
A High Performance Parallel FDTD Based on Winsock and
Multi-Threading on a PC-Cluster

X. Duan 1, X. Chen 1, K. Huang 1, and H. Zhou 2

1 College of Electronics and Information Engineering

Sichuan University, Chengdu, 610064, P. R. China
shawnduan@gmail.com, xingcsc@yahoo.com.cn, kmhuang@scu.edu.cn

2 Institute of Applied Physics and Computational Mathematics of Beijing

Beijing, 100094, P. R. China
zhou-haijing@vip.sina.com

Abstract - Parallel technology is a powerful tool
to provide the necessary computing power and
memory resources for the FDTD method to
simulate electrically-large and complex structures.
In this paper, a high performance parallel FDTD is
developed for multi-core cluster systems. It
employs Winsock to achieve efficient
inter-process communication as well as
multi-threading to make full use of the hardware
resources of multi-core processors on a PC-cluster.
Key steps for parallel FDTD such as
synchronization, data exchange, load balancing,
etc., are investigated. An experiment simulating
the scattering of an incident electromagnetic wave
form of a computer case is presented which shows
that the proposed parallel FDTD achieved
speedup of 25.1 and parallel efficiency of 83.7%
when 10 processors with 30 cores are utilized, and
outperforms traditional parallel FDTD based on
MPI or MPI-OpenMP, which gained speedup of
22.9, 24.9 and parallel efficiency of 76.3%, 83.1%
respectively under the same circumstances.

Index Terms ─ FDTD, multi-threading, parallel
computation, PC cluster, Winsock.

I. INTRODUCTION
 As one of the most popular numerical methods,
finite-difference time-domain (FDTD) has been
widely used to solve various electromagnetic
problems [1, 2]. However, the implementation of

FDTD for simulating electrically-large and
complex structures requires intensive computation
and large amounts of memory resources, which is
not possessed by a single machine. A highly
efficient solution is to implement the FDTD
algorithm in a parallel computer system, such as a
PC cluster [3, 4, 5].
 The FDTD method is conducive to parallel
computation due to its structured mesh, regular
data structures, and localized calculation [3, 6]. A
common method to parallelize the FDTD is to
divide the computation domain into many
sub-domains that are calculated in different nodes
of a cluster, and because the workload of each
sub-domain is far less than that of the whole
computation space, the memory, and time
consumption is greatly reduced [4, 5, 7, 8]. Up till
now, message passing interface (MPI), a library
specification for message-passing [9, 10], is by far
the most popular parallel programming
environment for the FDTD to realize operations
such as data exchange, synchronization, and etc.
[3, 4, 6, 7, 8].
 Today’s PC clusters have employed multi-core
processors, which integrate multiple execution
cores on the same chip and thereby introduce a
new level of parallelization. Many of the previous
researches [3, 4, 5, 6, 7, 8] on the parallel FDTD
have not taken multi-core processors into
consideration. To take advantage of the computing
capability of multi-core processors, it is necessary

241

1054-4887 © 2011 ACES

ACES JOURNAL, VOL. 26, NO. 3, MARCH 2011

for a parallel computation to carefully take both
the intranode communication and the internode
communication into account. Some
implementations of MPI have made efforts to it.
For instance, MPICH2-1.3.1 offers multi-core
support by integrating a low-level communication
subsystem called Nemesis to minimize the
overhead for intranode communication by using
lock-free queues in the processes and other
optimizations such as a fastbox mechanism to
bypass the queues [11,12]. However, in
comparison with MPI that uses messages to
perform intranode communication, creating
threads to make data accessible through shared
memory is a more natural method and supports
greater bandwidth [13, 14].
 A few studies [15,16] utilize open
multi-processing (OpenMP), a shared memory
parallel programming interface [17, 18], together
with MPI to enhance shared-memory performance.
However, a straight-forward integration of
OpenMP constructs into the MPI program often
does not give good speedup results [19].
Optimization techniques like minimizing OpenMP
parallel overhead, aggregating messages, CPU
affinity and cache-line alignment are usually
necessary for a better performance. Thus, it
requires programmers to have relatively
substantial experience in tuning an OpenMP code.
 In this work, a novel parallel FDTD algorithm
based on Winsock and multi-threading is proposed.
To fully exploit the computation capacity of a PC
cluster with both multi-processor and multi-core
features, it utilizes the efficient, low-level
Winsock programming rather than MPI to realize
the message passing between processors, creates
threads, and maps them to cores by using Win32
thread application program interface (API), so the
sub-domain computation is carried out in each
core. Data exchange between threads is performed
by shared variables being directly written by one
thread and read by another. Meanwhile in this
parallel FDTD, only magnetic field values on the
sub-domains’ interfaces need to be transmitted by
using an overlapping scheme, an efficient
synchronization mechanism is used to impose
constraints on the execution order of threads, and
the different workload of various cells (such as
ordinary and perfectly matched layer (PML) [20])

are taken into consideration in the domain
decomposition phase to achieve better load
balancing.
 A numerical experiment has been conducted to
estimate the efficiency of the proposed FDTD
parallelization strategy. In the experiment, three
parallel FDTD codes based on the proposed
method, MPI, and MPI-OpenMP, respectively, are
developed to simulate the same electromagnetic
model in parallel on a PC cluster, and their run
time, speedup, and parallel efficiency are
compared and analyzed.
 The remainder of this paper is organized as
follows: Section II briefly introduces the FDTD
method, while Section III describes the essential
elements of the parallel FDTD based on Winsock
and multi-threading. The experimental results are
presented in Section IV and finally conclusions in
Section V.

II. A BRIEF INTRODUCTION TO
THE FDTD METHOD

 Since Kane S. Yee’s paper in 1966 [1], the
FDTD has developed into a widely-used
numerical simulation method. In Yee’s difference
scheme, the computation domain is discretized to
space grids in Cartesian Coordinates. The FDTD
update equations are then obtained by discretizing
Maxwell’s two curl equations using
central-difference approximations to the space and
time partial derivatives. The updated equations
for Ex and Hx [6] are as follows:

1

1 1
2 2

1 1
2 2

0.51 1(, ,) (, ,)
2 0.5 2

1 1 1 1(, ,) (, ,)
2 2 2 2

,
0.5 1 1 1 1(, ,) (, ,)

2 2 2 2

n nx x
x x

x x

n n

z z

n nx x
y y

tE i j k E i j k
t

H i j k H i j k

t y
t

H i j k H i j k

z

(1)

1 1
2 20.51 1 1 1(, ,) (, ,)

2 2 0.5 2 2
1 1(, , 1) (, ,)
2 2

,1 10.5 (, 1,) (, ,)
2 2

n nx Mx
x x

x Mx

n n
y y

n nx Mx
z z

tH i j k H i j k
t

E i j k E i j k

t z
t E i j k E i j k

y

(2)

thus only adjacent cells are needed for the
computation. Similar equations can be written for
the other electric and magnetic field components.

242 ACES JOURNAL, VOL. 26, NO. 3, MARCH 2011

III. A PARALLEL FDTD BASED ON
WINSOCK AND

MULTI-THREADING

A. Parallel programming model
 In a PC cluster, processors are in a distributed
address space while cores in the same processor
are in a shared address space. The address space
has a significant influence on the data exchange
[21]. To accommodate the hybrid address space of
a PC cluster, the parallel FDTD algorithm in this
work employs a two-level programming model, as
shown in Fig. 1. The upper level consists of
processes created by the main console and
assigned in processors while the bottom level is
composed of threads created by each process for
cores in a processor.

#1_1 Thread

#1_2 Thread

#1_m
 Thread

#2_1 Thread

#2_2 Thread

#2_m
 Thread

Fig. 1. The two-level programming model for the
parallel FDTD.

 This work adopts Winsock rather than MPI to
realize an inter-process message passing. Winsock
defines a standard interface between a Windows
TCP/IP client application and the underlying
TCP/IP protocol stack [22, 23]. As shown in Fig. 2,
a connection using the transmission control
protocol (TCP) is established to a specific socket
separately on both sides. Once the connection is
set up, they can pass messages by
calling ()send and ()recv .
 Explicit threading is employed in the bottom
level of the programming model, directly splitting
up the computation. The key steps using the
Win32 thread API [13] to multi-thread are as
follows:

a. A process starts with a single thread of
execution. This is called the main thread.

b. This is followed by

_ ()beginthreadex being used to create
new sub-threads. Those sub-threads can
now start their own computation tasks.

c. During the computation, shared variables
are used and data exchange is performed
by write or read accesses of the threads.
Meanwhile, synchronization both
coordinates thread execution and
manages shared data.

d. When the computation task is finished,
each sub-thread calls _ ()endthreadex to
terminate.

Fig. 2. The flow chart of Winsock programming.

 For a better efficiency, a fixed mapping from
the threads to the execution cores is employed by
calling ()SetThreadAffinityMask . This prevents
threads from migrating to other cores during
program execution.

B. Domain decomposition

Figure 3 shows the spatial parallelism used in
this work that divides the whole computation
space into sub-domains. Each sub-domain is
assigned to one process for parallel computation.
In each sub-domain, additional pages, called
expand pages, are introduced to store field values
from neighbors’ interface for data exchange.
Every process creates threads according to the

243DUAN, CHEN, HUANG, ZHOU: HIGH PERFORMANCE PARALLEL FDTD BASED ON WINSOCK AND MULTI-THREADING

number of execution cores employed in the
parallel computation, splits a sub-domain further
into smaller sub-domains, and then assigns them
to each thread. For threads in the same process,
field values stored in shared variables are
mutually directly accessible, thus eliminating the
need for expanded pages.

x

z y

#1 Process

Expand page

#1_1 Thread
#1_2 Thread

#1_m
 Thread

#1 Sub domain #2 Sub domain

#2 Process

#2_1 Thread
#2_2 Thread

#2_m
 Thread

Fig. 3. Domain decomposition.

C. Synchronization
 At each time step of FDTD, the update of the
electric and magnetic fields are executed
sequentially. Execution of threads in the wrong
order may produce unwanted outputs. Figure 4
illustrates the synchronization mechanism adopted
in this work, where N is the number of
sub-threads, and count is defined as a volatile
integer. 64(&)InterlockedIncrement count
increases by 1 the value of variable count as an
atomic operation, and

64(& ,0)InterlockedExchange count sets
variable count to 0 as an atomic operation as well.

Fig. 4. The synchronization mechanism.

D. Data exchange

According to the FDTD updated equations,
for cells on the interfaces between two adjacent
sub-domains, the field data on the neighboring

threads are required, necessitating the execution of
data exchange. For threads on the same processor,
data exchange is done by
shared E and H variables directly written by one
thread and read by another. As for threads on
different processors, messages
containing E and H values are passed by explicitly
calling the Winsock API: ()send and ()recv
[23].
 Data exchange is one of the main factors
affecting the parallel efficiency, along with
synchronization and load balancing. This work
utilizes an overlapping scheme [7], i.e. the
interface of adjacent sub-domains assigned to two
processes is overlapped, on which the electric
field components are updated in both neighboring
threads created by separate processes, shown in
Fig. 5. Although the electric field components on
the interface are calculated twice, only magnetic
field components are transmitted at each time step.
However, the overlapping scheme does not apply
to the threads created in the same process due to
the use of shared variables; otherwise data race
occurs, leading to calculation errors.

Fig. 5. The field exchange configuration
employing the overlapping scheme.

E. Load balancing
 Load balancing is a critical issue for a parallel
computation to achieve high efficiency [24]. For
the parallel FDTD, a good load balancing strategy
should suitably divide computation space so that
every thread is equal in actual execution duration
between any two succeeding operations of
synchronization, avoiding idle conditions owing

244 ACES JOURNAL, VOL. 26, NO. 3, MARCH 2011

to mutual waiting. One of crucial factors affecting
load balancing is various cells such as ordinary
cells and PML cells, due to the different
workloads that they possess. However, no specific
rule exists for evaluating this factor in the domain
decomposition, just experience acquired from
repeated experiments. Our experiments show that
a PML cell requires approximately 2.6 times more
computing time than that of an ordinary cell. So a
PML cell is evaluated as 2.6 ordinary cells when
the whole space is divided into sub-domains.

F. The thread execution
 A thread carries out the actual FDTD
calculation, as illustrated in Fig. 6. Electric and
magnetic fields are updated sequentially, each
followed by a synchronization operation. If a
thread possesses a sub-domain interface between
neighboring nodes, exchange of the magnetic field
components with neighboring processes, through
sending and receiving operations, is performed
upon update of the magnetic field.

Fig. 6. The flow chart of the thread execution.

IV. RESULTS AND ANALYSIS

 To estimate the parallel performance of the
proposed method, three parallel FDTD codes
based on the proposed method, the MPI library,
and MPI-OpenMP, respectively, are developed in
Visual Studio 2010. The implementation of MPI
used in this paper is MPICH2-1.3.1, the latest
version supporting the MPI 2.0 standard and

optimizations for multi-core processors. The MPI
based code creates a process binding to each
execution core, and the data exchange between
two cores is realized by calling MPI_Sendrecv(),
just like that between two processors. Channel
Nemesis is chosen to optimize intranode and
internode communication. The MPI-OpenMP
based code is similar to the pure MPI code. It
creates a process in each processor, and employs
OpenMP to automatically parallelize to the
computing loops [15, 19], shown in Fig. 7.
The parallel pragma is hoisted outside the loop
of time steps to minimize threading overhead.
When synchronization is not a necessity at the end
of a parallel loop, nowait is specified with
the for directive. Thread binding is achieved by
calling ()SetThreadAffinityMask .

Fig. 7. MPI-OpenMP algorithm.

 As depicted in Fig. 8, an electromagnetic plane
wave with a frequency of 1GHz propagates to a
computer case, and the three parallel FDTD codes
are employed to simulate the scattered field of the
computer case. For this scattered field problem, its
whole computation space is discreted
into 720*170*330 cells along x , y , and z axis,
respectively, with 0.001dx dy dz m .

Do initialization work;
#pragma omp parallel private (…)
{
for timestep=0 to timestep_max
 {
 …
 #pragma omp for private (…) nowait
 computation loops;
 …
 #pragma omp master
 {
 MPI_Sendrecv();

}
#pragma omp barrier
}

}

245DUAN, CHEN, HUANG, ZHOU: HIGH PERFORMANCE PARALLEL FDTD BASED ON WINSOCK AND MULTI-THREADING

 The experiment is carried out on a PC cluster
comprising Intel Q6600 processors interconnected
by a fast 1000Mb/s Ethernet. Each processor
possesses 4 cores; in the experiment, one core is
left to process system work and up to three cores
can be used for the parallel FDTD computation.

x
yz

Incident
Plane Wave

Fig. 8. The computation model.

The scattered field simulated by the three
parallel FDTD codes agrees well with the
simulation by computer simulation technology
(CST) Microwave Studio. Table 1 demonstrates
the tested run time and memory consumption of
the three parallel FDTD codes, which drop

quickly upon introduction of more
threads/processes. One can see that the proposed
method always costs less run time in comparison
with both the MPI based and the MPI-OpenMP
based parallel FDTD, and three codes consume
the same amount of memory.

Table 1: Run time (in seconds) and memory
consumption (in MB)

Figure 9 gives the measured speedup and

parallel efficiency for the three parallel FDTD
codes. Here, speedup is the ratio of sequential
implementation execution time and parallel

Number of

threads/processes
1 6 12 18 24 30

Run

time

The proposed

method
7092 1257 648 444 344 282

MPI 7092 1292 661 468 377 309

MPI-OpenMP 7092 1268 655 449 346 284

Memory

Consumption
2950 1500 775 412 231 140

Fig. 9. Speedup and parallel efficiency.

246 ACES JOURNAL, VOL. 26, NO. 3, MARCH 2011

execution time, while parallel efficiency is equal
to speedup divided by the number of cores
employed. One can observe that the speedup and
parallel efficiency of the proposed method is
considerably higher than that of the MPI based
FDTD and the discrepancy becomes even larger
with the increase of the number of cores.
Compared with the MPI-OpenMP version of
FDTD, the proposed method’s speedup and
parallel efficiency is slightly bigger, but it is worth
noting that the former is more difficult to optimize
because it needs a careful fine tuning to achieve
good performances. When 30 cores are utilized,
the proposed method’s speedup rises to 25.1 with
parallel efficiency of 83.7%, while the MPI
application’s speedup is 22.9 with parallel
efficiency of 76.3% and the MPI-OpenMP
application’s speedup is 24.9 with parallel
efficiency of 83.1%.

V. CONCLUSION
 Today’s PC clusters have improved remarkably
in their computation ability by utilizing powerful
new hardware, such as processors integrated with
multiple cores. Parallel FDTD should be carefully
designed to make full use of PC clusters’
multi-processor and multi-core features. This
paper presents a high performance parallel FDTD
method using Winsock and multi-threading to
parallelize the FDTD computation. Threads are
created to do the sub-domain computation in each
execution core. Neighboring threads that are on
the same nodes directly access each others’
memory during data exchange. Winsock sets up
TCP connections between neighboring threads
that run on different nodes to pass messages.
Meanwhile, some techniques have been utilized to
improve the parallel FDTD’s synchronization,
data exchange, load balancing, and etc.
 A numerical experiment of simulating a
scattered field problem on a PC cluster with
multi-core processors has been conducted to
verify the validation and efficiency of the
proposed method. In the experiment, the proposed
method exhibits higher speed up and parallel
efficiency than the FDTD using MPI or
MPI-OpenMP. Moreover, the proposed method is
natural and easy to implement for a good
performance due to its explicit and direct

threading. Those features make the method widely
usable in numerical simulation problems.

ACKNOWLEDGEMENT
 This work was supported by NCET of China
(No. NCET-08-0369) and the National Natural
Science Foundation of China (No. 10876020).

REFERENCES
[1] K. Yee, “Numerical Solution of Initial

Boundary Value Problems Involving
Maxwell's Equations in Isotropic Media,”
IEEE Transactions on Antennas and
Propagation, vol. 14, no.3, pp. 302-307,
1966.

[2] A. Taflove, Computational Electromagnetics:
The Finite-Difference Time-Domain Method,
Artech House, Norwood, 2000.

[3] C. Guiffaut and K. Mahdjoubi, “A Parallel
FDTD Algorithm using the MPI Library,”
IEEE Antennas and Propagation Magazine,
vol. 43, no. 2, pp. 94-103, 2001.

[4] G. A. Schiavone, I. Codreanu, R. Palaniappan,
and P. Wahid, “FDTD Speedups Obtained in
Distributed Computing on a Linux
Workstation Cluster,” Antennas and
Propagation Society International
Symposium, vol. 3, pp. 1336-1339, 2000.

[5] V. Varadarajan and R. Mittra,
“Finite-Difference Time-Domain (FDTD)
Analysis using Distributed Computing,”
IEEE Microwave and Guided Wave Letters,
vol. 4, no.5, pp. 144-145, 1994.

[6] W. Yu, R. Mittra, T. Su, Y. Liu, and X. Yang,
Parallel Finite-Difference Time-Domain
Method, Artech House, 2006.

[7] W. Yu, Y. Liu, T. Su, N.-T. Hunag, and R.
Mittra, “A Robust Parallel Conformal
Finite-Difference Time-Domain Processing
Package using the MPI Library,” IEEE
Antennas and Propagation Magazine, vol. 47,
no. 3, pp. 39-59, 2005.

[8] W. Yu, M. R. Hashemi, R. Mittra, D. N. de
Araujo, M. Cases, N. Pham, E. Matoglu, P.
Patel, and B. Herrman, “Massively Parallel
Conformal FDTD on a BlueGene
Supercomputer,” IEEE Transactions on
Advanced Packaging, vol. 30, no. 2, pp.
335-341, 2007.

247DUAN, CHEN, HUANG, ZHOU: HIGH PERFORMANCE PARALLEL FDTD BASED ON WINSOCK AND MULTI-THREADING

[9] M. Snir, S. Otto, S. Huss-Lederman, D.
Walker, and J. Dongarra, MPI: The Complete
Reference, The MIT Press, 1996.

[10] W. Gropp, E. Lusk, and A. Skjellum, Using
MPI: Portable Parallel Programming with
the Message-Passing Interface, second
edition, The MIT Press, 1999.

[11] D. Buntinas, G. Mercier, and W. Gropp,
"Implementation and Shared-Memory
Evaluation of MPICH2 over the Nemesis
Communication Subsystem," Proc. of the
13th European PVM/MPI Users' Group
Meeting (Euro PVM/MPI 2006), September
2006.

[12] D. Buntinas, G. Mercier, and W. Gropp,
“Design and Evaluation of Nemesis, A
Scalable Low-Latency Message-Passing
Communication Subsystem,” Proceedings of
International Symposium on Cluster
Computing and the Grid 2006 (CCGRID ’06),
2006.

[13] S. Akhter and J. Roberts, Multi-Core
Programming: Increasing Performance
through Software Multi-threading, Intel Press,
2006.

[14] F. Cappello and D. Etiemble, “MPI Versus
MPI+OpenMP on the IBM SP for the NAS
Benchmarks,” Supercomputing ACM/IEEE
2000 Conference, 2000.

[15] M. F. Su, I. El-Kady, D. A. Bader, and S.-Y.
Lin, “A Novel FDTD Application Featuring
OpenMP-MPI Hybrid Parallelization,”
Parallel Processing, 2004 International
Conference, pp. 373-379, 2004.

[16] R. Rosenberg, G. Norton, J. C. Novarini, W.
Aderson, and M. Lanzagorta, “Modeling
Pulse Propagation and Scattering in a
Dispersive Medium: Performance of
MPI/OpenMP Hybrid Code,” SC 2006
Conference, Proceeding of the 2006
ACM/IEEE, pp. 47-47, 2006.

[17] B. Chapman, G. Jost, and R. Van Der Pas,
Using OpenMP: Portable Shared Memory
Parallel Programming, The MIT Press, 2008.

[18] R. Chandra, L. Dagum, D. Kohr, D. Maydan,
J. McDonald, and R. Menon, Parallel
Programming in OpenMP, Academic Press,
2001.

[19] A. Rane and D. Stanzione, “Experiences in

Tuning Performance of Hybrid MPI/OpenMP
Applications on Quad-Core Systems,” Proc.
of 10th LCI Int’l Conference on
High-Performance Clustered Computing,
2009.

[20] J. Berenger, “A Perfectly Matched Layer
Medium for the Absorption of
Electromagnetic Waves,” J. Comput., vol.
114, 1994, pp. 185-200.

[21] T. Rauber and G. Rünger, Parallel
Programming for Multicore and Cluster
Systems, Springer, 2010.

[22] A. Jones and J. Ohlund, Network
Programming for Microsoft Windows,
Microsoft Press, 2002.

[23] B. Quinn and D. Shute, Windows Sockets
Network Programming, Addison-Wesley
Professional, 2009.

[24] J. Watts and S. Taylor, “A Practical Approach
to Dynamic Load Balancing,” IEEE
Transactions on Parallel and Distributed
Systems, vol. 9, no. 3, pp. 235-248, 1998.

Xin Duan was born on May 23,
1986 in Sichuan, China. He
received his B.S. degree in
Information and
Communication Engineering in
2008 from Sichuan University.
He is now working toward his

M.S. degree in Electromagnetics and Microwave
in Sichuan University. His research is mainly
focused on computational electromagnetics and
antenna design.

Xing Chen received his M.S.
degree in Radio Physics in 1999
and the Ph.D. degrees in
Biomedical Engineering in
2004, both from Sichuan
University, China. He joined the
teaching staff in 1991, and is

now a Professor in the College of Electronics and
Information Engineering of Sichuan University.
His main research interests are in the fields of
antenna design, optimization algorithm, numerical
methods, and parallel computation. He is a senior
member of the Chinese Institute of Electronics.

248 ACES JOURNAL, VOL. 26, NO. 3, MARCH 2011

Kama Huang received his
M.S. degree in 1988 and his
Ph.D. degree in 1991 in
Microwave Theory and
Technology both from the
University of Electronic
Science and Technology,

China. He has been a professor of the College of
Electronics and Information Engineering of
Sichuan University, China since 1994, and the
director of the College since 1997. In 1996, 1997,
1999, and 2001, he was a visiting scientist at the
Scientific Research Center “Vidhuk” in the
Ukraine, Institute of Biophysics CNR in Italy,
Technical University Vienna in Austria, and
Clemson University in USA, respectively. At
these institutions, he cooperated with the scientists
to study the interaction between electromagnetic
fields and complex media in biological structure
and reaction systems. He has published over one
hundred papers.

Haijing Zhou was born in
Beijing in 1970. He received his
B.S., M.S., and Ph.D. degrees in
Microwave engineering in 1991,
1994, and 1997, respectively,
from UESTC (University of
Electronics Science and

Technology of China). Since 1998, he has been
working at IAPCM (Institute of Applied Physics
and Computational Mathematics of Beijing), as an
Associated Professor (1999) and a Professor
(2005), where his research is mainly in the areas
of high power microwave, ultra-wideband
electromagnetics, and computational
electromagnetics. His current interests include
classical electromagnetic field theory, transient
electromagnetics, computational electromagnetics,
microwave technology, antenna technology, and
wave propagation, etc.

249DUAN, CHEN, HUANG, ZHOU: HIGH PERFORMANCE PARALLEL FDTD BASED ON WINSOCK AND MULTI-THREADING

