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Abstract –This paper compares different methods for
retrieving the transverse effective permittivity of peri-
odic composite slabs whose longitudinal thickness is
only a few unit cells. Two computational methods are
considered, one based on simulated scattering param-
eters (S-parameters) and the other one based on fiel
averaging by integration. The effect of frequency dis-
persion is studied by comparing the results with elec-
trostatic estimates given by analytical mixing formu-
las. Furthermore, the influenc of the slab thickness is
studied. We also discuss the boundary effects on the
interfaces of the slabs.

Index Terms –Boundary transition layers, effective
permittivity, fiel averaging, S-parameters.

I. INTRODUCTION
Heterogeneous media, such as composite materi-

als, are often treated as effectively homogeneous ma-
terials [1, 2, 3]. The idea and the benefi of this ap-
proximative modeling is that the complex internal mi-
crostucture of the material can be forgotten and the
material characteristics are averaged into a macro-
scopic scale. That is, the electromagnetic behavior of
the material is described only by two (effective) pa-
rameters, the electric permittivity ǫ and the magnetic
permeability µ. Such an approximation actually ap-
plies to all conventional bulk materials, as well. Natu-
rally, the condition of such homogenization is that the
inhomogeneities of the material are very small with
respect to the wavelengths of the impinging electro-
magnetic fields

Once being able to analyze the effective behavior
of composite materials, we can go the other way round

and see the possibility of synthesizing new artificia
materials with desired effective response. In theory,
it is possible to create materials even with properties
not readily existing in nature. These so called meta-
materials have lately been under major interest [4, 5].
However, the homogenization of many proposed ma-
terials very seldom goes without problems or doubts
[6, 7].

In this paper, we focus on a homogenization of
a very simple dielectric structure in order to investi-
gate some fundamental characteristics and limitations
of material homogenization. We consider a compos-
ite slab consisting of dielectric spheres arranged in a
periodic simple cubic lattice in vacuum. The slab is
infinit in the transverse plane but in the longitudinal
dimension it is only a few layers thick. The slab is
excited with a normally incident time-harmonic plane
wave (see Fig. 1). The structure is assumed non-
magnetic, i.e., µ = µ0, which, for instance, is rea-
sonable when studying polymeric composite materi-
als [8]. Therefore, the only parameter we are retriev-
ing is the effective permittivity ǫeff, which is a dimen-
sionless number relative to the permittivity of vacuum
ǫ0. Moreover, the spheres are assumed dispersionless
and lossless.

In this article, we study the homogenization in a
dynamic case in order to see how quickly and strongly
the increase of the electrical size of the unit cell makes
the effective permittivity estimate deviate from the
(quasi)static value. Furthermore, an important objec-
tive of this paper is to study how the thickness of the
slab, i.e., the number of consecutive unit cell layers,
affects the retrieval results.

The simulations are performed using COMSOL
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Fig. 1. The original composite medium consisting of
a periodic lattice of spherical inclusions is modeled as
an effectively homogeneous material.

MULTIPHYSICS 3.5 (3D RF Module, Electromag-
netic Waves, Harmonic Propagation), which is a com-
mercial software based on the f nite element method
(FEM).

In parallel, another related homogenization study
is going on, where we more extensively consider the
effect of frequency dispersion for a composite slab
and an inf nite periodic lattice. In those simulations,
CST MICROWAVE STUDIO is used. The results of
this research are reported in [9]

II. COMPUTATIONAL MODEL OF THE
GEOMETRY

The composite slab consists of spheres in a sim-
ple cubic lattice, i.e., the unit cell is a cube with a
concentric sphere inside (see Fig. 2). The unit cell
side length is denoted by a. We consider a compos-
ite where the spherical inclusions occupy a volume
fraction of p = 1/4, i.e., the radii of the spheres be-
come r = a 3

√

3/(16π). The relative permittivity of
the spheres is ǫi = 10 and the background material is
vacuum with ǫe = 1.

Fig. 2. The unit cell is an a × a × a cube with a
dielectric sphere inside.

We only consider the case where a linearly polar-
ized transverse electromagnetic (TEM) plane wave is
normally incident on the composite slab. In this case,

the transverse periodical symmetry of the slab can be
modeled using perfect electric conductor (PEC) and
perfect magnetic conductor (PMC) boundary condi-
tions. To achieve the desired periodicity, PEC bound-
aries are placed perpendicularly and PMC boundaries
parallel to the chosen direction of the electric f eld
vector. Due to the symmetry of the unit cells, with
normal incidence, only one quarter of the unit cells
needs to be modeled in the transverse direction, which
essentially reduces the computational cost. More gen-
eral periodic boundary conditions could also be ap-
plied, but in that case the whole cells must be mod-
eled. In the longitudinal direction, i.e., the direction
of the plane wave propagation, we have to model all
the consecutive layers of cells in the slab. We con-
sider three conf gurations, slabs with thickness of 1,
5, and 9 layers of unit cells. On both sides of the
slab, the width of two unit cells of free space is added
to ensure suff cient attenuation of possible evanescent
higher order modes. The computational domain is ter-
minated with ports, which give rise to the TEM plane
wave and allow the computation of the S-parameters.
Figure 3 presents the actual modeled geometry in the
case of 5 layers.

Fig. 3. Example of the modeled geometry with 5 lay-
ers.

The geometry is discretized with a tetrahedral
mesh. The accuracy of the mesh should remain
roughly equal for all geometry conf gurations, i.e.,
slabs with a different number of layers. For a cer-
tain slab, the same mesh is applied for all frequen-
cies, that is, when we perform a frequency sweep, the
mesh needs to be created only once. The f eld so-
lution is constructed using quadratic vector elements.
In our simulations, for slabs with 1, 5, and 9 layers,
the meshes consist of 7949, 13997, and 21013 ele-
ments, yielding 55148, 97286, and 145626 degrees of
freedom, respectively. The simulations are run using
a desktop PC with Intel Core 2 Duo CPU 2.66 GHz
and 4 GB of RAM. For example, in the case of 5 lay-
ers, a sweep of 200 frequency points takes 2141 sec-
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onds, which is a little less than 11 seconds per each
frequency point.

To validate our simulation results, we also mod-
eled the 5 layered case using the frequence-domain
solver of CST MICROWAVE STUDIO (MWS). The
geometry setup and the boundary conditions are the
same as described above. The unit cell side length
was chosen a = 0.01m. Figure 4 shows the absolute
difference between the obtained S-parameter results,
which in the considered frequency range is of the or-
der of 10−3.
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Fig. 4. The difference in simulated S-parameters be-
tween COMSOL and CST MWS.

We are considering an electrodynamic case where
a propagating wave interacts with the composite ma-
terial. However, the unit cells must be small enough
with respect to the wavelength for the material to be-
have as homogeneous, so, in that sense, we are near
the (quasi)static limit. For convenience, we choose a
reference frequency where the edge length of one unit
cell equals 1/20 of the wavelength, i.e., a = λ/20.
The wavelength should not, however, be considered
the free-space wavelength but the reduced (effective)
one inside the material. Therefore, the corresponding
reference frequency,

f20 =
c

20a
√
ǫeff

, (1)

where c denotes the speed of light in vacuum, depends
on the effective permittivity, which is the unknown pa-
rameter we are solving. A reasonable a priori estimate
is considered in the following.

III. ELECTROSTATIC MIXING RULES
In the electrostatic limit, the effective permittivity

of an inf nite lattice can be estimated by various ana-
lytical mixing formulas [10]. One of the most famous
and simplest mixing rules suitable for this case is
the Maxwell Garnett (MG) formula, which using the
above-mentioned parameter values (ǫi = 10, ǫe = 1
and p = 1/4) gives

ǫeff = ǫe + 3pǫe
ǫi − ǫe

ǫi + 2ǫe − p(ǫi − ǫe)
≈ 1.6923. (2)

A more accurate estimate is given by the Lord
Rayleigh mixing rule

ǫeff = ǫe+
3pǫe

ǫi+2ǫe
ǫi−ǫe

− p− 1.305 ǫi−ǫe
ǫi+4ǫe/3

p10/3
≈ 1.6989,

(3)
and an even more accurate one by the mixing formula
derived by McPhedran and McKenzie [11], ǫeff ≈
1.6990, which we will use as a static bulk reference
value in Eq. (1).

IV. S-PARAMETER RETRIEVAL
The widely applied S-parameter retrieval method

is based on measured or simulated ref ection and
transmission data, namely S11 and S21. The method is
often referred to as Nicolson–Ross–Weir (NRW) tech-
nique named after its originators [12, 13]. Along with
the metamaterials research this method has required
certain modif cations [14, 15].

The normalized impedance z is obtained by

z = ±
√

(1 + S11)2 − S2
21

(1− S11)2 − S2
21

, (4)

where the sign must be chosen so that the real part
of z is positive. The exponent function including the
refractive index n is then given by

x = e−jnk0d =
S21

1− S11
z−1

z+1

, (5)

where k0 = ω
√
ǫ0µ0 is the free-space wave number

and d is the thickness of the slab. This method aims
at solving both ǫeff and µeff by ǫeff = n/z and µeff =
nz. However, the solution is not unambiguous due to
the branches of the logarithm function. The refractive
index becomes

n =
1

k0d
(j lnx+ 2πm), m = 0, 1, 2, . . . (6)
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If both ǫeff and µeff are unknown, or the material is
strongly dispersive, determining the integer m may
become diff cult. However, as in our case the com-
posite is assumed non-dispersive and non-magnetic,
the correct value for the integer m can simply be ad-
justed by the condition µeff = nz ≈ 1.
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Fig. 5. The retrieved effective permittivity (real part)
for different number of layers.
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Fig. 6. The retrieved effective permeability (real part)
for different number of layers.

Problems appear, when the total effective thick-
ness of the slab becomes λ/2, or any integer multiple
of it. At such frequencies, there occurs a Fabry–Pérot
type of resonance where the wave passes through the
lossless slab without any ref ection. Although the
Fabry–Pérot resonance is a natural response of the
slab, it should not affect the material parameter re-
trieval results. However, as S11 = 0 and |S21| = 1,
the impedance z cannot be solved correctly by Eq. (4),
which causes the resonances to transfer also to the

retrieved parameters ǫeff and µeff (see Figs. 5 and
6, respectively). Naturally, these resonances in per-
mittivity and permeability are not physical properties
of the studied material but a characteristic of the re-
trieval method. Moreover, the behavior of ǫeff is anti-
resonant, i.e., near the resonance the permittivity de-
creases with increasing frequency, which violates the
principle of causality (see Fig. 5).

The retrieval also yields very small imaginary
parts for ǫeff and µeff (not plotted herein). At the res-
onance, their maximum level is of the order of 10−4,
i.e., they are not numerically zero, but compared with
the real part they become negligible. However, the
imaginary parts may appear with incorrect sign, which
indicates a violation of passivity. Especially for meta-
materials, where the inclusions often are resonant and
lossy, the NRW technique tends to give unphysical
material parameters. This problem is discussed more
extensively in [7].

However, the refractive index n is not affected by
the Fabry–Pérot resonances remaining smooth over
all frequencies. This allows us to f ght the problem
by demanding µeff = 1 and solving the permittivity
directly by ǫeff = n2. This modif ed retrieval yields
smooth and physically reasonable estimates for ǫeff
(see Fig. 7).
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Fig. 7. The effective permittivity (real part) retrieved
by ǫeff = n2 for different number of layers.

As a general observation, it can be seen that as the
frequency increases, the obtained permittivity starts to
notably deviate from the static reference. Also, the
number of layers affects the permittivity. The increase
of the number of layers makes the permittivity tend to
the bulk value at the static limit. With only one layer,
the retrieved permittivity is clearly higher.
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V. FIELD AVERAGING BY INTEGRATION
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Fig. 8. The effective permittivity (real part) retrieved
by f eld integration.
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Fig. 9. The effective permittivity values retrieved by
f eld integration in different unit cells.

Whereas the previous method observed the mate-
rial from the outside, another approach is to consider
the constitutive relation within the material. In each
individual point D(r) = ǫ(r)E(r). Then, if averaged
over the whole material, the relation between the dis-
placement current D and the electric f eld E is def ned
by the effective permittivity, 〈D〉 = ǫeffǫ0〈E〉.

Field averaging is studied, for instance, in [16].
We, however, choose a very simple and straightfor-
ward procedure where the f elds are averaged by vol-
ume integration over each unit cell. Actually, due to
the symmetry and linearly polarized normally incident

plane wave excitation, one quarter of a cell is needed.
The effective permittivity of a unit cell is obtained by

ǫeff =
〈Dt〉
ǫ0〈Et〉

=

∫

DtdV

ǫ0
∫

EtdV
, (7)

where subscript t refers to the component transverse
to the wave propagation. Finally, for the whole slab,
the permittivities of separate cells are averaged once
more over all consecutive layers. Figure 8 presents
the retrieved permittivities for different slabs.

This method allows us to investigate the permit-
tivity separately in each cell. It turns out that there
are only three different kinds of cells, as can be seen
in Fig. 9. In a one-layered case, the unit cells do not
have any neighboring cells around them. This situ-
ation yields the highest permittivity value. Another
case are the layers on the boundary that have neigh-
bors on one side and the third group are the cells inside
the slabs with neighbors on both sides. All the inte-
rior cells give the same permittivity, although only the
values of the midmost cells are plotted in Fig. 9. The
boundary permittivity is higher than the interior per-
mittivity. At the static limit, the interior permittivity
tends to the bulk value given by static mixing formu-
las. The values of the boundary and interior permit-
tivities do not depend on the number of layers.

These results support the theory of boundary tran-
sition layers, which suggests that the effective model
of the homogenized material should include separate
boundary layers with permittivity different from the
interior material [7]. This boundary permittivity be-
comes higher than the bulk value and the suff cient
thickness of the transition layer would be one unit
cell, which is in agreement with previous literature
[17, 18]. Also, [18] suggests a modif cation to the
Maxwell Garnett formula for computing the static
transverse boundary permittivity. Unfortunately, the
volume fraction p = 1/4 considered in our study is
too large for the MG formula, Eq. (2), to give ac-
curate results. Nonetheless, the predicted difference
between the boundary and the bulk permittivities be-
comes 0.006, which quantitatively agrees with the dif-
ference seen in Fig. 9 very well.

VI. COMPARISON BETWEEN THE
METHODS

Figure 10 presents the effective permittivities
retrieved by different methods. The original S-
parameter method (NRW) is suffering from the
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Fig. 10. Comparison of the retrieval methods for a
slab with 1 layer (top), 5 layers (middle), and 9 layers
(bottom).

Fabry–Pérot resonances that also contaminate the re-
trieval results. Increasing the slab thickess makes the
resonances shift lower in frequency. Despite the non-
magnetic nature of the original composite, the method
also yields effective permeability µeff, which, with in-
creasing frequency, starts to deviate from unity. More-
over, the retrieved parameters show unphysical behav-
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Fig. 11. The absolute error between the S11 (top) and
S21 (bottom) of the original 9-layered composite slab
and the homogenized model. The used models: mod-
if ed NRW with ǫeff = n2 (black), f eld averaging
method (grey), and boundary transition layer model
(light grey).

ior. Instead, assuming µeff = 1 and computing ǫeff as
the square of the refractive index n gives smooth re-
sults that are very similar to the ones given by the f eld
averaging method. In the static limit, all methods tend
to the same value. This value depends on the number
of layers.

Altogether, based on two different methods, we
have four ways to build the homogenized model for
the composite slab: the original NRW approach with
both ǫeff = n/z and µeff = nz, the modif ed NRW
with µeff = 1 and ǫeff = n2, the f eld averaging
method with homogeneous ǫeff for the whole slab, and
the piecewise homogeneous model with separate tran-
sition layers with different permittivity. If the effec-
tive model is correct, it should also have the same scat-
tering properties as the original composite. It turns out
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that the other models but the original NRW do not ex-
actly reproduce the original S-parameters.

Figure 11 presents the absolute differences be-
tween the simulated S-parameters of the original slab
and the different homogenized models in the case of
9 layers. The errors are anyway relatively small, yet
not numerically negligible, and they start to grow with
increasing frequency. Also, there are no signif cant
differences between the models.

VII. CONCLUSIONS AND DISCUSSION
Two different computational methods for homog-

enization of thin composite slabs were considered and
compared, namely the S-parameter (NRW) method
and the f eld averaging method. Both techniques also
offered modif ed ways to model the effective permit-
tivity, in S-parameter method by the non-magnetic
material assumption and in the averaging method by
using the boundary transition layers. The original
NRW method yielded both ǫeff and µeff resonant and
unphysical violating the principles of causality and
passivity. When µeff = 1 was assumed and the per-
mittivity computed as ǫeff = n2, the result was smooth
and similar to the one obtained by f eld averaging. The
f eld averaging method, however, suggested a piece-
wise homogeneous model where the boundary layers
are modeled separately using slightly higher permit-
tivity.

When the frequency, i.e., the electrical size of
the unit cells, was increased, neither of the meth-
ods proved superior. However, important fundamental
conclusions can be drawn.

Firstly, for homogenization purposes, the electri-
cal size of the unit cell should be very small. As
seen in Fig. 11, with increasing frequency, the ho-
mogenized models fail to produce the same scattering
parameters with the original composite slab. Our re-
sults suggest that the unit cell size a ≈ λ/20, where
λ is the reduced wavelength inside the material, is a
limit, after which the material cannot safely be con-
sidered perfectly homogeneous. Futhermore, from
Figs. 5–10 we see that the cells must be extremely
small, a ≈ λ/100, before the (quasi)static state is
reached. Naturally, in practical experiments a certain
tolerance for an acceptable error must be def ned. In
our case, the absolute differences are small numbers
and in many cases they may seem negligible. The fo-
cus of this paper is, however, to f nd fundamental lim-
itations of material homogenization approach in gen-

eral, and to discuss the characteristics of different ho-
mogenization methods.

Secondly, the value of material parameters should
not depend on the amount of the material. A suff cient
amount of layers is required for the slab to behave as
a bulk material. From Fig. 10, it is seen that not even
the 9-layered slab exactly converges to the bulk value.
This is explained by the effect of the boundary lay-
ers, which have higher permittivity than the interior
layers increasing the total average permittivity of the
slab. That is, a homogeneous material should include
enough layers in order to make the boundary effect
negligible. A slab with only one or two layers cannot
be considered a material at all.

Moreover, considering the applicability of the
original NRW method, we see from Fig. 10 that we
must operate with frequencies where the electrical
thickness of the slab remains below λ/2. However,
at the same time, the thickness must be large enough
in terms of unit cell layers for the slab to resemble
bulk material. These two limitations roughly imply
that for reliable usage of the NRW technique, the slab
thickness should be at least 10 layers or more, which
means that the maximum unit cell size should be of
the order of λ/50.

Furthermore, the current study is still restricted fo-
cusing only on dielectric composite and the normal
incidence. By considering oblique incidence from
different angles, possible effects of anisotropy and
spatial dispersion could be studied. Also, assum-
ing the composite non-magnetic, non-dispersive, and
lossless is quite an idealization. Moreover, especially
in metamaterials research, the inclusions are assumed
strongly dispersive and resonant having also negative
material parameter values. In these more complex
cases, extra care must be taken that the assumption of
effective homogeneity holds. Therefore, futher funda-
mental study is needed.

ACKNOWLEDGMENT
This study was supported in part by the Academy

of Finland. The work of H. Kettunen was also sup-
ported by the (Finnish) Graduate School in Electron-
ics, Telecommunications and Automation (GETA).

REFERENCES
[1] G. W. Milton, The Theory of Composites. Cam-

bridge Univ. Press, Cambridge, 2002.
[2] C. Brosseau, “Modelling and Simulation of Di-

185KETTUNEN, QI, WALLÉN, SIHVOLA: HOMOGENIZATION OF THIN DIELECTRIC COMPOSITE SLABS



electric Heterostructures: A Physical Survey
from an Historical Perspective,” J. Phys. D:
Appl. Phys, vol. 39, no. 7, pp. 1277–1294, 2006.

[3] D. S. Killips, Composite Material Design and
Characterization for RF Applications. Ph.D.
Thesis, Michigan State University, 2007.

[4] N. Engheta and R. W. Ziolkowski, eds., Meta-
materials: Physics and Engineering Explo-
rations. Wiley-Interscience, Hoboken, NJ, 2006.

[5] A. K. Sarychev and V. M. Shalaev, Electrody-
namics of Metamaterials. World Scientif c, Sin-
gapore, 2007.

[6] C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch,
S. Tretyakov, and F. Lederer, “Validity of Ef-
fective Material Parameters for Optical Fishnet
metamaterials,” Phys. Rev. B, vol. 81, no. 3,
pp. 035320:1–5, 2010.

[7] C. R. Simovski, “Material Parameters of Meta-
materials (a review),” Opt. Spectrosc., vol. 107,
no. 5, pp. 726–753, 2009.

[8] L. Bennett, W. E. Hutchcraft, R. K. Gordon,
E. Lackey, J. G. Vaughan, and R. Averill, “Ex-
tracting the Electrical Properties of Polymeric
Composite Materials through Circuit Simulation
and Optimization,” Appl. Comput. Electromag-
netics Soc. J., vol. 23, no. 1, pp. 84–89, 2008.

[9] J. Qi, H. Kettunen, H. Wallén, and A. Sihvola,
“Quasi-Dynamic Homogenization of Geomet-
rically Simple Dielectric Composites,” Appl.
Comput. Electromagnetics Soc. J., vol. 25,
no. 12, pp. 1036–1045, 2010.

[10] A. Sihvola, Electromagnetic Mixing Formulas
and Applications. IEE, London, 1999.

[11] R. C. McPhedran and D. R. McKenzie, “The
Conductivity of Lattices of Spheres I. The Sim-
ple Cubic Lattice,” Proc. R. Soc. Lond. A,
vol. 359, pp. 45–63, 1978.

[12] A. M. Nicolson and G. F. Ross, “Measurement
of the Intrinsic Properties of Materials by Time-
Domain Techniques,” IEEE Trans. Inst. Meas.,
vol. IM-19, no. 4, pp. 377–382, 1970.

[13] W. B. Weir, “Automatic Measurement of Com-
plex Dielectric Constant and Permeability at
Microwave Frequencies,” Proc. IEEE, vol. 62,
no. 1, pp. 33–36, 1974.

[14] D. R. Smith, S. Schultz, P. Markoš, and
C. M. Soukoulis, “Determination of Effective
Permittivity and Permeability of Metamaterials
from Ref ection and Transmission Coeff cients,”

Phys. Rev. B, vol. 65, no. 19, pp. 195104:1–5,
2002.

[15] X. Chen, T. M. Grzegorczyk, B.-I. Wu,
J. Pacheco, Jr., and J. A. Kong, “Robust Method
to Retrieve the Constitutive Effective Parameters
of Metamaterials,” Phys. Rev. E, vol. 70, no. 1,
pp. 016608:1–7, 2004.

[16] D. R. Smith and J. B. Pendry, “Homogenization
of Metamaterials by Field Averaging,” J. Opt.
Soc. Am. B, vol. 23, no. 3, pp. 391–403, 2006.

[17] G. D. Mahan and G. Obermair, “Polaritons at
Surfaces,” Phys. Rev., vol. 183, no. 3, pp. 834–
841, 1969.

[18] C. R. Simovski, S. A. Tretyakov, A. H. Sihvola,
and M. M. Popov, “On the Surface Effect in Thin
Molecular or Composite Layer,” Eur. Phys. J.
AP, vol. 9, no. 3, pp. 195–204, 2000.

Henrik Kettunen was born in
Orimattila, Finland, in 1980. He
received the M.Sc. (Tech.) and
Lic.Sc. (Tech) degrees in Electri-
cal Engineering from the Helsinki
University of Technology (TKK),
Espoo, Finland, in 2006 and
2009, respectively. He is currently
working toward the D.Sc. (Tech.)
degree in Electrical Engineering

at Aalto University School of Science and Technology,
Finland. His research interests include electromagnetic
modeling of complex materials.

Jiaran Qi was born in Harbin,
China, in 1981. He received
the B.E. (Communication En-
gineering) and M.E. degrees
(Electromagnetics and Microwave
Technology) from Harbin Institute
of Technology, China, in 2004
and 2006, respectively. He is
currently working toward the
D.Sc. degree at Department

of Radio Science and Engineering in Aalto University
School of Science and Technology, Finland. His current
research interests include electromagnetic wave inter-
action with complex media and modeling of metamaterials.

186 ACES JOURNAL, VOL. 26, NO. 3, MARCH 2011



Henrik Wallén was born in
1975 in Helsinki, Finland. He
received the M.Sc. (Tech.) and
D.Sc. (Tech.) degrees in Electrical
Engineering in 2000 and 2006
from the Helsinki University of
Technology (which is now part
of the Aalto University). He is
currently working as a Postdoc-
toral Researcher at the Aalto

University School of Science and Technology, Department
of Radio Science and Engineering in Espoo, Finland.
He is Secretary of the Finnish National Committee of
URSI (International Union of Radio Science). His re-
search interests include electromagnetic theory, modeling
of complex materials, and computational electromagnetics.

Ari Sihvola was born on Octo-
ber 6th, 1957, in Valkeala, Fin-
land. He received the degrees of
Diploma Engineer in 1981, Licen-
tiate of Technology in 1984, and
Doctor of Technology in 1987, all
in Electrical Engineering, from the
Helsinki University of Technology
(TKK), Finland. Besides working
for TKK and the Academy of Fin-

land, he was visiting engineer in the Research Labora-
tory of Electronics of the Massachusetts Institute of Tech-
nology, Cambridge, in 1985–1986, and in 1990–1991, he
worked as a visiting scientist at the Pennsylvania State Uni-
versity, State College. In 1996, he was visiting scientist at
the Lund University, Sweden, and for the academic year
2000–01, he was visiting professor at the Electromagnetics
and Acoustics Laboratory of the Swiss Federal Institute of
Technology, Lausanne. In the Summer of 2008, he was vis-
iting professor at the University of Paris XI, France. Ari Si-
hvola is professor of electromagnetics in Aalto University
School of Science and Technology (before 2010 Helsinki
University of Technology) with interest in electromagnetic
theory, complex media, materials modelling, remote sens-
ing, and radar applications. He is Chairman of the Finnish
National Committee of URSI (International Union of Ra-
dio Science) and Fellow of IEEE. He was awarded the f ve-
year Finnish Academy Professor position starting August
2005. Starting January 2008, he is director of the Graduate
School of Electronics, Telecommunications, and Automa-
tion (GETA).

187KETTUNEN, QI, WALLÉN, SIHVOLA: HOMOGENIZATION OF THIN DIELECTRIC COMPOSITE SLABS




