

µ µ µ µ µ

= ×

= ×
            (20)                   

In this case, the matrix nB  can be simplified as 
[17, 18] 

3 4

23 23

1 2

14 14

1 1 0 0
0 0 1 1

0 0 ,

0 0

n n
n

n n

n n

n n

B
λ λ

λ λ

 
 
 
 

=  Γ Γ 
 
 Γ Γ 

         (21)                       

where nijΓ  (i, j=1,2,3,4) is the element of matrix 

nΓ  in Eq. (5). 
    If there is only one anisotropic layer, the fol-
lowing expressions can be obtained that 

11 / / / /

22

12 21

( cos ) / ( cos ),
( cos 1) / ( cos 1),

0,

s Z Z
s Z Z
s s

θ θ
θ θ⊥ ⊥

= − +
= − +
= =

         (22)                        

2
/ / 22 33

2
0 22 11 11 33 11 33

11 33

2 2
0 11 22 11 33 33 22

sin

tan( sin / ) / ,

tan( sin / ) / sin .

r r

r r r r r r

r r

r r r r r r

Z j

k d

Z j

k d

µ ε θ

µ εε  θ εεε 

µ µ

µ ε µ θ µ µ ε θ

⊥

= −

−

=

− −
          (23) 

Then Eq. (16) can be simplified as 

0 / / / / 0 / /

/ / / /

ˆˆ/ ( ) ( ) / ( ),
ˆˆˆ ( ) ,

i i
s

i i
ms

J e T E Z n e T E Z
J e T E n e T E

η η⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥

= + ×

= − ×

η



η

  

(24)               
where / / / / / /2 cos / ( cos ),T Z Zθ θ= + and 

2 cos / ( cos 1).T Z Zθ θ⊥ ⊥ ⊥= +  
    Comparing Eq. (24) with the Eq. (17) and Eq. 
(18) in [14], we can observe that our generalized 
form of equivalent EM currents can be degener-
ated into the single anisotropic case naturally. By 
comparing Eq. (24) with Eq. (12) and Eq. (13) in 
[15], we can see that our results can also be de-
generated into the isotropic case easily. This 
equivalent EM current can be employed for RCS 
prediction of coated targets in free space and half 
space [16]. 
 

IV. VALIDATION AND SIMULATION 
RESULTS 

    In this section, several simulation results are 
given for validation of the deduced analytical 
equivalent EM currents sJ



and msJ


. We remark 
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that only the four s parameters ( 11, 12, 21, 22s s s s ) are 
calculated for comparison considering that the s 
parameters are identical to sJ



and msJ


 if the in-
cident fields are known based on Eq. (15). 
    First, we consider a two-layered isotropic 
lossy media case and a two-layered anisotropic 
lossy media case. The parameters of isotropic 
lossy case is as follows 

1 0.002 ,d m=

1 0 [15 - 4,15 - 4,15 - 4]Diag j j jεε = ×  

1 0 [2 1.2,2 1.2,2 1.2]Diag j j jµ µ= × − − − ; 

2 0.006 ,d m=

2 0 [4 0.8,4 0.8,4 0.8]Diag j j jεε = × − − −  

2 0 [1.5 0.4,1.5 0.4,1.5 0.4];Diag j j jµ µ= × − − −
and the parameters of the uniaxial anisotropic 
lossy case is as follows, the frequency is 10 GHz 
 

1 0.002 ,d m=

1 0

[10 2,10 2,29.39 0.94],Diag j j j
εε =
× − − −

1 0

[2.24 1.68, 2.24 1.68,3.52 16];Diag j j j

µ µ=

× − − −

2 0.006 ,d m=

2 0

[25.59 3.89, 25.59 3.89,8.19 1.30],Diag j j j

εε =

× − − −

2 0

[2.16 1.68, 2.16 1.68,1.39 0.56];Diag j j j

µ µ=

× − − −  
In both of these two cases 12 21 0s s= = . 

When the incident wave is TE wave, ( ) 0xE x+ = , 

22( ) ( )y yE x s E x− += , when the incident wave is 

TM wave, ( ) 0yE x+ = , 11( ) ( )x xE x s E x− += , the 
simulation results of the modulus and phase of 

11s , 22s  changed with the incident angle θ  are 
shown in Fig. 2 and Fig. 3 for comparison with 
HFSS. It is obvious that our results agree quite 
well with those of HFSS and the analytical calcu-
lation in this paper takes no time while the nu-
merical results obtained by HFSS takes more than 
5 minutes even calculating one incident angle. 

 
(a)                                     

 
(b) 

Fig. 2. Comparison of the s parameters (s11 and s22) 
simulated in this paper with HFSS in the two lay-
ered lossy isotropic case. (a) Module and (b) 
phase. 
 
    Then, we consider a single layered 
bi-anisotropic case, the parameters are as follows, 
the frequency is 10 GHz, 

1 0.006 ,d m=

1 0

[25.59 1.68,25.59 1.68,8.19 1.30],Diag j j j
εε = ×

− − −

1 0

[2.16 1.68,2.16 1.68,8.19 1.30],Diag j j j
µ µ= ×

− − −

1 0 0 [1.5 1.2,1.5 1.2,1 0.2],Diag j j jς ε µ= × − − +

1 0 0 [1 0.8,1 0.8,1.1 0.5].Diag j j jξε  µ= × − − −

 As shown in Fig. 4, 12s  and 21s is not zero in 
this case for bi-anisotropic media is rotational, 
which causes cross polarization. 
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(a)                                     

 
(b) 

Fig. 3. Comparison of the s parameters (s11 and s22) 
simulated in this paper with HFSS in the two lay-
ered lossy uniaxial anisotropic case. (a) Module 
and (b) phase. 
    

V. CONCLUSIONS 
    In this work, the analytical expressions of 
equivalent EM currents on the surface of stratified 
homogeneous bi-anisotropic media backed by a 
PEC layer are derived, which can be degenerated 
into the single anisotropic and isotropic cases. 
Some simulation results are given to validate our 
conclusions. These equivalent currents are straight 
forward and very general for derivation and cod-
ing, which can be employed in the quick approx-
imate estimation of EM scattering from electri-
cally large PEC targets coated by stratified iso-
tropic, anisotropic, or bi-anisotropic material. 
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(a)                                     

 
(b) 

Fig. 4. The simulation results of the four s param-
eters (s11, s12, s21 and s22) of the bi-anisotropic case. 
(a) Module and (b) phase. 
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Abstract ─ In a tire pressure monitoring system 
in which a pressure censor and a transmit antenna 
are contained in a tire, electromagnetic 
simulations of radiations from carcass embedded 
tires are requested. However, it is difficult to 
accurately determine these shielding effects.  

In this study, methods for performing accurate 
electromagnetic simulation by adopting the MoM 
scheme are determined. In the study of the 
electric fields inside a tire, calculated results are 
compared with the theoretical distributions in a 
coaxial cylindrical resonator. In the case of a 
dense carcass arrangement, simulation results are 
in good agreement with theoretical results. In the 
study of electric fields penetrating carcass wires, 
the results of the MoM scheme are compared 
with those obtained using the finite element 
method (FEM). The adequate mesh size of the 
tire rubber in the MoM scheme for which the 
accuracy of the simulation results is guaranteed is 
established. Finally, electromagnetic simulations 
of an actual carcass tire model are performed.  

 
Index Terms ─ Carcass tire, method of moment, 
normal-mode helical antenna, tire pressure 
monitoring system, tire rubber. 

 
I.  INTRODUCTION 

In order to ensure safety in cars, tire pressure 
monitoring systems (TPMSs) have been 
introduced in the USA and Europe [1]. In Japan, 
the AIRwatch system for passenger cars has been 
developed [2, 3] by The Yokohama Rubber Co., 
Ltd. However, in the case of large vehicles, tires 

are reinforced by carcass wires. In such cases, the 
transmission of radio waves becomes very 
difficult. Therefore, a small normal-mode helical 
antenna (NMHA) that has a high antenna gain 
was developed [4]. In order to develop an 
efficient TPMS for carcass tires, the electric field 
distributions inside the tire and the radiation 
characteristics need to be determined by 
performing electromagnetic simulation. However, 
the structure of a tire rubber with densely 
embedded carcass wires is difficult to simulate in 
method of moment (MoM) simulations. Although, 
the NECBSC code seems effective [5], authors 
selected the FEKO simulator because of the 
excellent ability of simulations for large scale 
objects.  

In this study, the accuracy of the simulation of 
the effects of carcass wires in tire rubber is 
determined by comparing simulation results with 
exact values. In section II, an outline of the TPMS, 
a simulation model of a carcass tire, and the 
electric characteristics of the NMHA are 
summarized. In section III, the accuracies of the 
simulation of the shielding effects of carcass 
wires are discussed by adopting the theoretical 
electric fields in a coaxial cylindrical resonator as 
an exact reference. In section IV, the accuracies 
of MoM simulations of the effects of tire rubber 
on electric field distributions are discussed by 
comparing MoM results with the accurate results 
obtained by using the finite element method 
(FEM). In section V, simulation results for an 
actual carcass tire model are shown. The 
computational costs of simulation, electric field 
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distributions around a tire, and radiation 
characteristics from a tire are presented. 

 
II. OBJECTIVE SYSTEM AND 

SIMULATION MODEL 
The AIRwatch system is illustrated in Fig. 1 [3]. 

Transmitters connected to tire pressure sensors 
are mounted on the wheels. A receiver unit is 
placed on the dashboard. A receiving antenna 
(film antenna) is attached to the windshield. Each 
of the sensors modulates continuous waves of 315 
MHz with air pressure data using a frequency 
shift keying (FSK) scheme. The modulated waves 
are radiated from a transmit antenna in the sensor. 
The receiving antenna collects all the transmitted 
waves. The pressure levels are indicated on the 
receiver unit. 

 
 
 
 
 
 
 
 
 

 
 
 
The structure of the carcass tire to be analyzed 

and the position of the antenna in the tire are 
shown in Fig. 2. In an actual tire, a dense-mesh 
reinforcing structure called a tire belt is embedded 
in the tread of the tire. In the simulation, the 
model has a thin metal plate instead. Moreover, 
tires of large-sized vehicles are equipped with 
thin wires, called carcass, to reinforce the radial 
directions. The antenna inside the tire is almost 
enclosed by metal structures. The area within the 
broken lines corresponds to the tire model of Fig. 
11, which is used to study the rubber effects. 

Figure 3 shows the NMHA, which is used as 
the transmitting antenna [4]. This antenna is well 
known for having an electric current source (I) 
and a magnetic current source (J), as indicated in 
the figure. The magnetic current source achieves 
efficient radiations in a metal proximity use. 
Radiated electric field components from the 
magnetic and electric current sources are 
indicated by EJ and EI, respectively. In order to 
contain this antenna inside a transmitter box, 
antenna size of 12.5 mm (0.01 wavelengths) 
diameter is determined. Since the input 

impedance becomes very small, a tap structure 
has been added to the NMHA in order to achieve 
impedance matching at 50 . 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 

 

 
Radiation characteristics of the NMHA on a 

small metal plate are shown in Fig. 4. The tap is 
positioned opposite the metal plate. The EJ 
component becomes dominant. Antenna gain of  
-12.3 dBd (relative value to the half wave length 
dipole antenna) is achieved. A rather high antenna 
efficiency is achieved. 
 
 
 

 
 
 
 
 
 

 
 

Fig. 4. Radiation characteristics of a NMHA. 

Fig. 2. Structure of a carcass tire. 

Fig. 3. Structure of a NMHA. 
Fig. 1. The AIRwatch system. 

218 ACES JOURNAL, VOL. 26, NO. 3, MARCH 2011



 

 

III. SHIELDING EFFECTS BY 
CARCASS WIRES  

 
A. Electric fields inside a tire  

By taking into account the tire structure of Fig. 
2, electric fields inside a tire are determined by 
metallic boundary conditions of a tire belt, wheel, 
and carcass [6]. Moreover, the tire rubber will 
affect the field distributions. In this section, 
affects of carcass are mainly investigated as the 
first step. Therefore, the rubbers are removed in 
the calculations. In order to evaluate the accuracy 
of the determined effects of carcass wires, the 
electric fields inside the tire were compared with 
that of a coaxial cylindrical resonator of a similar 
size to the tire. The structure shown in Fig. 2 is 
employed as the tire model in the simulation. The 
MoM code of FEKO is used. The structure of the 
cylindrical resonator is shown in Fig. 5. The outer 
and inner cylinders and the two side plates are all 
made of metals. In the sizes of actual tires, 
electric fields characterized by TEM and TE111 
modes are dominant inside the coaxial cylinders. 
In particular, the TEM mode is the simplest 
because it only has radial electric field vectors. 
On the other hand, the TE111 mode has complex 
electric field vectors of radial and circumferential 
components. To determine if the simulation is 
adequate, it is appropriate to use the TEM mode. 
The resonance frequency of the TEM mode is 
given by the following equation. 

 

where s is the mode variable. When s = 1, L = 
475.8 mm gives a resonance frequency of 315 
MHz. 

A detailed view of the theoretical electric field 
distributions in the TEM mode is shown in Fig. 6. 
Here, R1 = 515.0 mm and R2 = 242.8 mm were 
used. In Fig. 6(a), all the electric field vectors are 
directed toward the radial directions. In Fig. 6(b), 
the electric fields vanish at the side plates. The 
electric field distributions inside the carcass tire 
are shown in Figs. 7 and 8. Figures 7 and 8 
correspond to 288 and 36 carcass wires, 
respectively. In Fig. 7(a), the electric field vectors 
agree well with those in Fig. 6(a). In Fig. 7(b), the 
electric fields are confined to the inside of the tire. 
As for field intensities indicated beside the tire, 
electric fields on carcass wires become almost 
zero. This distribution agrees well with that in Fig. 
6(b). Therefore, in this carcass number, carcass 
wires function like a complete shielding wall, 
which is the same as the side plate in Fig. 6. 

In Fig. 8(a), deformations of the electric field 
vectors are observed. In Fig. 8(b), expansion of 

the electric fields outside the tire is observed. In 
electric field intensities indicated beside the tire, 
intensities on the carcass wire do not vanish. 
Electrical field distributions in the case of sparse 
carcasses seem reasonable. 

In conclusion, the simulation results inside the 
carcass tire are considered adequate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

B. Radiation from a tire  
The tire rubber is excluded from the structure 
shown in Fig. 2, and this structure is employed as 
the tire model in the simulation [6]. The MoM 

0 / 2,L s (1)

(a) Vertical plane. (b) Horizontal plane. 

Fig. 7. Electric field distributions inside the tire 
(carcass wires: 288). 

Fig. 5. Structure of a coaxial cylindrical resonator. 

Fig. 6. Theoretical electric field distributions in 
the TEM mode.  

(a) Vertical plane. (b) Horizontal plane. 

R2

R1
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code of FEKO is used. Radiation characteristics 
from a tire are shown in Fig. 9. In Fig. 9(a), a tire 
without carcass is shown. The electric fields in 
the TEM mode radiate through the apertures of 
the tire. The main beams exist in the direction of 
the Y axis. The maximum power becomes -4.2 
dBd. In the direction of the X axis, a fairly strong 
beam is observed. Figure 9(b) shows a case where 
the number of carcass wires is 288. The main 
beam decreases by 32.5 dB. Figure 9(c) shows a 
case where the number of carcass wires is 36. The 
main beam decreases by 14.4 dB. Because the 
main beams in Figs. 9 (a), (b), and (c) are directed 
toward the Y axis, the powers at the receiving 
antenna, as depicted in Fig. 1, will deviate in 
accordance with the tire rotation. Actually, the 
severe fading caused by surrounding reflections is 
taken into account in the system design. The level 
deviation based on tire rotations will be taken into 
account as one of the fading factors. Antenna 
input impedances in the case of Fig. 9 are shown 
in Fig. 10. It is clarified that input impedances are 
not influenced by the presence of carcass wires. 
 
 

 
 
 
 
 
 
 
 

 
 

IV. SIMULATION METHOD OF A 
DIELECTRIC PLATE WITH 

EMBEDDED CARCASS WIRES 
As for the structure of a dielectric plate with 

carcass wires inside, there were no study 
examples in FEKO simulation. Therefore, it is 
very important to ensure that the simulation is 
accurate. In order to investigate the fundamental 
effect of rubber, the effect on the electric field 
penetrations through carcass wires are considered. 
When the model shown in Fig. 2 is used in the 
calculation, the calculation load is very high. The 
simplified model shown in Fig. 11 that 
corresponds to the area within the broken lines in 
Fig. 2 is constructed. As for the radiator, a very 

small dipole antenna placed inside tire is 
employed for ease of calculation. This antenna is 
oriented in order to produce the EJ field 
component of Fig. 4 (parallel to the carcass wire). 
In accordance with the parallel electric field 
vectors, carcass wires are arranged in parallel 
wires of separations s. The observation planes are 
set perpendicular to the carcass wires. In order to 
eliminate the effects of edge currents, rather large 
values were selected for the sizes of the tire belt 
and wheel.  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

To assess the adequacy of the calculations, 
results obtained with MoM are compared with 
those obtained via FEM. Usually, the FEM results 
were considered to be the correct results. 
Comparisons of results are summarized in Table 1.  

Firstly, the shielding effects of carcass wires 
are clearly shown by the HFSS simulation results. 
In the case where rubber was removed, electric 
fields passing through spaces between the wires 
gradually fade toward the outside. This result 
agrees very well with the physical behavior of 
parallel wires. Therefore, the HFSS result can be  

(a) Vertical plane. 
Fig. 8. Electric field distributions inside the tire 
(carcass wires: 36). 

(b) Horizontal plane.

(a) Without carcass. 

(b) Carcass wires: 288. 

(c) Carcass wires: 36. 

Fig. 9. Radiation characteristics from a tire
(without rubber). 
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  Electric intensity distribution (dBV/m) Computation costs 
 
 
 
 

FEM 
(HFSS) 

 
 
 

 
 
Without rubber 
 

 memory: 3.5 GB 
time: 1631 sec 
element size of air 
space between 
carcasses : λ/75 

With rubber 
(thickness= 12 
mm, εr = 10.91 
tanδ = 0.14) 

 memory: 3.3 GB 
time: 1634 sec 
element size of 
rubber : λ/75 

 
FEM 

(FEKO) 
 

With rubber 
(thickness=12 
mm, εr = 10.91 
tanδ = 0.14) 
 

 memory: 6.8 GB 
time: 18,889 sec 
element size of 
rubber : λ/75 

 
 
 
 

 
 

MoM 
(FEKO) 

 
 
 
 
 
 
 

rubber mesh size 
: λ/25 
 

 memory: 0.2 GB 
time: 4481 sec 
unknown: 4240 
cell number: 2000 

rubber mesh size 
: λ/50 
 
 
 

 memory: 1.5 GB 
time: 7868 sec 
unknown: 10,079 
cell number: 4156 

rubber mesh size 
: λ/75 
 
 

 memory: 5.0 GB 
time: 16,696 sec 
unknown: 18,374 
cell number: 6999 

Fig. 10. Input impedance of the NMHA. Fig. 11. Simplified simulation model. 

Table 1: Electric field distributions in the observation plane 

∼

Tire belt

W
heel

carcass (d=0.7 mm)
(outside tire) very small dipole 

antenna (for EJ)

observation plane

s

500 mm

838 mm

(inside tire)

tire rubber (t=12 mm)
272 mm
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CPU clock Intel Xeon CPU 3.00 GHz
memory 16.0 GB RAM
simulator FEKO (MoM)
Frequency 315 MHz

mesh sizes

Antenna λ/600

wheel
near antenna λ/100
other λ/10

tire belt λ/10
carcass ( number, 36) λ/15

rubber
(SEP 

method)

radial direction λ/14
inner rim λ/67
outer rim λ/32

total mesh 
number

7,496

unknown 17,644
memory usage 2.33 Gbytes

calculation time 7,571 seconds (2.1 hours)

considered adequate. In the case where rubber 
was retained, electric field penetrations into the 
carcass wires seem to be enhanced. The electric 
field intensities at the outside increase by about 1 
dB compared to their counterparts when rubber 
was removed. As a reference, the FEM result by 
FEKO is also obtained. Almost the same result to 
HFSS is achieved. On the basis of good 
agreement of FEM results by HFSS and FEKO, it 
is concluded that the FEM simulations are correct.   

To assess the calculation accuracy of MoM, 
mesh sizes of the dielectric plate (tire rubber) are 
changed. In the FEKO simulation, the surface 
equivalent principle (SEP) algorithm is applied to 
dielectric plate calculations. In the case of mesh 
size λ/25, irregular electric field distributions are 
observed. For mesh size λ/75, almost regular 
electric field distributions are achieved. Data on 
electric field intensities are in good agreement 
with the results of HFSS. Therefore, it is 
concluded that accurate results can be achieved 
with a mesh size of λ/75.  
 

V. SIMULATION RESULTS OF AN 
ACTUAL CARCASS TIRE 

 
A. Fundamental data 

As the example of an actual carcass tire, the 
structure of Fig. 2 is employed. Simulation 
parameters are summarized in Table 2. The most 
important parameter is mesh size. In particular, 
finding out the adequate mesh forms for tire 
rubbers requires a lot of thought. The result is 
shown in Fig. 12. Mesh configurations of the tire 
rubber are matched to the shapes of the spacing of 
wires. In circumferential directions, three small-
sized meshes are used. In radial directions, rather 
large mesh sizes are selected. In this case, the 
number of wires used is 36. The wire spacing in 
the inner and outer rims are 42 and 90 mm, 
respectively. Observation planes indicated by A 
and B are oriented perpendicular to the wires.  
Mesh sizes of the tire rubber are shown in Table 

2. At the inner rim, mesh size λ/67 is selected. 
The unknown number becomes 17,644. 
Calculation time of more than 2 hours is needed. 
In this case, the number of carcass is only 36. In 
the actual tire, because a large number of carcass 
wires are used, a more efficient simulation 
method is required.  

Electric field distribution at observation points 
A and B are shown in Fig. 13. In Fig. 13(a), 
electric fields outside the tire are suppressed by 
about 5 dB. In Fig. 13(b), electric field 
suppressions become 3 dB. In accordance with s 

increase, suppressions become small. These 
results are physically appropriate. Therefore, 
these calculated results are reliable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
B. Electric wave characteristics 

Electric field distributions and a radiation 
characteristic of a carcass tire are calculated. The 
electric fields inside the tire are shown in Fig. 14. 
These planes are just 1 mm inside the rubber 
inner surface. Electric fields with the rubber as 
shown in Fig. 14(b) become larger compared to 
those in Fig. 14(a). As for directions of electric 
field vectors, almost the same directions are 
achieved in strong field regions.  However,  small 

Table 2: Simulation parameters 

Fig. 12. Mesh configuration of tire rubber. 
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changes of vector directions are produced in weak 
field regions by the presence of the tire rubber. 
Next, electric fields in the cross-sectional planes 
of the tire are shown in Fig. 15. In comparing Fig. 
15(a) and (b), the electric fields spilling over to 
the outside of a tire are increased as a rubber 
effect. Finally, the radiation power levels of a 
carcass tire are shown in Fig. 16. The highest 
levels appear in the side of the tire, reaching a 
value of -15.6 dBd. This level is 3 dB larger than 
the result shown in Fig. 9(c). As a conclusion, the 
presence of rubber increases the electric fields 
inside a tire and the radiation levels from a tire. 
By taking into account that a tire rubber is a lossy 
material, the increase in radiation level is 
surprising.  
 

VI. CONCLUSIONS 
The accuracies of the simulation of electric 

fields in a carcass tire using the MoM scheme of 
FEKO are determined. The important 
contributions of this study are as follows: 
1) The electric fields inside a tire are compared 

with those of a coaxial cylindrical resonator 
chosen as theoretical references.  

2) FEM- and MoM-based methods for 
determining the effect of wires embedded in a 
dielectric plate are investigated. 

3) The adequate mesh sizes of the tire rubber in 
MoM are determined.  

4) Adequate mesh configurations of the tire 
rubber between carcass wires are developed. 

5) By using an actual carcass tire model, the 
electric fields inside a tire and the 
characteristics of radiation from a tire are 
established.  
 
 
 

 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 13. Electric fields at observation planes. 

(a) Plane A. (b) Plane B.

(a) Without rubber. 

Fig. 14. Electric field distributions inside the  
tire.

(b) With rubber. 

(a) Without rubber. 
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Abstract ─ A redundant loop basis is proposed and 
applied as the solenoidal part of the recently 
developed multiresolution (MR) basis for closed 
surfaces at low frequencies. By keeping all loop 
basis functions, the “symmetry” of the MR 
solenoidal basis can be maintained for closed 
surfaces. As a consequence, the convergence of 
iterative solvers for the expanded MR basis can be 
effectively improved by using the redundant loop 
basis without disturbing the accuracy of results. 
Since the expanded MR basis functions are linear 
combinations of standard Rao-Wilton-Glisson 
(RWG) functions, it can be applied to the existing 
MoM codes easily. The positive behavior of 
redundant loop basis on MR basis for closed 
surfaces is analyzed and discussed in detail in this 
paper. Numerical results demonstrate that the 
expanded MR basis performs better than the 
original MR basis and has significant advantages 
over the traditional loop-tree basis for 3D 
electromagnetic scattering of closed structures in 
the low frequency range.  
  
Index Terms ─ Electromagnetic scattering, low 
frequency, method of moments (MoM), 
multiresolution techniques. 
 

I. INTRODUCTION 
The method of moments (MoM) solution of 

the electric field integral equation (EFIE) is 
always preferred for analysis of 3D 
electromagnetic scattering problems [1]. However, 

the EFIE suffers from the low-frequency 
breakdown problem when using the well known 
Rao–Wilton–Glisson (RWG) basis [2], which is 
associated with the poorly-conditioned MoM 
matrix when the frequency tends to zero. As a 
consequence, the MoM matrix is hard to get 
convergence and even not solvable with iterative 
solvers. The solution to prevent the low-frequency 
breakdown problem is to extract the solenoidal 
part of the current [3-10], thus the loop-tree/star 
basis is proposed for this purpose. The 
multiresolution (MR) basis developed in recent 
years provides a more effective basis than the 
loop-tree/star basis [11-14]. More recently, an 
alternative MR basis was proposed for analysis of 
low-frequency problems [15, 16]. Compared with 
the MR basis in [11-14], the MR basis in [15, 16] 
can be constructed much easier and provides more 
direct physical meanings. 

A simple and direct way of generating the 
solenoidal MR basis is taking the loop basis in the 
loop-tree/star basis as the solenoidal MR basis 
[12]. In the loop basis, each loop basis function 
corresponds to an interior vertex of surfaces. 
However, the loop basis is “asymmetry” for closed 
surfaces, since one loop associated to one arbitrary 
vertex must be eliminated. As pointed in [14], this 
“asymmetry” of loop basis for closed surfaces will 
cause the bad conditioning of the corresponding 
MoM matrix. To remedy the shortcoming of the 
loop basis, a novel, symmetrical solenoidal basis 
was proposed in [14]. The proposed solenoidal 
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basis is generated by applying the singular value 
decomposition (SVD) to local small “charge” 
matrices and it generates a well-conditioned MoM 
matrix. Alternatively, we propose a simple way to 
improve the conditioning of the loop basis for 
closed surfaces, i.e. taking a redundant loop basis 
as the solenoidal part of the MR basis. By keeping 
all loop basis functions, the “symmetry” of loop 
basis is kept. Also, as pointed in [18] that the 
redundant loop basis gives more freedom for the 
solution of flux to converge. Therefore, the 
application of the redundant loop basis to MR 
basis gives better convergence. 
 

II. MULTIRESOLUTION BASIS 
Due to the fact that MR basis possesses some 

degree of Fourier spectral resolution, the condition 
number of the corresponding MoM matrix can be 
drastically reduced with a diagonal 
preconditioning [17]. Therefore, MR basis has 
significant advantage than the classical loop-
tree/star basis for analysis of low-frequency 
problems. Since the improvement of the MR basis 
in [15, 16] for closed surfaces is mainly concerned 
in this paper, the essential concepts of the MR 
basis are briefly described in this section. 

 
A. Generalized mesh and generalized RWG 
basis 

As proposed in [12], the generalized mesh and 
generalized RWG (gRWG) basis is the two basic 
concepts in generating the MR basis. The MR 
basis functions are constructed on the hierarchical 
generalized meshes and generated as the linear 
combinations of the gRWG basis functions. The 
hierarchical generalized meshes are generated via 
a grouping algorithm (e.g. a sophisticated 
algorithm in [13]) and starts from the level-0 
mesh, i.e. the input triangular mesh. In the 
subsequent procedure of the grouping algorithm, 
each cell of level-l (l≥1) mesh is constructed by 
grouping about four near cells of level-(l-1) mesh. 
Finally, the mesh of the highest level is decided by 
the size of its cells, i.e. the size of the cells should 
be smaller than the wavelength of the incident EM 
wave. An example of four levels of hierarchical 
generalized meshes generated by the grouping 
algorithm is depicted in Fig. 1. The gRWG basis 
functions of each level are defined on the mesh of 
the corresponding level. Similar to the RWG basis 
function, each gRWG basis function of level-l 

mesh is defined on a pair of cells of level-l. 
Denoting a gRWG basis function of level-l 
with )(rRl

i


, the divergence of the gRWG basis 
function is given as 

, ,

, ,( )

0 otherwise,

l l l
i i i

l l l l
s i i i i

A r C
R r A r C

 

 

 

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where l
iA ,  and l

iA ,  are the area of the two 
adjacent cells l

iC ,  and l
iC , , and l

i  is the common 
side of the two cells. 
 

 
Fig. 1. An example of four levels hierarchical 
generalized meshes. (a) Level-0 mesh, (b) level-1 
mesh, (c) level-2 mesh, (d) level-3 mesh. 

 
B. Generation of MR basis 

The MR basis is split into the solenoidal and 
nonsolenoidal parts. The solenoidal and 
nonsolenoidal functions of the MR basis span the 
same space as for the loop-tree/star basis. For a 
general 3-D surface, the number of solenoidal 
functions NS and the number of nonsolenoidal 
functions NX of the MR basis are given by [12, 16] 

int 1,SN V N                            (2) 
1,XN F                             (3) 

where Vint, NГ, F denote the number of internal 
vertices, separated boundary contours, and 
triangular faces, respectively. Obviously, the 
number of the solenoidal functions equals the 
number of the vertices minus one for closed 
surfaces. 
 

(a) (b) 

(c) (d) 
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1). Solenoidal Basis 
A simple way of constructing the solenoidal 

part of the MR basis is taking the traditional loop 
basis as the solenoidal basis, since a non-
hierarchical loop basis suffices to obtain well 
conditioned MoM matrices for low-frequency 
problems [12]. However, one loop basis function 
should be eliminated for closed surfaces according 
to (2). 

 
2). Nonsolenoidal Basis 

The nonsolenoidal part of MR basis is a 
hierarchical basis constructed on the hierarchical 
meshes. The nonsolenoidal basis first proposed in 
[12] is constructed via a rank-revealing QR 
decomposition. However, this approach requires 
the cells of the structure to be finally grouped into 
a single big cell. As a consequence, the 
regularizing property of the MR basis may be 
destroyed. To remedy this problem, a different 
approach is proposed in [13, 14], where the 
nonsolenoidal basis is constructed using SVD on 
small charge matrices and the cells of the highest 
level are smaller than the working wavelength. 
Nevertheless, the above approaches in generating 
of the MR basis rely on the indirect mathematical 
operations. Alternatively, a nonsolenoidal basis 
can be much easier to construct and comprehend 
in theory as proposed in [15, 16]. 

The generation of the nonsolenoidal functions 
of the highest level (level-L) is different from the 
functions of the other levels. Similar to the 
generation of the tree basis in the classical loop-
tree basis, the nonsolenoidal functions of level-L 
are generated by connecting all the cells of level-L 
mesh in a tree. An example of the level-L 
nonsolenoidal functions is shown in Fig. 2 (a), in 
which the nonsolenoidal functions are depicted 
with bold black lines. The nonsolenoidal functions 
of level-l (l<L) are the union of the functions 
constructed on the trees in all the level-(l+1) cells. 
An example of the nonsolenoidal functions of 
level-l is shown in Fig. 2 (b). 

 
Fig. 2. Examples of the nonsolenoidal functions. 
(a) the level-L nonsolenoidal functions, (b) the 
level-l (l<L) nonsolenoidal functions. 
 

III. REDUNDANT LOOP BASIS 
Although the MR basis in [12, 15] is very 

effective for analysis of low-frequency problems, 
the “asymmetry” is still remained in the solenoidal 
part of the MR basis for closed surfaces. To 
maintain the “symmetry” of the solenoidal MR 
basis, all loop basis functions are proposed to be 
kept in the solenoidal MR basis, i.e. no solenoidal 
MR basis function associated to the interior vertex 
of closed surfaces need to be eliminated. As a 
result, the conditioning of the MoM matrix of the 
expanded MR basis can be improved. The 
redundant loop basis’ property and its application 
to MR basis are investigated in this section. 
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Fig. 3. The 2-norm condition number of MoM 
submatrices of a metallic sphere (radius = 1 m) 
discretized with different number of unknowns 
using different solenoidal bases at 1 MHz. 
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A. Property of redundant loop basis 
Firstly, the 2-norm condition number of MoM 

solenoidal submatrix of different solenoidal bases 
with different discretization density is analyzed. 
As an example, the 2-norm condition number of 
MoM submatrices (after diagonal preconditioning) 
of a metallic sphere with a radius of 1 m 
discretized with the number of unknowns from 
about 200 to 2200 at the frequency of 1MHz is 
shown in Fig. 3. The LSV and SVD depicted in 
Fig. 3 represent the solenoidal bases generated 
from local SVD and SVD operations on charge 
matrices, respectively [14]. The 2-norm condition 
number of the redundant loop basis (denoted with 
r-loop in Fig. 3) is stated as the ratio of the largest 
singular value to the smallest nonzero singular 
value here. It can be found from Fig. 3 that the 2-
norm condition number increases very fast as the 
number of unknowns increases for loop basis, 
while it performs more stable for the other 
solenoidal bases. The same phenomenon of the 
above solenoidal bases (except the redundant loop 
basis) is reported in [14], where the worse 
behavior of loop basis is explained. It is very 
interesting to be observed from Fig. 3 that the 2-
norm condition number of the redundant loop 
basis is even smaller than that of SVD solenoidal 
basis. It is reasonable, since SVD solenoidal basis 
functions are not really orthogonal to each other 
although their divergences do. 

To give a more direct illustration of the 
performance for the above solenoidal bases, Fig. 4 
gives the eigenvalue distribution of MoM 
solenoidal submatrices (after diagonal 
preconditioning) in the case of the sphere 
discretized with 216 unknowns. It can be found 
from Fig. 4 (a) that the eigenvalues of SVD 
solenoidal basis are more closely clustered than 
that of LSV solenoidal basis, which indicates the 
MoM submatrix of SVD solenoidal basis has 
better conditioning than that of LSV solenoidal 
basis. By comparing Fig. 4 (a) and (b), it can be 
found that the eigenvalues of loop basis are more 
closely clustered than that of SVD solenoidal basis 
except there is an eigenvalue very close to zero. 
The eigenvalue of loop basis closest to zero is 
supposed to be the origin of the worse condition 
number for the matrix of loop basis compared with 
that of SVD solenoidal basis. Luckily, the 
redundant loop basis removes this eigenvalue to 
zero. As a result, the conditioning of the MoM 

solenoidal submatrix can be greatly improved. An 
explanation of the relation between the eigenvalue 
distribution of a matrix and the convergence of 
iterative solvers in solving the matrix can be found 
in [19]. 

 

 
Fig. 4. The eigenvalue distribution of MoM 
solenoidal submatrices of the sphere discretized 
with 216 unknowns using different solenoidal 
bases at 1 MHz. (a) SVD and LSV solenoidal 
bases, (b) loop and redundant loop bases. 
 

From the above discussion for the property of 
the redundant loop basis, it can be concluded that 
the redundant loop basis can remove the 
eigenvalue of its corresponding MoM submatrix 
closest to zero to zero and hence to form a well-
conditioned MoM submatrix.  
 
B. Application of redundant loop basis to MR 
basis 

It has been discussed in Section II-B that the 
MR basis can take loop basis as its solenoidal part. 
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In order to improve the conditioning of the MoM 
matrix of the MR basis for closed structures, the 
redundant loop basis is proposed to be taken as the 
solenoidal part of the MR basis. To demonstrate 
the performance of the redundant loop basis in MR 
basis, it is compared with the MR bases which 
take the other solenoidal bases as their solenoidal 
part. Also, the application of the redundant loop 
basis in the MR basis is compared with its 
application in loop-tree basis. 
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Fig. 5. The 2-norm condition number of MoM 
matrices of the sphere discretized with a different 
number of unknowns using different bases at 1 
MHz. 

 
Firstly, the 2-norm condition number of the MoM 
matrices of MR bases with different solenoidal 
parts and the loop-tree bases with loop or 
redundant loop solenoidal part is analyzed. The 2-
norm condition number of the MoM matrices of 
these bases in the example of the sphere described 
above is depicted in Fig. 5. It can be observed 
from Fig. 5 that the 2-norm condition number of 
the MR basis with redundant loop solenoidal part 
is much lower than that of the MR basis with loop 
solenoidal part, while the 2-norm condition 
number of the loop-tree basis with loop solenoidal 
part (denoted with loop-tree in Fig. 5) is almost 
equal to that of the loop-tree basis with redundant 
loop solenoidal part (denoted with r-loop-tree in 
Fig. 5). It can also be observed from Fig. 5 that the 
2-norm condition number of the MR basis with 
LSV solenoidal part is lower than the loop-tree 
basis and the MR basis with SVD solenoidal part 
is lower than the MR basis with LSV solenoidal 

part. However, the SVD solenoidal basis is 
generated by the SVD operations on the large 
charge matrix formed from all unknowns, which is 
prohibitive for a large number of unknowns due to 
the huge computational cost. 

 

 
Fig. 6. The eigenvalue distribution of MoM 
matrices of the sphere discretized with 216 
unknowns using different bases at 1 MHz. (a) 
Loop-tree bases with loop or redundant loop 
solenoidal part, (b) MR bases with LSV or SVD 
solenoidal part, (c) MR bases with loop or 
redundant loop solenoidal part. 
 

Since the convergence behavior of iterative 
solvers in solving a MoM matrix is mainly 
determined by the eigenvalue distribution of the 
MoM matrix, the eigenvalue distribution of MoM 
matrices of the above bases are investigated. An 
example of the eigenvalue distribution of MoM 
matrices (after diagonal preconditioning) of the 
sphere discretized with 216 unknowns using 
different bases at the frequency of 1 MHz is 
shown in Fig. 6. It can be observed from Fig. 6 (a) 
(see also Fig. 9 (a) for a block) that there are a lot 
of eigenvalues of the loop-tree bases close to zero, 
which explains why it has trivial effect on the 
conditioning of the corresponding MoM matrix by 
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taking the redundant loop basis as the solenoidal 
part of the loop-tree basis. By comparing Fig. 6 (a) 
with Fig. 6 (b) and (c), it can be found that the 
number of eigenvalues of the loop-tree bases 
nearby zero is much larger than that of the MR 
bases, which explains why the conditioning of the 
MoM matrices of the loop-tree bases is worse than 
that of MR bases. It can be observed from Fig. 6 
(b) that the eigenvalues of the MR basis with SVD 
solenoidal part is more closely clustered than that 
of the MR basis with LSV solenoidal part, which 
explains why the MoM matrix of the MR basis 
with SVD solenoidal part has a well condition 
number. It can be observed from Fig. 6 (c) (see 
also Fig. 9 (b) for a block) that the eigenvalues of 
the MR bases with loop or redundant loop 
solenoidal part are well distributed except there is 
a eigenvalue of the MR basis with loop solenoidal 
part very close to zero. Also, the smallest 
eigenvalue whose absolute value is about 1.3×10-2 
is removed to zero by taking the redundant loop 
basis as the solenoidal part of the MR basis. 
Namely, the smallest eigenvalue is replaced by the 
previous second smallest eigenvalue whose value 
is about 0.15 by keeping the redundant loop basis 
in MR basis. As a result, the ratio of the absolute 
values of the largest eigenvalue to the smallest 
non-zero eigenvalue is improved which explains 
why the redundant loop basis can improve the 
conditioning of the MoM matrix of the MR basis 
effectively. 

From the discussion given above, it can be 
concluded that the application of redundant loop 
basis in MR basis can improve conditioning of the 
MoM matrix of MR basis effectively, while it has 
trivial effect on the conditioning of the MoM 
matrix of loop-tree basis. 

  
C. Solvability of expanded MR basis with 
iterative solvers 

A similar phenomenon has been reported in [18], 
where a redundant volume loop basis is used to 
speed up the convergence of solutions in solving 
the volume integral equation and a proof is given 
to validate that the MoM matrix of the redundant 
volume loop basis can still be solved with an 
iterative solver without losing accuracy. The proof 
of the solvability of the MoM matrix of the 
expanded MR basis, which taking the redundant 
loop basis as its solenoidal part, can also be proved 
similarly. Alternatively, it can be proved easily by 

using a theorem in [19]. 
The expanded MR basis functions can be 

represented by the RWG basis functions via a 
basis-changing matrix [T] 

  0T
MRf T R      
 

,                       (4) 
where the number of RWG basis functions and 
MR basis functions is N and N+1 respectively, and 
the matrix [T] is a row full-rank matrix. Then the 
corresponding MoM matrix equation can be 
written as 

     ,MR MR MRZ I b                        (5) 

where      ,T
MRb T b       ,MRI T I   and 

       T
MRZ T Z T    in which  Z  is a full rank 

matrix formed from the RWG basis. It can be 
concluded that  MRb  belongs to the range space of 
 MRZ , since the rank of  matrix  MRZ  and  Z  is 
equal and [T] is a row full-rank matrix. It has been 
pointed out in [19] that a square linear system Ax = 
b has a Krylov solution if and only if b belongs to 
the range space of A. Therefore, the MoM matrix 
of the expanded MR basis can still be solved by 
Krylov iterative solvers. The bistatic RCS of a 
sphere (radius = 1 m) discretized with 3009 
unknowns at 1 MHz is taken as an example and 
shown in Fig. 7. It can be found from Fig. 7 that a 
good agreement is obtained between the exact Mie 
series and the expanded MR basis. 
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Fig. 7. Bistatic RCS of a sphere (radius = 1 m) 
discretized with 3009 unknowns at 1 MHz with 
the exact Mie series and the expanded MR basis 
with redundant loop solenoidal part. 
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as a function of frequency for a block using the 
loop-tree bases and MR bases. 

 
IV. NUMERICAL RESULTS 

To validate the performance of the redundant 
loop basis applied in the MR basis, two examples 
will be analyzed in this section. The restarted 
GMRES(30) algorithm was chosen as the iterative 
solver. The examples were simulated in double 
precision with a relative residual of 10-5. All the 
results with different bases were obtained after 
applying a diagonal preconditioning to the MoM 
matrix. 

The first example is a metallic block 
(1m×1m×1m) with 1998 unknowns. The 
convergence behavior of GMRES(30) for the 
block using the loop-tree and MR bases over a 
frequency range of 0.1-50 MHz is shown in Fig. 8. 
It can be found from Fig. 8 that the redundant loop 
basis can further improve the performance of the 
MR basis while it has trivial effect on the loop-tree 
basis. Also, the LSV solenoidal basis performs 
more stable than the loop basis for the MR basis. 
However, the LSV solenoidal basis doesn’t 
perform as well as the redundant loop basis as 
shown in Fig. 8. The eigenvalue distribution of 
MoM matrices of the block using the above bases 
at 20 MHz is shown in Fig. 9. It can also be 
observed from Fig. 9 that the eigenvalue closest to 
zero is removed to zero by taking the redundant 
loop basis as the solenoidal part for both loop-tree 
basis and MR basis. However, there is only one 
eigenvalue very close to zero for MR basis which 
explains why the redundant loop basis can 

improve conditioning of the MoM matrix of the 
MR basis effectively. 

 

 
Fig. 9. The eigenvalue distribution of MoM 
matrices of a block using different bases at 20 
MHz. (a) Loop-tree bases with loop or redundant 
loop solenoidal part, (b) MR bases with loop or 
redundant loop solenoidal part. 
 

The second example is a more complex 
metallic plane model, whose length, width, and 
height is given by 9.3 m, 12.1 m, and 2.2 m, 
respectively. As shown in Fig. 10, the airplane 
model is nonuniformly discretized with 5034 
unknowns. The number of iterations of the 
GMRES(30) using the above bases over a 
frequency range of 0.1-16 MHz is shown in Fig. 
10. Obviously, the results of Fig. 10 also indicates 
that the redundant loop basis has significant 
advantage over the loop basis for MR basis. Also, 
the LSV solenoidal basis performs much better 
than the loop basis for the MR basis. 
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Fig. 10. The convergence behavior of GMRES(30) 
as a function of frequency for a metallic airplane 
model using the loop-tree bases and MR bases. 

 
V. CONCLUSION 

A redundant loop basis generated by simply 
keeping all loop functions is applied in MR basis 
to improve the convergence of MR basis for 
closed structures. The properties of the MoM 
matrices using the loop-tree and MR bases which 
take the loop or redundant loop basis as their 
solenoidal part are analyzed. It is found that the 
eigenvalue of the MoM matrix of the MR basis 
closest to zero is removed to zero by using the 
redundant loop basis, i.e. keeping the redundant 
loop basis moves the smallest eigenvalue to zero. 
As a consequence, the expanded MR basis taking 
the redundant loop basis as its solenoidal part has 
significant advantage than the MR basis with the 
loop basis in convergence for iterative solvers for 
closed surfaces at the low frequency range. 
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Abstract - In this paper, we proposed an effective 
technique to enhance the anti-interference performance 
of the adaptive antenna arrays. The null depth in the 
direction of interferers determines the anti-interference 
performance of an adaptive antenna array. However, 
the null depth generated by the conventional virtual 
array transformation (VAT) algorithm is usually not 
sufficient. By introducing the interference direction 
information into the transformation matrix, we can 
effectively improve the level of null depth; in turn, the 
anti-interference performance of the adaptive antenna 
arrays is significantly enhanced. The numerical 
experiments are employed to validate the proposed 
approach.       
 
Index Terms - Beam forming, null depth, SINR 
transformation matrix, virtual array. 

 
I. INTRODUCTION 

Generally speaking, the number of interference 
signals processed by an antenna array should be less 
than the degrees of system freedom [1, 2]. In the 
practical applications, the size and number of array 
elements are finite; however, frequently the number of 
interferers is much larger than the number of array 
elements. Obviously, some of the interferers will not 
be effectively inhibited when the number of interferers 
exceeds the degrees of system freedom. Friedlander 
[3] has proposed a virtual array transformation (VAT) 
method that the number of virtual array elements can 
be increased to be more than the degrees of system 
freedom so that all the interferers can be processed.      

When Friedlander’s method is used in the beam 
forming of an adaptive antenna array, the null depth is 
relatively shallow compared to the real antenna array. 

Consequently, the output signal to interference and 
noise ratio (SINR) will be decreased; in turn, it is not 
suitable for the applications that require the higher 
communication quality. The existing improvement 
techniques with regarding to the VAT performance [4-
6] are concentrated on the applications in the 
estimation of interference arriving direction. Shubair et 
al. combined the least mean mixed norm (LMMN) 
algorithm and initialization using sample matrix 
inversion (SMI) to control the error norms and offer 
the extra degrees of freedom [7]. In order to achieve 
the better virtual array performance, the influence 
generated by the transformation area selection on the 
beam forming is analyzed in the literature [8]. The 
literature [9] proposed a method to transform an 
arbitrary shaped array into a virtual uniform linear 
array (ULA) and then suppress multiple coherent 
interferences through the spatial smoothing technique.  

Based on the conventional VAT beam forming 
algorithm, an improved VAT method is presented in 
this paper, which can be effectively applied to raise the 
inhibition gain by improving the null depth. By 
projecting the transformation matrix on the 
interference space that enhances the interference 
components in the virtual covariance matrix, a higher 
interference inhibition gain can be achieved.  
 
II. VIRTUAL ARRAY TRANSFORMATION 

THEORY 
      Considering an array with N elements [10], when 
M far field narrow band signals are incident on an 
antenna array, the received data X  can be expressed 
as follows: 

                           S( ) ( ),t t X A N                            (1) 
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where 1 2( ) [ ( ), ( ), , ( )]T
Mt s t s t s tS  is a vector 

containing the complex signal envelops of M 
narrow-band signal sources.  T  denotes the 
matrix transposition. 

1 2( ) [ ( ), ( ), , ( )]T
Nt n t n t n tN   is a vector of 

zero-mean spatially white sensor noise of 
variance 2

n . 1 2[ ( ), ( ), ( )]M  A a a a is an 
array manifold vector, where 

( ),( 1,2 , )k k M a   represents a steering 
vector in the k  direction. 
If an antenna array with N elements is uniform 
and linear, we have: 

  
2 2sin ( 1) sin

( ) [1, , , ] ,k k
d dj j N T

k e e
  
 

  
a      (2) 

where d is the space between two adjacent 
elements. If both the signal and noise are 
linearly independent, the data covariance can 
be represented as: 

            2( ) ( ) ,H H
s nE t t   R X X AR A I   (3) 

where ( )E   denotes the mathematical 
expectation.  S( )S ( )H

s E t tR represents the 
autocorrelation matrix of signal complex 
envelops. 2

n  is the noise power. I  is the unit 

matrix, and  H  denotes the matrix conjugate 
transposition. The array covariance matrix is 
estimated using the finite snap data ( )iX : 

                      1

1ˆ ( ) ( )
K

H

i
i i

K 

 R X X , 

where K  is the snap number. In the array 
interpolation operation, the real array manifold 
is transformed on a preliminary specified 
virtual array manifold over a given angular 
sector  , namely, an interpolation matrix B  
is designed to satisfy: 

                    ( ) ( ), ,    Ba a                (4) 
where ( )a  and ( )a  are 1N   and 1N   
steering vectors of the real and virtual arrays, 
respectively; N  is the number of virtual 
elements; virtual array manifold ( )a  
corresponds to a uniform linear array (ULA). 
       The computation of interpolation matrix 
B  is carried out by choosing k representative 
directions 1 2, , , k   from the interpolation 
sector  , and minimizing the sum of 
quadratic interpolation errors in these 
directions: 

 

2

1
( ) ( ) ( ) ,

k

i i F
i

F  


   B Ba a BA A     (5) 

where A  and A  are the real and virtual array 
manifold vector matrixes, respectively; and 

F
 denotes the  Frobenius mold. The 

optimal minimum variance obtained from (5) 
is: 

                    
1( ) .H H B AA AA                     (6) 

After transformation, the covariance of virtual 
array becomes: 
                       .HR BRB                              (7) 
Through the noise-prewhitening process [3], 
the optimal weight can be obtained by using 
the minimum variance distortionless response 
method: 

                     
1

0( ),opt  W R a                     (8) 
where 0( )a  represents a virtual array steering 
vector in the desired signal direction; and the 
coefficient 

11
0 0( ) ( )H  

   a R a . 
 

III.   NULL DEEPENING 
TECHNIQUE  

        Compared to the real array with the same 
parameters, the null depth formed by a virtual 
array in the Friedlander’s VAT method is 
relatively shallow. To improve the null depth, 
we project the transformation matrix B  on the 
interference space, and thus, the constraint 
information of the interference direction can 
be imported into the transformation matrix to 
enhance the interference components in the 
sampling covariance matrix. The detailed 
procedure is described as follows: 
        If the interference directions are 

'1 2, , ,
M

    and the number of interferers is 
'M , the virtual array steering vector in the 

interferer directions '1 2( ), ( ), , ( )
M

  a a a  
can be calculated. Define a projection matrix 
C  as: 

                  

'

1
( ) ( ) .

H
M

H
i i

i
 



 
   
 
C a a               (9) 

Projecting the transformation matrix on the 
interference space, we have: 

                            .B CB                            (10) 
Now the covariance matrix of virtual array 
becomes:   

         .H H H H  R BRB CBRB C CRC    (11) 
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After the mathematical operations, the 
information of the interference direction has 
already been involved in the transformed 
virtual covariance matrix R , and the 
interference components is strengthened.  
 

IV. THEORETICAL ANALYSIS 
        According to Schmidt’s orthogonal 
subspace resolution theory, using the 
eigenvalue decomposition from (7) R  can be 
expressed as [11]: 
                            ,HR UΣU                      (12) 
where U  is an eigenvector vector of 
covariance matrix R , the diagonal matrix Σ  
constituted by the corresponding eigenvalues  
 

is: 

                     

1

2 .

N







 
 
   
 
  

Σ


              (13) 

    If a virtual array with N  elements is ULA, 
the steering directions can be written as:  

    
2 2sin ( 1) sin

( ) [1, , , ] ,i i
d dj j N T

i e e
  
 

  
a  (14) 

where d  is the space between two adjacent 
elements. We have:

 

2 sin 2 2sin ( 1) sin

2( 1) sin

2 2sin ( 1) sin

2 2 2sin 2 sin ( 1 1) sin

(

1

( ) ( ) [1, , , ].
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, , ,

i i i

i

i i

i i i

dj d dj j NH
i i

dj N

d dj j N

d d dj j j N

j

e e e

e

e e

e e e

e
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
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


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.

2 2 21) sin ( 1 1) sin 2 ( 1) sin
, , ,i i i

d d dN j N j N
e e
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  
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 
 
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 
 
 
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(15) 

        Substitute (15) into (9), we can obtain the expression of projection matrix C : 

'

2 2sin ( 1) sin

2 2 2sin 2 sin ( 1 1) sin

1
2 2 2( 1) sin ( 1 1) sin 2 ( 1) sin
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(16) 

       Substitute (12) and (13) into (11), then we have: 

1

2 .H H H H H

N






                          

  R CRC C UΣU C C U U C      
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(17) 

       Substitute C  into (17), R  can be expressed as: 
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       (18) can be further simplified as: 
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where U  is the eigenvector matrix 

corresponding to R , 
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 is 

the diagonal matrix  constituted by the 
eigenvalues of R . From (19) it is obviously 
observed: 

                 , 1,2, , .i i i N                       (20) 
The eigenvalues of the covariance matrix 
obtained by using the improved VAT 
algorithm are bigger than those obtained from 
the conventional VAT algorithm.  
        Next, we briefly introduce the minimum 
variance distortionless response (MVDR) 
beam forming method [12]. In the direction of 

the desired signal, the gain is constrained to be 
1, and the array output power is ensured to be 
minimum, namely, the interference and noise 
will generate the minimum output power. 
Applied to the virtual array, the weight vector 
of the MVDR beam forming is the solution to 
the following problem: 
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where the  
0( ) 1

arg min
H  W a

 represents the 

optimal solution which can minimize the 
function value in    and satisfy the equality 

0( ) 1
H

 W a . The arg represents an inverse 
function. It can be solved using Lagrangian 
multiplier method: 
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which is equivalent to (8). The characteristic 
of the MVDR method in the desired signal 
direction is that the gain is restrained to be 1 
and the simultaneously array output power is 
ensured to be minimum. The higher the 
interference power in array is, the stronger it’s 
inhibited in these directions. By introducing 
the  constraint information of the interference 
direction into the transformation matrix B  in 
the improved VAT algorithm, the new 
eigenvalues of the covariance matrix become 
bigger, and the signal components 
corresponding to them are strengthened. 
Therefore, in these directions the inhibition 
gains will increase by the the MVDR method, 
namely, the null depths will be deeper as 
showed in the beam pattern. 
 

V. SIMULATION VERIFICATION 
       The original array with 5 elements is 
uniform and linear, and the element space is 
 . The expected signal illumines from the 0° 
direction. The signal to noise ratio is 
SNR=0dB. Three independent interferers come 
from -60°, -40°, and 50° directions, 
respectively. The signal to interference ratio is 

40SIR dB  . The virtual array with 8 
elements is uniform and linear, and the 
element space is / 2 . The virtual 
transformation area is [-65°, 55°]. The step-
size is 0.1°. The number of snapshots is 200. 
Figure 1 shows the gain comparison obtained 
by using the MVDR beam forming through the 
real array method, the conventional and 
improved VAT algorithms. Figure 2 shows the 
eigenvalue comparison of covariance matrix 
obtained using three methods. Figure 3 shows 
the comparison of output SINR obtained by 
three methods. 
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Fig. 1.  Beam patterns using the different 
methods. 
 
      It is observed from Figures 1 to 3 that 
when the number of independent interferers is 
not larger than the number of the array 
elements, the nulls of the beam forming using 
the real array, conventional VAT, and the 
improved VAT algorithm are generated 
precisely in the interferer directions, and the 
main lobe is pointed to the desired signal 
direction. The inhibition gain using the real 
array and conventional VAT algorithms is 
about -35 dBi and -45 dBi, respectively. 
However, the inhibition gain using the 
proposed algorithm can reach up to -150 dBi. 
The eigenvalue of the covariance matrix has 
been significantly improved in the proposed 
method. Similarly, the output SINR has been 
significantly improved as well in the proposed 
method. 
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Fig. 2. Eigenvalues of the covariance matrix in 
the different methods. 
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Fig. 3. Output SINR using the different 
methods. 
     
       Next, we use an example to validate the 
proposed method, in which the original array 
with 5 elements and space   between the 
adjacent elements is uniform and linear. The 
desired signal incidence comes in the 0° 
direction. The signal to noise ratio is 

0SNR dB and five independent interferers 
come in -60°, -40°, 20°, 50°, and 70° 
directions, respectively. The signal to 
interference ratio is 40SIR dB  . The virtual 
array with 8 elements and space / 2 between 
the adjacent elements is uniform and linear. 
The virtual transformation area is [-65°, 75°] 
and the step size is 0.1°. The number of 
snapshots is 200. Figure 4 shows the 
comparison of the MVDR beam forming using 
the different methods. Figure 5 shows the 
eigenvalue comparison of the covariance 
matrix using the three methods. Figure 6 
shows the comparison of output SINR using 
three methods. 
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Fig. 4. Beam forming of five independent 
interferers using the different methods. 
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Fig. 5. Eigenvalues of five independent 
interferers using the different methods. 
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Fig. 6. Output SINR of five independent 
interferers using the different methods.  

 
       It is observed from Figs. 4 to 6 that when 
the number of interferers exceeds the freedom 
of original array, the nulls in the real array 
method cannot be generated in these 
interference directions. The virtual array with 
8 elements cannot process all the interferers, 
but the nulls precisely point to these 
interferers. The inhibition gain using the 
conventional and proposed VAT algorithms is 
about -30 dB -120 dB, respectively. The 
eigenvalue of the improved algorithm has 
significantly improved, as well as the SINR.  

 
VI. CONCLUSIONS 

      An improved VAT method has been 
presented in this paper, compared with the 
conventional approach; the null performance 
of beam forming is significantly improved. 
The nulls pointing to interference directions 
can be more steadily generated, and 
interference inhibition gains are much better 
and ensure a higher output SINR. Compared to 
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the conventional algorithm, the proposed 
method only needs one more matrix 
multiplication operation.  
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Abstract - Parallel technology is a powerful tool 
to provide the necessary computing power and 
memory resources for the FDTD method to 
simulate electrically-large and complex structures. 
In this paper, a high performance parallel FDTD is 
developed for multi-core cluster systems. It 
employs Winsock to achieve efficient 
inter-process communication as well as 
multi-threading to make full use of the hardware 
resources of multi-core processors on a PC-cluster. 
Key steps for parallel FDTD such as 
synchronization, data exchange, load balancing, 
etc., are investigated. An experiment simulating 
the scattering of an incident electromagnetic wave 
form of a computer case is presented which shows 
that the proposed parallel FDTD achieved 
speedup of 25.1 and parallel efficiency of 83.7% 
when 10 processors with 30 cores are utilized, and 
outperforms traditional parallel FDTD based on 
MPI or MPI-OpenMP, which gained speedup of 
22.9, 24.9 and parallel efficiency of 76.3%, 83.1% 
respectively under the same circumstances. 
 
Index Terms ─ FDTD, multi-threading, parallel 
computation, PC cluster, Winsock. 
 

I. INTRODUCTION 
  As one of the most popular numerical methods, 
finite-difference time-domain (FDTD) has been 
widely used to solve various electromagnetic 
problems [1, 2]. However, the implementation of 

FDTD for simulating electrically-large and 
complex structures requires intensive computation 
and large amounts of memory resources, which is 
not possessed by a single machine. A highly 
efficient solution is to implement the FDTD 
algorithm in a parallel computer system, such as a 
PC cluster [3, 4, 5]. 
  The FDTD method is conducive to parallel 
computation due to its structured mesh, regular 
data structures, and localized calculation [3, 6]. A 
common method to parallelize the FDTD is to 
divide the computation domain into many 
sub-domains that are calculated in different nodes 
of a cluster, and because the workload of each 
sub-domain is far less than that of the whole 
computation space, the memory, and time 
consumption is greatly reduced [4, 5, 7, 8]. Up till 
now, message passing interface (MPI), a library 
specification for message-passing [9, 10], is by far 
the most popular parallel programming 
environment for the FDTD to realize operations 
such as data exchange, synchronization, and etc. 
[3, 4, 6, 7, 8]. 
  Today’s PC clusters have employed multi-core 
processors, which integrate multiple execution 
cores on the same chip and thereby introduce a 
new level of parallelization. Many of the previous 
researches [3, 4, 5, 6, 7, 8] on the parallel FDTD 
have not taken multi-core processors into 
consideration. To take advantage of the computing 
capability of multi-core processors, it is necessary 
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for a parallel computation to carefully take both 
the intranode communication and the internode 
communication into account. Some 
implementations of MPI have made efforts to it. 
For instance, MPICH2-1.3.1 offers multi-core 
support by integrating a low-level communication 
subsystem called Nemesis to minimize the 
overhead for intranode communication by using 
lock-free queues in the processes and other 
optimizations such as a fastbox mechanism to 
bypass the queues [11,12]. However, in 
comparison with MPI that uses messages to 
perform intranode communication, creating 
threads to make data accessible through shared 
memory is a more natural method and supports 
greater bandwidth [13, 14]. 
  A few studies [15,16] utilize open 
multi-processing (OpenMP), a shared memory 
parallel programming interface [17, 18], together 
with MPI to enhance shared-memory performance. 
However, a straight-forward integration of 
OpenMP constructs into the MPI program often 
does not give good speedup results [19]. 
Optimization techniques like minimizing OpenMP 
parallel overhead, aggregating messages, CPU 
affinity and cache-line alignment are usually 
necessary for a better performance. Thus, it 
requires programmers to have relatively 
substantial experience in tuning an OpenMP code. 
  In this work, a novel parallel FDTD algorithm 
based on Winsock and multi-threading is proposed. 
To fully exploit the computation capacity of a PC 
cluster with both multi-processor and multi-core 
features, it utilizes the efficient, low-level 
Winsock programming rather than MPI to realize 
the message passing between processors, creates 
threads, and maps them to cores by using Win32 
thread application program interface (API), so the 
sub-domain computation is carried out in each 
core. Data exchange between threads is performed 
by shared variables being directly written by one 
thread and read by another. Meanwhile in this 
parallel FDTD, only magnetic field values on the 
sub-domains’ interfaces need to be transmitted by 
using an overlapping scheme, an efficient 
synchronization mechanism is used to impose 
constraints on the execution order of threads, and 
the different workload of various cells (such as 
ordinary and perfectly matched layer (PML) [20]) 

are taken into consideration in the domain 
decomposition phase to achieve better load 
balancing. 
  A numerical experiment has been conducted to 
estimate the efficiency of the proposed FDTD 
parallelization strategy. In the experiment, three 
parallel FDTD codes based on the proposed 
method, MPI, and MPI-OpenMP, respectively, are 
developed to simulate the same electromagnetic 
model in parallel on a PC cluster, and their run 
time, speedup, and parallel efficiency are 
compared and analyzed. 
  The remainder of this paper is organized as 
follows: Section II briefly introduces the FDTD 
method, while Section III describes the essential 
elements of the parallel FDTD based on Winsock 
and multi-threading. The experimental results are 
presented in Section IV and finally conclusions in 
Section V. 
 

II. A BRIEF INTRODUCTION TO 
THE FDTD METHOD 

  Since Kane S. Yee’s paper in 1966 [1], the 
FDTD has developed into a widely-used 
numerical simulation method. In Yee’s difference 
scheme, the computation domain is discretized to 
space grids in Cartesian Coordinates. The FDTD 
update equations are then obtained by discretizing 
Maxwell’s two curl equations using 
central-difference approximations to the space and 
time partial derivatives. The updated equations 
for Ex and Hx  [6] are as follows: 
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thus only adjacent cells are needed for the 
computation. Similar equations can be written for 
the other electric and magnetic field components. 
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III. A PARALLEL FDTD BASED ON 
WINSOCK AND 

MULTI-THREADING 
 

A. Parallel programming model 
  In a PC cluster, processors are in a distributed 
address space while cores in the same processor 
are in a shared address space. The address space 
has a significant influence on the data exchange 
[21]. To accommodate the hybrid address space of 
a PC cluster, the parallel FDTD algorithm in this 
work employs a two-level programming model, as 
shown in Fig. 1. The upper level consists of 
processes created by the main console and 
assigned in processors while the bottom level is 
composed of threads created by each process for 
cores in a processor. 
 

#1_1 Thread

#1_2 Thread

#1_m
 Thread

#2_1 Thread

#2_2 Thread

#2_m
 Thread

 
Fig. 1. The two-level programming model for the 
parallel FDTD. 
 
  This work adopts Winsock rather than MPI to 
realize an inter-process message passing. Winsock 
defines a standard interface between a Windows 
TCP/IP client application and the underlying 
TCP/IP protocol stack [22, 23]. As shown in Fig. 2, 
a connection using the transmission control 
protocol (TCP) is established to a specific socket 
separately on both sides. Once the connection is 
set up, they can pass messages by 
calling ()send and ()recv . 
  Explicit threading is employed in the bottom 
level of the programming model, directly splitting 
up the computation. The key steps using the 
Win32 thread API [13] to multi-thread are as 
follows: 

a. A process starts with a single thread of 
execution. This is called the main thread.  

b. This is followed by 

_ ()beginthreadex being used to create 
new sub-threads. Those sub-threads can 
now start their own computation tasks.  

c. During the computation, shared variables 
are used and data exchange is performed 
by write or read accesses of the threads. 
Meanwhile, synchronization both 
coordinates thread execution and 
manages shared data.  

d. When the computation task is finished, 
each sub-thread calls _ ()endthreadex to 
terminate. 
 

 
Fig. 2. The flow chart of Winsock programming. 
 
  For a better efficiency, a fixed mapping from 
the threads to the execution cores is employed by 
calling ()SetThreadAffinityMask . This prevents 
threads from migrating to other cores during 
program execution. 
 
B. Domain decomposition 

Figure 3 shows the spatial parallelism used in 
this work that divides the whole computation 
space into sub-domains. Each sub-domain is 
assigned to one process for parallel computation. 
In each sub-domain, additional pages, called 
expand pages, are introduced to store field values 
from neighbors’ interface for data exchange. 
Every process creates threads according to the 
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number of execution cores employed in the 
parallel computation, splits a sub-domain further 
into smaller sub-domains, and then assigns them 
to each thread. For threads in the same process, 
field values stored in shared variables are 
mutually directly accessible, thus eliminating the 
need for expanded pages. 

x

z y

#1 Process

Expand page

#1_1 Thread
#1_2 Thread

#1_m
 Thread

#1 Sub domain #2 Sub domain

#2 Process

#2_1 Thread
#2_2 Thread

#2_m
 Thread

 
Fig. 3. Domain decomposition. 
 
C. Synchronization 
  At each time step of FDTD, the update of the 
electric and magnetic fields are executed 
sequentially. Execution of threads in the wrong 
order may produce unwanted outputs. Figure 4 
illustrates the synchronization mechanism adopted 
in this work, where N is the number of 
sub-threads, and count is defined as a volatile 
integer. 64(& )InterlockedIncrement count  
increases by 1 the value of variable count as an 
atomic operation, and 

64(& ,0)InterlockedExchange count sets 
variable count to 0 as an atomic operation as well. 
 

 

Fig. 4. The synchronization mechanism. 
 
D. Data exchange 

According to the FDTD updated equations, 
for cells on the interfaces between two adjacent 
sub-domains, the field data on the neighboring 

threads are required, necessitating the execution of 
data exchange. For threads on the same processor, 
data exchange is done by 
shared E and H variables directly written by one 
thread and read by another. As for threads on 
different processors, messages 
containing E and H values are passed by explicitly 
calling the Winsock API: ()send and ()recv  
[23]. 
  Data exchange is one of the main factors 
affecting the parallel efficiency, along with 
synchronization and load balancing. This work 
utilizes an overlapping scheme [7], i.e. the 
interface of adjacent sub-domains assigned to two 
processes is overlapped, on which the electric 
field components are updated in both neighboring 
threads created by separate processes, shown in 
Fig. 5. Although the electric field components on 
the interface are calculated twice, only magnetic 
field components are transmitted at each time step. 
However, the overlapping scheme does not apply 
to the threads created in the same process due to 
the use of shared variables; otherwise data race 
occurs, leading to calculation errors. 

 

Fig. 5. The field exchange configuration 
employing the overlapping scheme. 
 
E. Load balancing 
  Load balancing is a critical issue for a parallel 
computation to achieve high efficiency [24]. For 
the parallel FDTD, a good load balancing strategy 
should suitably divide computation space so that 
every thread is equal in actual execution duration 
between any two succeeding operations of 
synchronization, avoiding idle conditions owing 
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to mutual waiting. One of crucial factors affecting 
load balancing is various cells such as ordinary 
cells and PML cells, due to the different 
workloads that they possess. However, no specific 
rule exists for evaluating this factor in the domain 
decomposition, just experience acquired from 
repeated experiments. Our experiments show that 
a PML cell requires approximately 2.6 times more 
computing time than that of an ordinary cell. So a 
PML cell is evaluated as 2.6 ordinary cells when 
the whole space is divided into sub-domains. 
 
F. The thread execution 
  A thread carries out the actual FDTD 
calculation, as illustrated in Fig. 6. Electric and 
magnetic fields are updated sequentially, each 
followed by a synchronization operation. If a 
thread possesses a sub-domain interface between 
neighboring nodes, exchange of the magnetic field 
components with neighboring processes, through 
sending and receiving operations, is performed 
upon update of the magnetic field. 
 

 
Fig. 6. The flow chart of the thread execution. 

 
IV. RESULTS AND ANALYSIS 

  To estimate the parallel performance of the 
proposed method, three parallel FDTD codes 
based on the proposed method, the MPI library, 
and MPI-OpenMP, respectively, are developed in 
Visual Studio 2010. The implementation of MPI 
used in this paper is MPICH2-1.3.1, the latest 
version supporting the MPI 2.0 standard and 

optimizations for multi-core processors. The MPI 
based code creates a process binding to each 
execution core, and the data exchange between 
two cores is realized by calling MPI_Sendrecv(), 
just like that between two processors. Channel 
Nemesis is chosen to optimize intranode and 
internode communication. The MPI-OpenMP 
based code is similar to the pure MPI code. It 
creates a process in each processor, and employs 
OpenMP to automatically parallelize to the 
computing loops [15, 19], shown in Fig. 7.      
The parallel pragma is hoisted outside the loop 
of time steps to minimize threading overhead. 
When synchronization is not a necessity at the end 
of a parallel loop, nowait is specified with 
the for directive. Thread binding is achieved by 
calling ()SetThreadAffinityMask . 
 

 
Fig. 7. MPI-OpenMP algorithm. 
 
  As depicted in Fig. 8, an electromagnetic plane 
wave with a frequency of 1GHz propagates to a 
computer case, and the three parallel FDTD codes 
are employed to simulate the scattered field of the 
computer case. For this scattered field problem, its 
whole computation space is discreted 
into 720*170*330 cells along x , y , and z axis, 
respectively, with 0.001dx dy dz m   . 

Do initialization work; 
#pragma omp parallel private (…) 
{ 
for timestep=0 to timestep_max 
  { 
  … 
  #pragma omp for private (…) nowait 
  computation loops; 
  … 
  #pragma omp master 
  { 
  MPI_Sendrecv(); 

} 
#pragma omp barrier 
} 

} 
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  The experiment is carried out on a PC cluster 
comprising Intel Q6600 processors interconnected 
by a fast 1000Mb/s Ethernet. Each processor 
possesses 4 cores; in the experiment, one core is 
left to process system work and up to three cores 
can be used for the parallel FDTD computation. 

x
yz

Incident 
Plane Wave

 

Fig. 8. The computation model. 
 

The scattered field simulated by the three 
parallel FDTD codes agrees well with the 
simulation by computer simulation technology 
(CST) Microwave Studio. Table 1 demonstrates 
the tested run time and memory consumption of 
the three parallel FDTD codes, which drop  

 

quickly upon introduction of more 
threads/processes. One can see that the proposed 
method always costs less run time in comparison 
with both the MPI based and the MPI-OpenMP 
based parallel FDTD, and three codes consume 
the same amount of memory. 

 
Table 1: Run time (in seconds) and memory 
consumption (in MB) 

 
Figure 9 gives the measured speedup and 

parallel efficiency for the three parallel FDTD 
codes. Here, speedup is the ratio of sequential 
implementation execution time and parallel 

Number of 

threads/processes 
1 6 12 18 24 30 

Run 

time 

The proposed 

method 
7092 1257 648 444 344 282 

MPI  7092 1292 661 468 377 309 

MPI-OpenMP 7092 1268 655 449 346 284 

Memory 

Consumption 
2950 1500 775 412 231 140 

Fig. 9. Speedup and parallel efficiency. 
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execution time, while parallel efficiency is equal 
to speedup divided by the number of cores  
employed. One can observe that the speedup and 
parallel efficiency of the proposed method is 
considerably higher than that of the MPI based 
FDTD and the discrepancy becomes even larger 
with the increase of the number of cores. 
Compared with the MPI-OpenMP version of 
FDTD, the proposed method’s speedup and 
parallel efficiency is slightly bigger, but it is worth 
noting that the former is more difficult to optimize 
because it needs a careful fine tuning to achieve 
good performances. When 30 cores are utilized, 
the proposed method’s speedup rises to 25.1 with 
parallel efficiency of 83.7%, while the MPI 
application’s speedup is 22.9 with parallel 
efficiency of 76.3% and the MPI-OpenMP 
application’s speedup is 24.9 with parallel 
efficiency of 83.1%.  
 

V. CONCLUSION 
  Today’s PC clusters have improved remarkably 
in their computation ability by utilizing powerful 
new hardware, such as processors integrated with 
multiple cores. Parallel FDTD should be carefully 
designed to make full use of PC clusters’ 
multi-processor and multi-core features. This 
paper presents a high performance parallel FDTD 
method using Winsock and multi-threading to 
parallelize the FDTD computation. Threads are 
created to do the sub-domain computation in each 
execution core. Neighboring threads that are on 
the same nodes directly access each others’ 
memory during data exchange. Winsock sets up 
TCP connections between neighboring threads 
that run on different nodes to pass messages. 
Meanwhile, some techniques have been utilized to 
improve the parallel FDTD’s synchronization, 
data exchange, load balancing, and etc.  
  A numerical experiment of simulating a 
scattered field problem on a PC cluster with 
multi-core processors has been conducted to 
verify the validation and efficiency of the 
proposed method. In the experiment, the proposed 
method exhibits higher speed up and parallel 
efficiency than the FDTD using MPI or 
MPI-OpenMP. Moreover, the proposed method is 
natural and easy to implement for a good 
performance due to its explicit and direct 

threading. Those features make the method widely 
usable in numerical simulation problems. 
 

ACKNOWLEDGEMENT 
  This work was supported by NCET of China 
(No. NCET-08-0369) and the National Natural 
Science Foundation of China (No. 10876020). 
 

REFERENCES 
[1] K. Yee, “Numerical Solution of Initial 

Boundary Value Problems Involving 
Maxwell's Equations in Isotropic Media,” 
IEEE Transactions on Antennas and 
Propagation, vol. 14, no.3, pp. 302-307, 
1966. 

[2] A. Taflove, Computational Electromagnetics: 
The Finite-Difference Time-Domain Method, 
Artech House, Norwood, 2000. 

[3] C. Guiffaut and K. Mahdjoubi, “A Parallel 
FDTD Algorithm using the MPI Library,” 
IEEE Antennas and Propagation Magazine, 
vol. 43, no. 2, pp. 94-103, 2001. 

[4] G. A. Schiavone, I. Codreanu, R. Palaniappan, 
and P. Wahid, “FDTD Speedups Obtained in 
Distributed Computing on a Linux 
Workstation Cluster,” Antennas and 
Propagation Society International 
Symposium, vol. 3, pp. 1336-1339, 2000. 

[5] V. Varadarajan and R. Mittra, 
“Finite-Difference Time-Domain (FDTD) 
Analysis using Distributed Computing,” 
IEEE Microwave and Guided Wave Letters, 
vol. 4, no.5, pp. 144-145, 1994. 

[6] W. Yu, R. Mittra, T. Su, Y. Liu, and X. Yang, 
Parallel Finite-Difference Time-Domain 
Method, Artech House, 2006. 

[7] W. Yu, Y. Liu, T. Su, N.-T. Hunag, and R. 
Mittra, “A Robust Parallel Conformal 
Finite-Difference Time-Domain Processing 
Package using the MPI Library,” IEEE 
Antennas and Propagation Magazine, vol. 47, 
no. 3, pp. 39-59, 2005. 

[8] W. Yu, M. R. Hashemi, R. Mittra, D. N. de 
Araujo, M. Cases, N. Pham, E. Matoglu, P. 
Patel, and B. Herrman, “Massively Parallel 
Conformal FDTD on a BlueGene 
Supercomputer,” IEEE Transactions on 
Advanced Packaging, vol. 30, no. 2, pp. 
335-341, 2007. 

247DUAN, CHEN, HUANG, ZHOU: HIGH PERFORMANCE PARALLEL FDTD BASED ON WINSOCK AND MULTI-THREADING



[9] M. Snir, S. Otto, S. Huss-Lederman, D. 
Walker, and J. Dongarra, MPI: The Complete 
Reference, The MIT Press, 1996. 

[10] W. Gropp, E. Lusk, and A. Skjellum, Using 
MPI: Portable Parallel Programming with 
the Message-Passing Interface, second 
edition, The MIT Press, 1999. 

[11] D. Buntinas, G. Mercier, and W. Gropp, 
"Implementation and Shared-Memory 
Evaluation of MPICH2 over the Nemesis 
Communication Subsystem," Proc. of the 
13th European PVM/MPI Users' Group 
Meeting (Euro PVM/MPI 2006), September 
2006. 

[12] D. Buntinas, G. Mercier, and W. Gropp, 
“Design and Evaluation of Nemesis, A 
Scalable Low-Latency Message-Passing 
Communication Subsystem,” Proceedings of 
International Symposium on Cluster 
Computing and the Grid 2006 (CCGRID ’06), 
2006. 

[13] S. Akhter and J. Roberts, Multi-Core 
Programming: Increasing Performance 
through Software Multi-threading, Intel Press, 
2006. 

[14] F. Cappello and D. Etiemble, “MPI Versus 
MPI+OpenMP on the IBM SP for the NAS 
Benchmarks,” Supercomputing ACM/IEEE 
2000 Conference, 2000. 

[15] M. F. Su, I. El-Kady, D. A. Bader, and S.-Y. 
Lin, “A Novel FDTD Application Featuring 
OpenMP-MPI Hybrid Parallelization,” 
Parallel Processing, 2004 International 
Conference, pp. 373-379, 2004. 

[16] R. Rosenberg, G. Norton, J. C. Novarini, W. 
Aderson, and M. Lanzagorta, “Modeling 
Pulse Propagation and Scattering in a 
Dispersive Medium: Performance of 
MPI/OpenMP Hybrid Code,” SC 2006 
Conference, Proceeding of the 2006 
ACM/IEEE, pp. 47-47, 2006. 

[17] B. Chapman, G. Jost, and R. Van Der Pas, 
Using OpenMP: Portable Shared Memory 
Parallel Programming, The MIT Press, 2008. 

[18] R. Chandra, L. Dagum, D. Kohr, D. Maydan, 
J. McDonald, and R. Menon, Parallel 
Programming in OpenMP, Academic Press, 
2001. 

[19] A. Rane and D. Stanzione, “Experiences in 

Tuning Performance of Hybrid MPI/OpenMP 
Applications on Quad-Core Systems,” Proc. 
of 10th LCI Int’l Conference on 
High-Performance Clustered Computing, 
2009. 

[20] J. Berenger, “A Perfectly Matched Layer 
Medium for the Absorption of 
Electromagnetic Waves,” J. Comput., vol. 
114, 1994, pp. 185-200. 

[21] T. Rauber and G. Rünger, Parallel 
Programming for Multicore and Cluster 
Systems, Springer, 2010. 

[22] A. Jones and J. Ohlund, Network 
Programming for Microsoft Windows, 
Microsoft Press, 2002. 

[23] B. Quinn and D. Shute, Windows Sockets 
Network Programming, Addison-Wesley 
Professional, 2009. 

[24] J. Watts and S. Taylor, “A Practical Approach 
to Dynamic Load Balancing,” IEEE 
Transactions on Parallel and Distributed 
Systems, vol. 9, no. 3, pp. 235-248, 1998. 

 
Xin Duan was born on May 23, 
1986 in Sichuan, China. He 
received his B.S. degree in 
Information and 
Communication Engineering in 
2008 from Sichuan University. 
He is now working toward his 

M.S. degree in Electromagnetics and Microwave 
in Sichuan University. His research is mainly 
focused on computational electromagnetics and 
antenna design. 
 

Xing Chen received his M.S. 
degree in Radio Physics in 1999 
and the Ph.D. degrees in 
Biomedical Engineering in 
2004, both from Sichuan 
University, China. He joined the 
teaching staff in 1991, and is 

now a Professor in the College of Electronics and 
Information Engineering of Sichuan University. 
His main research interests are in the fields of 
antenna design, optimization algorithm, numerical 
methods, and parallel computation. He is a senior 
member of the Chinese Institute of Electronics. 

248 ACES JOURNAL, VOL. 26, NO. 3, MARCH 2011



Kama Huang received his 
M.S. degree in 1988 and his 
Ph.D. degree in 1991 in 
Microwave Theory and 
Technology both from the 
University of Electronic 
Science and Technology, 

China. He has been a professor of the College of 
Electronics and Information Engineering of 
Sichuan University, China since 1994, and the 
director of the College since 1997. In 1996, 1997, 
1999, and 2001, he was a visiting scientist at the 
Scientific Research Center “Vidhuk” in the 
Ukraine, Institute of Biophysics CNR in Italy, 
Technical University Vienna in Austria, and 
Clemson University in USA, respectively. At 
these institutions, he cooperated with the scientists 
to study the interaction between electromagnetic 
fields and complex media in biological structure 
and reaction systems. He has published over one 
hundred papers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Haijing Zhou was born in 
Beijing in 1970. He received his 
B.S., M.S., and Ph.D. degrees in 
Microwave engineering in 1991, 
1994, and 1997, respectively, 
from UESTC (University of 
Electronics Science and 

Technology of China). Since 1998, he has been 
working at IAPCM (Institute of Applied Physics 
and Computational Mathematics of Beijing), as an 
Associated Professor (1999) and a Professor 
(2005), where his research is mainly in the areas 
of high power microwave, ultra-wideband 
electromagnetics, and computational 
electromagnetics. His current interests include 
classical electromagnetic field theory, transient 
electromagnetics, computational electromagnetics, 
microwave technology, antenna technology, and 
wave propagation, etc. 

249DUAN, CHEN, HUANG, ZHOU: HIGH PERFORMANCE PARALLEL FDTD BASED ON WINSOCK AND MULTI-THREADING



Negative Index of Reflection in Planar Metamaterial Composed of 
Single Split-Ring Resonators 

 
 

Ming-Chun Tang, Shaoqiu Xiao, Duo Wang, Jiang Xiong, Kun Chen, and Bingzhong Wang 
 

The Institute of Applied Physics 
 University of Electronic Science and Technology of China, Chengdu, China, 610054 

xiaoshaoqiu@uestc.edu.cn 
 
 
Abstract - This paper reports the negative index of 
refraction in planar metamaterial consisted of only a 
traditional single split-ring resonator (SRR), which is 
proved to exhibit simultaneously negative 
permittivity and negative permeability without the 
use of assistant metallic structures by retrieving the 
effective electromagnetic parameters. With the aid of 
current distributions investigation, it is demonstrated 
that within the left-handed band the negative 
permittivity is generated in a way analogous to the 
case of dual parallel cut-wire metamaterial, and 
negative permeability arises from the asymmetric 
second-order magnetic resonant mode. 

 
Index Terms - Negative index reflection, negative 
permeability, negative permittivity, planar 
metamaterial, single SRR.  
 

I. Introduction 
  In 2001, the fantastic negative refraction was 
accomplished by a prism made of left-handed 
material (LHM) [1, 2], which had been previously 
predicated by Veselago [3]. Since then, various kinds 
of LHMs have been constructed, such as 
SRR-shaped [4], Ω-shaped [5], brick-wall-shaped [6], 
cut-wire-shaped [7], S-shaped [8, 9], 
right-angle-shaped [10], H-shaped [11], 
chirality-shaped [12] resonators, and so on. Typically, 
these LHMs designs can be classified into two 
categories: one, like those reported in [1 and 4], is 
realized from separate arrays of periodically 
arranged split ring resonators that exhibit negative 
permeability and metallic wires that exhibit negative 
permittivity; the other, as proposed in [5–12], only 
uses sub-wavelength structures which incorporate 
traditional wires and SRRs into different combined 
patterns with simultaneous electric and magnetic 
resonances. However, most of these LHMs share 

certain defects. For example, most metallic patterns 
are printed on both sides of the substrates [1, 5-8], 
and some lumped active elements (such as varactor 
diodes) are added in the design [8, 9], both of which 
increase the complexity of design and application; 
some LHMs resort to composite metamaterial units 
[10] or bear too long unit length along the electric 
polarized direction [11, 12], whose unit cell takes up 
too much space accordingly.  
  Given that their performances are qualitatively 
similar to those of double split-ring resonators 
(SRRs) [13], single SRRs have been utilized to 
design different kinds of metallic metamaterials, 
recently. As their electric resonance properties are 
just like cut wires, they have already seen 
applications in fabricating planar electric 
metamaterials [14-16]. On the other hand, being able 
to generate circulating currents, they have also been 
used to realize magnetic resonances [17-22]. 
Generally, a LHM could only function on the 
condition that the negative electric and magnetic 
responses are modulated to a common frequency 
band [1, 3]. However, since an ordinary single SRR 
has a much lower fundamental magnetic resonance 
frequency than that of the electric resonance, it is 
impossible to achieve a common frequency band 
after modulation. Therefore, no LHM composed of 
single SRR units have been reported yet. 
  In this paper, after a thorough numerical 
investigation of the resonance characteristics of a 
single SRR, we propose one new method to design 
LHM with a single SRR unit. In the design, we 
utilize the magnetic resonant frequency in 
asymmetrical second-order mode, and the electric 
resonant frequency in fundamental electric resonant 
mode. The two frequency bands, after subtle 
adjustment of unit dimension, are accommodated to 
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overlap very well; thus, contributing to the 
accomplishment of our expected LHM. It is of 
interest that, without resorting to additional lumped 
active elements or metallic cut wires, the proposed 
LHM unit is easily achieved and boasts a simple and 
uniform configuration.  
 

II. NUMERICAL INVESTIGATION ON 
AN ORDINARY SINGLE SRR 

  The unit cell of an ordinary metallic single SRR 
metamaterial is schematically shown in Fig. 1. The 
single split ring with a thickness of 0.0017 mm is 
placed in the center of the cube with the dimensions 
Lx×Ly×Lz=15mm×15mm×15mm, and the cube is 
filled with Rogers RT/duroid 5880 with relative 
dielectric constant εr=2.2. The detailed geometry of 
SRR is: the gap of ring g=1mm, the outer radius 
R=6mm, and the width w=1.1mm. 
  The numerical simulations are all performed using 
the finite-element method (Ansoft’s HFSS), whose 
accuracy has been already confirmed by its good 
agreement with experimental results as in literatures 
[23, 24]. A theoretical model based on an artificial 
waveguide with the transverse boundaries of two 
ideal magnetic conductors and two ideal electric 
conductor planes is employed. This enables the 
model to be equivalent to an infinite layer medium 
illuminated by a normal incident plane wave [25-27]. 
To be specific, input/output ports are imposed in 
x-direction, and perfectly electric conducting (PEC) 
and perfectly magnetic conducting (PMC) boundary 
conditions are imposed in y- and z- directions, 
respectively. It is noted that, the electric component 
of the electromagnetic wave perpendicular to the 
split bearing side of the ring (along y-axis) is 
adopted for the sake of eliminating the undesired 
bi-anisotropic effect via asymmetry [27, 28]. 
At first, we discuss the condition in Fig. 2. As 
sketched, the single SRR is placed where the 
electromagnetic wave propagates (in the x-direction) 
perpendicular to the SRR face (in the yz-plane) and 
external polarized magnetic field (in the z-direction) 
is parallel to its face. Shown in the simulated 
transmission spectrum, the SRR can be electrically 
excited around 7.35GHz (i.e., in the fundamental 
electric resonant mode), in agreement with the 
theoretical analysis in literature [29]. Further, the 
induced current distribution at 7.35GHz is presented. 
Obviously, the charge accumulates symmetrically on 
opposite arms of the ring, and the ring is in analogy 

to the dual parallel connected cut-wires of the same 
dimensions. Thus, the ring can be viewed as two 
parallel LC resonant circuits operating in the 
fundamental modes. Owing to the same dimensions 
of the two arms, the two LC resonances are both 
operating in the same fundamental electric resonant 
frequency band. 

Lz

g

R

O

zx

y

w

Lx

Ly

 
Fig. 1. The unit cell of the metallic metamaterial 
designed with single SRR. 
 
  Then, we rotate the SRR around y- axis for 90° in 
xz plane, shown in Fig. 3. In this simulation, the 
single SRR is placed where the electromagnetic 
wave propagates (in the x-direction) parallel to the 
SRR face (in the xy-plane). An external polarized 
magnetic field (in the z-direction) is perpendicular to 
its face, which can induce magnetic response in 
addition to electric response. The corresponding 
simulated transmission spectrum is, also, presented 
in Fig. 3. There are three dips appearing within this 
frequency region. As is aforementioned, the third dip 
at 7.35GHz results from the external electric 
excitation. Therefore, the other two dips (including 
2.7GHz and 6.35GHz) could only be caused by 
external magnetic excitation, since the bi-anisotropic 
effect has been eliminated [28].  
  In order to confirm its resonance mechanism, the 
current distributions at each dip are demonstrated in 
Fig. 4. It is obvious that the circling current is 
induced by the external magnetic field, which incurs 
a magnetic response in fundamental mode around 
2.7GHz in Fig. 4(a) [22]. Naturally, the 
corresponding second-order mode (i.e., the dip at 
6.35GHz in Fig. 3) could occur at a higher resonant 
frequency. For clarity, the current distributions at the 
higher mode are demonstrated in Fig. 4(b). It is 
noted that, the current distribution in second-mode is 
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non-uniform and asymmetric [30]. This can be 
ascribed to the following two main reasons; one is 
that there is no intrinsic symmetric even-mode 
current distributions existing based on magnetic 
excitation in this type of SRR. As is well known, the 
polarization currents are directly contributed by 
external magnetic field [13, 31], whenever the SRR 
is excited at the arbitrary-order magnetic resonant 
modes. It can be assumed that, if the magnetic 
resonances in even-modes were symmetric, the 
current distributions should also be symmetrically 
distributed at the two arms (just like aforementioned 
electric resonance in fundamental mode in Fig. 2). 
Eventually, it would lead the sum of the even-mode 
response for the external magnetic field to be zero, 
i.e., the external magnetic field would make no 
contribution to the overall SRR magnetic response. 
The other reason is that, the other kind of response 
(electric response in the fundamental mode at 
7.35GHz) is quite near to the magnetic response in 
the second-mode 6.35GHz in Fig. 3, and those 
nearby responses could exhibit mutual coupling 
between each other, which disturbs current 
distributions. For the electric resonance in the 
fundamental mode, because of the influence of 
nearby magnetic excitation, the current distributions 
induced by the external electric field in the two 
paralleled arms depicted in Fig.4(c) are apparently 
not as symmetric as in Fig. 2 

 
Fig. 2. The simulated transmission spectrum and 
current distribution (at the dip 7.35GHz), when the 
single SRR is only electric excited. 
 
 
 
 

III. NEGATIVE INDEX OF REFRACTION 
ENABLED BY SINGLE SRRS 

  As is known, negative permittivity can be 
achieved by the electric resonance, and negative 
permeability can be ensured by magnetic 
resonance analogously. It is aforementioned in 
Section II that the ordinary single SRR would 
usually exhibit electric resonance and magnetic 
resonance at different frequencies, as shown in 
Fig. 3. However, negative refraction requires a 
negative permittivity and a negative 
permeability at a common frequency range, 
which necessitates certain overlapping 
frequency range of the electric resonance and 
magnetic resonance frequency of single 
SRR.

 
Fig. 3. The simulated transmission spectrum on the 
condition that the single SRR is both electrically and 
magnetically excited. 
 
  Considering the electric resonant frequency in 
fundamental mode is near to the magnetic 
resonant frequency in second-order mode, a 
parametric study is carried out in order to make 
the two resonance frequency bands closer by 
adjusting the SRR dimensions as shown in Fig. 
5. Firstly, the effect of the split gap (g) is 
numerically studied. From Fig. 5(a), it is 
observed that the split gap has little impact on 
the distance between the two resonance 
frequency bands. When the split gap becomes 
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larger, the electric resonance frequency goes up 
in accordance with the two magnetic resonance 
frequencies. The main reason is that the 
enlargement of split gap results in the reduction 
of the effective electric length along the 
E-polarized direction induced by an external 
electric field, and the decrease of the effective 
circulating current path and split capacitance 
induced by an external magnetic field. This 
leads to the increase of electric resonance 
frequency (ωeo) and each magnetic resonance 
frequency (ωmo). The effect of the SRR width (w) 
has also been studied in Fig. 5(b). As mentioned 
above, the single SRR is in analogy to the dual 

(a) 2.7GHz (b) 6.35GHz

(c) 7.35GHz

( ) G

 
Fig. 4. Current distributions at three different resonant 
dips. (a) The fundamental magnetic resonant frequency; 
(b) The second-order magnetic resonant frequency; (c) 
The fundamental electric resonant frequency. 
 
parallel connected cut wires. Hence, by 
decreasing the width of SRR (which is 
equivalent to the effective radius of cut wire in 
literature [32]), the corresponding ωeo drops 
distinctly. Meanwhile, its influence on the ωmo 
can be neglected except a little variation due to 
the small difference in split capacitance. 
Therefore, in Fig. 5(b) it is of our interest that, 

when w goes narrower, the above two resonant 
frequencies get closer. Especially, the two 
resonant frequency regions occupy overlapping 
band (in the dotted zone) when w=0.2mm, 
leading to a narrow passband centered at 
6.4GHz occurrence. Thirdly, the effect of the 
radius (R) of metallic SRR on the resonance 
frequency has been investigated shown in Fig. 
5(c). When the radius (R) goes up, both of the 
ωeo and ωmo are simultaneously dropping. We 
ascribe this phenomenon to that, the increase of 
R brings about the corresponding enlargement of 
the effective electric length along the 
E-polarized direction induced by an external 
electric field, and also the increase of the 
effective circulating current path induced by an 
external magnetic field, simultaneously. 
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(c) 

Fig. 5. The effect of metallic SRR dimensions on the 
resonance frequency; (a) the split gap (g), (b) the width 
(w), the radius (R). 
 
  Furthermore, in order to judge the existence 
of the electric resonance around 6.4GHz in Fig. 
5 easily, we also rotate the SRR around y- axis 
for 90° in xz plane, with the electromagnetic 
environment the same as Fig. 2. Fig. 6(a) 
demonstrates that the SRR provides a stopband 
near 6.1GHz, exhibiting strong electric response 
(according to the current distribution on the two 
arms at the dip 6.1GHz) in analogy with the 
simulated result in Fig. 2. It verifies that there is 
also a strong electric resonance occurring within 
the passband. Logically, the magnetic resonance 
also exists in the passband to ensure negative 
index of refraction. Moreover, Fig. 6(b) shows 
the effect of SRR width (w) on the resonance 
frequency, when the single SRR is only electric 
excited (i.e., it is placed in the same 
electromagnetic environment as that in Fig. 
6(a)). Apparently, when the W goes narrower, 
the electric resonance frequency (ωeo) drops 
distinctly (from 7.24GHz to 7.10GHz), which is 
in good accordance with the results in Fig. 5(b), 
thus confirming the validation of our 
aforementioned theory [32]. 
  To further confirm the effectiveness of our 
proposed LHM design, a retrieval calculation is 
performed to obtain the effective permittivity εeff  
and the effective permeability μeff from the 
scattering parameters S21 and S11 of the proposed 
SRR metamaterial. According to literature [33], 
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Fig. 6. The simulated transmission spectrum when the 
single SRR is only electric excited; (a) the transmission 
spectrum and the current distribution (at the dip 
6.1GHz), (b) the effect of SRR width (w) on the 
resonance frequency. 
 
in order to attain electrometric parameters 
(including permittivity and permeability), the 
refractive index (n) and the wave impedance (z) 
is firstly obtained from Equations (1) and (2), 
respectively, and then the electrometric 
parameters are acquired from Equations (3) and 
(4), respectively. 
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.n
z                             （3）                                                     

.nz                              （4）  

It is noted, in the retrieval procedure the 
Kramers–Kronig relations is applied to 
achieve the uniqueness of their values here 
[34]. The retrieved results in Fig. 7 
demonstrate that, within the negative 
refractive index frequency band, the εeff and 
μeff are simultaneously negative corresponding 
to the passband region from 6.34GHz to 
6.45GHz, which is also the overlapping region 
between fundamental electric resonant 
frequency band and second-order magnetic 
resonant frequency band. Thus, the retrieved 
datas are consistent with the results concluded 
earlier. Also, Fig. 7 shows the imaginary parts 
of permittivity and permeability are relative 
smooth and almost zero, which indicate very 
weak anti-resonances and low losses of our 
proposed LHM unit in spite of its very simple 
configuration [35]. However, it is also worth 
mentioning that, our proposed LHM can only 
provide a much narrower bandwidth (with 
only 3.4% fractional bandwidth) with negative 
index of reflection than LHM proposed in 
literature [33].                                                                               
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(c) 
Fig. 7. Retrieved electromagnetism parameters of the 
metamaterial composed of SRRs from the scattering 
parameters in Fig. 5 where both electric and magnetic 
excitations provided (w=0.2mm); (a) refractive index, 
(b) permittivity, and (c) permeability. 
   
  In addition, the current distributions under 
different excitations at different phases have 
been compared and discussed in Fig. 8. Figs. 8(a) 
and (b) present the current distributions, when 
the SRR is excited by time-varying external 
electric field and magnetic field, respectively 
[31]. As is well known that, the different 
resonances come from in phase and out of phase 
responses of the structure with the driving 
incident field, due to the different excitations. It 
is further attested in Fig. 8(a) that the relatively 
symmetric charge distribution at both arms of 
SRR is observed when there is only electric 
excitation, while the majority of charges are 
accumulated at only one arm when only 
magnetic excitation provided in Fig. 8 (b). And 
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it deserves to be mentioned that, the electric 
response is more significant at phases 90°, and 
135°, while magnetic response is more 
significant at phase 45°. In Fig. 8 (c), the 
majority of charges accumulate at two arms in 
approximately symmetrical distribution at phase 
135°, just like that in Fig. 8 (b). Meanwhile, the 
majority of charges accumulate at only one arm 
at phase 45° also like that in Fig. 8 (a), 
exhibiting distinctly asymmetric current 
distributions. This phenomenon that there is also 
most of the asymmetric current distributions on 
the two legs at 90° in Fig. 8 (c), can be ascribed 
to the strong mutual coupling between the 
magnetic and electric responses centered at the 
nearby phases (shown in Fig. 8 (a) and 8 (b), 
respectively). The above phenomenon further 
validates the existence of the simultaneously 
electric and magnetic responses, and confirms 
the accomplishment of the LHM design. 
 

 
Fig. 8. Current distributions at different phases within 
half of a period. (a) Only electric excitation at the dip 
7.35GHz in Fig. 2; (b) second-order magnetic 
excitation at the dip 6.35GHz in Fig. 4(b); (c) both 
electric and magnetic excitations at 6.53GHz for 
proposed LHM unit. 
 

IV. CONCLUSION 
  We have numerically investigated the 
left-handed response in metallic metamaterial 
comprised of single SRRs. It is learned from 
simulation data that the electric response in the 
fundamental mode and magnetic response in 
second-mode for the traditional single SRR is 
very near. By adjusting the geometric 
parameters of the SRR configuration, a simple 
LHM without using additional metallic wires 
can be easily realized. 
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Abstract ─ We considered the influence of 
multilayer structure parameters which are the 
index contrast, the period’s number and the 
reference wavelength on the transmission 
spectrum of a deformed structure. Deformation 
was introduced by applying the power law

1+= kxy .We revealed that the higher optical index 
contrast enhance the deformation effect on 
transmission properties of the structure at normal 
incidence. This work is a detailed study of the 
effect of the deformation introduced in the 
multilayer stack according to the mentioned law. 
 
Index Terms ─ Deformation, index contrast, 
multilayer structure, period’s number, reference 
wavelength, transmission properties.  
 

I. INTRODUCTION 
The photonic crystals (PCs) are beginning to 

have a profound effect on the development of 
nanoscale devices because they can significantly 
enhance the interactions between light and matter 
[1-3]. The properties of photonic crystals are not 
based on absorption or emission transitions. 
Instead they are determined by the index of 
refraction periodicity which can be scaled from 
submicron dimensions (to control UV/VUV light) 
to the centimetre scale (to control microwaves) 
[4,5]. The idea of photonic crystals is to introduce 
periodicity comparable to the optical wavelength 
in such a way that a photonic band gap (PBG) is 
formed. Different users need PCs with different 
PBG widths. So, flexibility and tunability of the 
PBG of PCs is crucial for flexible and dynamic 
nanophotonic circuits in future [6-8]. Chirped 
structure can be introduced in the photonic crystal 

to change the PBG. So, not only the quarter wave 
periodic structures but also the deformed ones 
have become significant structures of photonic 
crystals. In this work, the deformation was 
introduced by applying the power law, so that the 
coordinates y of the deformed object was 
determined through the coordinates x of the initial 
(periodic structure) object in accordance with the 
following rule: 1+= kxy . Here k  is the coefficient 
defining the asymmetry degree [9-12]. For 
example, the periodic structure is projected into 
itself without any changes of dimensions if 0=k . 
Deviation of the k  value from 0 leads to a 
deformed multilayer structure. This deformation 
occurs when its interest by the optimization of the 
deformation degree; but this optimization is not 
simple, it depends on the structure parameters such 
as the optical contrast ratio (the ratio of high 
refractive to low refractive index), the number of 
periods, and the reference wavelength. Within this, 
the present work considers the study of the 
deformed 1D-PCs behaviour when varying these 
parameters. So, we treat the interaction between 
the deformation degree k and the other parameters 
of the structure in aim to optimize the structure by 
widening the PBG at normal incidence. Through 
this study, we become able to control the PBG 
properties of the deformed system by controlling 
the structure parameters. The numerical method 
employed to obtain the transmission response of 
the structure is the transfer matrix method. 
 

II. METHOD OF MODELING 
For the calculation of system reflection and 

transmission, we employed the transfer matrix 
method (TMM). This technique is a finite 
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difference method particularly well suited to the 
study of PBG materials and it can solve the 
standard problem of the photonic band structures 
and the scattering (transmission, reflection, and 
absorption) spectrum [13].  

It is based on the Abeles method in terms of 
forward and backward propagating electric field, 
that is, +E and −E which were introduced to 
calculate the reflection and transmission. Abeles 
showed that the relation between the amplitudes 
[14] of the electric fields of the incident wave +

0E , 

reflected wave −
0E , and the transmitted wave after 

m layers, +
+1mE , is expressed as the following 

matrix for stratified films within m layers: 

0 11 2 3 1

1 2 3 10 1

... .
...

mm

m m

E EC C C C
t t t tE E

+ +
++

− −
+ +

   
=   
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Here, jC is the propagation matrix with the 
matrix elements. 
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where jt  and jr  are the Fresnel transmission and 
reflection coefficients, respectively, between the 
( )thj 1−  and thj  layer. The Fresnel coefficients 

jt  and jr  can be expressed as follows by using 

the complex refractive index jjj iknn +=ˆ  and 

the complex refractive angle jθ . For parallel (P) 
polarization 
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Moreover, for perpendicular (S) polarization: 
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The complex refractive indices and the 
complex angles of incidence obviously follow 
Snell’s law: jjjj nn θθ sinˆsinˆ 11 =−−   (j = 1, 2… 

m+1). The values 1−jφ  in equation (2) indicate the 

change in the phase of the wave between ( )thj 1−   
and jth  boundaries and are expressed by the 
equation: 

0 0,ϕ =                                                          (7) 

1 1 1 1
2 ˆ cos .j j j jn dπϕ θ
λ− − − −=                          (8) 

Except for j = 1, λ  is the wavelength of the 
incident light in vacuum and 1−jd  is the thickness 

of the ( )thj 1−  layer. By putting 11 =−
+mE , 

because there is no reflection from the final phase, 
Abeles obtained a convenient formula for the total 
reflection and transmission coefficients, which 
correspond to the amplitude reflectance r and 
transmittance t, respectively, as follows: 

0
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,E cr
E a
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+= =                                                 (9) 
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... .m mE t t tt
E a
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The quantities a and c are the matrix elements 
of the all product jC  matrix:  
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a b
C C C C
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By using equations (9) and (10), we can easily 
obtain the energy reflectance R as: 

2 .R r=                                                      (12) 
For (S) and (P) polarizations, and the energy 

transmittance T as: 
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for S and P polarization, respectively, where Re 
indicates the real part. 

 
III. MODEL AND FORMALISM 

The deformation was introduced by applying a 
power law, so that the coordinates y which 
represents the transformed object were determined 
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using the coordinates x of the initial object in 
accordance with the following rule: 

1+= kxy ,        (15) 
where k  is the deformation degree.  

The initial optical phase thickness, when we 
apply the y function, is: 

 θ
λ
πφ cos2

0x= .   (16) 

The optical phase thickness of the jth layer is: 
1 1

0
2 [ ( 1) ]cos( ).k k

j jx j jπϕ θ
λ

+ += − −      (17) 

Here, 
4

0
0

λ
=x is the optical thickness of each 

layer of the periodic structure, and 0λ  is the 
reference wavelength. 

For the deformed system, the optical 
thickness of each layer becomes variable and 
depends on the thj  layer and the deformation 
degree k. So, the optical thickness of each layer 
after deformation by the y function takes the 
following form: 

 ])1([ 11
00

++ −−= kk
j jjxx .  (18) 

 

 
Fig. 1. Principle of introducing a deformation into 
a periodic multilayer structure, for example for k= 
-0.2. 
 

It is clear that the optical thickness of each 
layer increases with k increasing. Figure 1 
describes the principle of the transformed system 
by the y function. 

For our study, refractive indices are assumed 
to be constant in the wavelength region of interest. 
We define the parameter contrast index x  which 
presents the ratio between the high index and the 
low index of the layers forming the system

B

H

n
nx = . The band gap width is defined as the 

wavelength range when T < 0.01%. 
 

III. STUDY OF DEFORMED 
STRUCTURE ACCORDING TO THE 

LAW 1+= kxy  
 
A. Interaction between the deformation degree 
and the contrast of indices 

The profiles of the optical properties of the 
system response as a function of k  as well as the 
optimal value of k  differ according to the contrast 
of indices. Figure 2 presents these profiles for 
some values of contrast. 

We perform this study for [ ]4.0;0∈k . For a 
given contrast, the forbidden photonic band exists 
for an interval of k  values and it is absent for 
other k  values. The contrast is more important 
when the interval is large, for a contrast of 

22
614.1 SiOTiO nn=  the band exists only for k  

lower than 0.2493, for a contrast of 2.41, the band 
is possible for values lower than 0.3264. 
Moreover, the curve ( )kf=δλ  for a particular 
contrast have a tendency to increase at the 
beginning, reach a maximum (the k  value 
corresponding to this maximum increases when 
increasing the contrast) and then decrease to a 
value under which, the PBG becomes absent. The 
PBG middle has the same profile as function of k  
for different contrasts, the PBG shifts towards the 
high wavelengths by increasing k . In order to 
improve the study of the contrast influence on the 
PBG of the deformed system, we investigate the 
influence of the index contrast on the deformation 
effect on the structure transmission spectra i.e. 
how the increasing of index contrast can improve 
the significance of deformation. For this, we 
choose a value of k  permitting to have a PBG for 
the contrast interval studied which is [ ]4;614.1 . 
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Fig. 2. PBG variation as a function of k for 
different values of optical index contrast.            
(a) Variation of the wavelengths of the negligible 
transmission band extremities as a function of k  
for different values of optical index contrast.      
(b) Variation of the bandwidth as a function of k 
for different values of optical index contrast.      
(c) Variation of the band center as a function of k 
for different values of optical index contrast. 
 

We select, for example, the value 2.0=k . 
Then, we display the plot showing the variation of 
the difference between the PBG width given by a 
deformed system and that given by the one not 
deformed according to the index contrast. The 
widening of the forbidden band according to the 
contrast is noted for the not deformed system as 
for the deformed one, but this widening is faster 
and more significant for the later.  

Indeed, Fig. 3 shows that the difference 
between the bands given by the two systems, 
deformed and not deformed, increases by 
increasing the index contrast. We generally 
conclude that the deformation of the system will 
have an interest for index contrast values relatively 
high. It is clear now that the best transmission 
spectrum is obtained for 4=x . Let us choose the 
best value of k  which enables us to have the 
broadest band belonging to the range [ ]2;3.0 . It is 
the value 2295.0=k . 

 

 
Fig. 3. Difference between the bandwidth of the 
deformed system and that of the not deformed one 
as function of the optical index contrast. 
 

Figure 4 shows the transmission spectrum of 
the system with 31 layers ( 15=j ), contrast=4, 
and 2295.0=k . Its properties are: 2676.1=δλ
µm and 3662.1=centerλ  µm. We note that the 
PBG covers the three telecommunication 
wavelengths 0.85 µm, 1.3 µm, and 1.54 µm. 

So, these results revealed that the choice of 
the optical index contrast is very influencing to the 
quality of the deformation when we consider the 
normal incidence. That gives us a liberty to choose 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3

3.5

4

deformation degree k

λ
sh

or
t λ

lo
ng

 (
µ
 m

)

 

 

CONTRAST=2.41
CONTRAST=1.71
CONTRAST=1.61
CONTRAST=4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3

deformation degree k

δ 
λ 

( µ
 m

)

 

 
CONTRAST=4
CONTRAST=2.41
CONTRAST=1.72
CONTRAST=1.61

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.5

1

1.5

2

2.5

3

deformation degree k

λ ce
nt

er
 ( µ

 m
)

 

 
CONTRAST=4
CONTRAST=2.41
CONTRAST=1.72
CONTRAST=1.61

1.5 2 2.5 3 3.5 4
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

index contrast

δ 
λ (k

=0
.2

)- δ
 λ

(k
=0

)

262 ACES JOURNAL, VOL. 26, NO. 3, MARCH 2011



x  and k  according to the needs (spectral range, 
central wavelength, etc.). 

 

 
Fig. 4. Transmission at normal incidence of the 
deformed multilayer structure TiO2(SiO2/TiO2)15 
as a function of wavelength for a reference 
wavelength  λ0= 0.5 µm and P-polarized light. 
k=0.2295, x=4. Condition PBG: T<0.01 %. 
 
B. Interaction between the deformation degree 
and the number of periods 

We consider now the interaction between the 
degree of deformation and the number of periods 
forming the structure. The indices of the layers are 

34.2=Hn  and 45.1=Bn , the reference 
wavelength is 0.5 µm.  

Figure 5 shows that for a given number of 
periods, the PBG exists only for an interval of 
values of k . For example, for 10=j , the band 
exists only if [ ]0643.0;0∈k . For 15=j , k  must 
belong to [ ]2493.0;0 . For 18=j , k  must belong 
to [ ]34.0;0 . If we compare Fig. 5 with Fig. 2 
which gives the tendency of the optical properties 
of the transmission spectrum when varying k  for 
different values of contrast, we notice that the 
influence of increasing j  does not represent a 
great contribution to ameliorate the deformation 
effect on the structure response. In this case, the 
PBG middle shifts quickly towards the higher 
wavelengths when increasing k . Thus, to increase 
j  doesn’t represent a great interest for the studied 

deformed multi-layer structure.  
 

 

 
Fig. 5. PBG variation as a function of k for 
different values of period’s number. (a) Variation 
of the wavelengths of the negligible transmission 
band extremities as a function of k for different 
values of period’s number. (b) Variation of the 
bandwidth as a function of k for different values of 
period’s number. (c) Variation of the band center 
as a function of k for different values of period’s 
number. 
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Figure 6 gives for each j  the corresponding 
omnidirectional bandwidth for 4=x  and

2295.0=k . With these conditions, the minimum 
number of periods is 7 which permits to have a 
PBG (width =0.0264 µm).  

Figure 7 shows the variation of the difference 
between the PBG width given by a deformed 
system and that given by the not deformed system 
according to j  with j  varies between 7 and 15 
periods. For 7=j , the deformation has a negative 
effect on the system response because it reduces 
the complete bandwidth compared to the not 
deformed system. But starting from 8=j , the 
deformation improves the response of the system. 

 
C. Interaction between the deformation degree 
and the reference wavelength λ0 

By studying the interaction between the 
reference wavelength variation and that of the 
deformation degree (Fig. 8), we can say that the 
reference wavelength variation doesn’t have any 
effect on k  optimization. Moreover, the curves 
corresponding to the various values of 0λ  have 
almost the same tendency, the widening of the 
band and its displacement according to 0λ  are 
already noted for the not deformed system. So, the 
variation of 0λ  does not influence the effect of the 
deformation. 

 

 
Fig. 6. Variation of the bandwidth as function of 
the period’s number. x=4, k=0.2295.  

 
Fig. 7. Difference between the bandwidth of the 
deformed system and that of the not deformed one 
as function of the period’s number. x =4, 
k=0.2295. 
 

Moreover, the increase of 0λ  doesn’t make it 
possible to increase the degree of deformation, we 
are always limited by the value 0.2493 of k . Some 
is the value of 0λ , the PBG does not exist for 
values of 0.2493k > . The optimal value of k  for 
all the curves is the same one, it is 0.07737.  

Figure 9 shows the difference between the 
PBG width given by a deformed system with 

07737.0=k and that given by the not deformed 
system according to 0λ , it is clear that the 
difference does not progress much with the 
wavelength reference. We thus note that the 
variation of the reference wavelength doesn’t 
represent a good way to improve the effect of the 
deformation on the system response. 

 
VI. CONCLUSION 

We can consider the present work very 
interesting since it presents an optimization multi- 
parameter of the chirped multi-layer structure. We 
investigated the behaviour of the optical properties 
of the system versus the variation of its 
parameters. The interest of the deformation is not 
always concluded, it depends on the selected 
parameters of the system. This study can represent 
a support which gives for which parameters of the 
system we can consider the deformation 
interesting and which are the corresponding values 
of k  optimum. In general, we can say that if we 
want to improve the performances of the optical  

7 8 9 10 11 12 13 14 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

number of periods

B
an

d 
G

ap
 W

id
th

 ( µ
 m

)

7 8 9 10 11 12 13 14 15
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

number of periods

C
om

pl
et

e 
P

B
G

 W
id

th
(k

=0
.2

29
5)

-C
om

pl
et

e 
P

B
G

 W
id

th
(k

=0
) ( µ

 m
)

264 ACES JOURNAL, VOL. 26, NO. 3, MARCH 2011



 

 

 

 
Fig. 8. PBG variation as a function of k for 
different values of reference wavelength. (a) 
Variation of the bandwidth as a function of k for 
different values of reference wavelength. (b) 
Variation of the band center as a function of k for 
different values of reference wavelength. (c) 
Variation of the wavelengths of the negligible 
transmission band extremities as a function of k 
for different values of reference wavelength. 

 

 
Fig. 9. Difference between the bandwidth of the 
deformed system and that of the not deformed one 
as function of the reference wavelength. 
k=0.07737. 
 
components at normal incidence, it is preferable to 
choose the maximum index contrast and the 
highest degree of deformation which gives the best 
response which meets our needs. 
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