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Abstract ─In this paper a meshless approach on  a 
high performance grid computing environment to 
run fast onerous electromagnetic numerical 
simulations, is presented. The grid computing and 
the message passing interface standard have been 
employed to improve the computational efficiency 
of the Smoothed Particle Electromagnetics 
meshless solver adopted. Applications involving 
an high number of particles can run on a grid 
computational environment simulating complex 
domains not accessible before and offer a 
promising approach for the coupling of particle 
models to continuous models. The used meshless 
solver is straightforward to program and fully 
parallelizable. The results of the parallel numerical 
scheme are reported and tested on a transverse 
electric propagation case study taken into account 
to assess the computational performance. 
  
Index Terms ─ Electromagnetic Simulation, Grid 
Computing, Meshless method, Smoothed Particle 
Electromagnetics.   
 

I. INTRODUCTION 
In recent years the numerical treatment of 

partial differential equations with meshfree 
discretization has become a very active research 
area. Meshfree methods have undergone 
substantial development since the mid 1990s. The 
growing interest in these methods is due to the fact 
that they are very flexible numerical tools where 

node configurations have no fixed connectivity 
and have some advantageous features especially 
attractive when dealing with multiscale 
phenomena: a-priori knowledge about particular 
local behaviour of the solution can be introduced 
easily in the meshfree approximation space, and an 
enrichment of a coarse scale approximation with 
fine scale information is possible in a seamless 
way. Due to their independence of a mesh, 
meshfree methods can deal with diffuse in-
homogeneity and complex geometry of the domain 
in a more easy way than standard discretization 
techniques [1-4]. For a large number of standard 
numerical methods that solve differential partial 
equations, the process needs the construction of a 
linear system and its numerical solution. This is 
true for finite element method (FEM), element free 
Galerkin (EFG) method and meshless local 
Petrov-Galerkin (MLPG) method, for instance. 
Different approaches are used in technical 
literature to parallelize numerical methods [5-6].  

On the other hand, the approximation of the 
field variables in meshfree methods is usually 
based on processing information belonging to a 
local domain in the neighboring of the observation 
point, and the procedure has showed to be a simple 
way to speedup, so justifying the research for. The 
implementation of meshfree methods and their 
parallelization, requires special attention enabling 
to work with a wide range of complex and 
cumbersome applications. Smoothed Particle 
Hydrodynamic (SPH) was one of the first mesh- 
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free methods to be proposed [7-15] and recently it 
has been reformulated to solve onerous time 
domain electromagnetic problems [16-17]. In time 
evolutionary simulations, the resulting meshless 
method, addressed as Smoothed Particles 
Electromagnetics (SPEM), computes the field 
variables by means of an integral formulation 
performed over a set of particles identified by a 
kernel function. The SPEM method, does not deal 
with a grid at all and the solution is computed 
directly for each field point using the neighboring 
information by avoiding the generation of a linear 
system. The spatial derivatives are computed by 
transferring the differentiation from the field 
variables into the kernel by employing two set of 
staggered particle distributions keeping 
information on magnetic and electric field 
components respectively. The method is fully 
parallelizable and characteristics of the collections 
of set and points, with implications for the 
performance of the algorithm, are considered and 
also exhibited through numerical examples. In 
SPEM the processing is totally independent on 
each field point at a given time step and, in this 
paper, it has been parallelized by using the 
Message Passing Interface (MPI) library in a grid 
environment. The resulting processing times are 
compared with the ones from sequential version. 
Moreover, the numerical solutions have been 
compared with the experimental results obtained 
in a sequential way obtaining a very satisfactory 
agreement, as confirmed by the performance 
analysis reported in the next of the paper. The 
paper is organized as follows. In section II the 
fundamentals of SPEM meshless solver are briefly 
summarized. In section III the features of the 
parallel approach are reported: the pre-processed 
computational step and the temporal step are 
addressed, respectively. Section IV validates the 
computational scheme by referring to a transverse 
electric (TE) simulation at different time steps.  

 
II. THE MESHLESS SOLVER 

SPH method is based on a set of points 
scattered in the domain involving a kernel function 
in order to discretize partial differential equations 
without any underlying mesh. In the absence of 
mesh, the spatial derivatives for each point of the 
domain have to be computed in order to proceed to 
the time integration. The spatial derivatives are 
determined into a finite domain surrounding each 

point of interest by means of a kernel function, and 
each of these points carry the discrete electric E 
and magnetic H field’s quantities. The term kernel 
refers to a weighting function and defines how 
much each field variable contributes to the field 
variable at a point r. 

By considering a given function A(r) it is 
possible to convolute it by using its values and the 
chosen kernel function within a compact support 
D proportional to the so-called smoothing length, 
noted h, standing for the meshless equivalent of a 
space step used in classical mesh based methods: 

 

∫ −=><
D

'dr)h,'rr(W)'r(A A(r) . (1) 

The convolution (1) is usually referred as 
kernel approximation. The kernel function has the 
following properties: 
 1'dr)h,'rr(W

D
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The kernel function depends on the distance. 

In this study, D is defined with a radius equal to 2h 
and the simulations have been performed by 
employing as kernel the standard cubic B-spline:   
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where d is the dimension of the problem domain 

and 
2π
3,

7π
15,1α =  for d=1,2,3,  respectively. In 

Fig. 1 the 2-d cubic B-spline is reported. One of 
the major advantages in using this kernel function 
is that it has compact support: particles interaction 
are zero at distances major than 2h (Fig. 2).  

If A(r’) is known only at N discrete points 
Nrrr ,...,, 21  the equation (1) is discretized as 

follows:  

 jjji
N

j
i dVrAhrrWrA )(),()(

1
−∑=

=
.             (5) 

In a similar way, as an example, the gradient 
of any field function can be approximated by 
means of the following expression: 
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Fig. 1. 2-d cubic B-spline. 
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where 'r∇  indicates the derivative with respect to 
the primed coordinates and, in the discrete 
domain: 

jji
N

1j
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=
       (7) 

where i∇  indicates the spatial derivative with 
respect to particle i’s coordinates. 
 

 
Fig. 2. Support domain of the kernel function. 

 
Equation (7) is one of the main reason for 

which SPH method is so popular. It removes the 
need for a mesh to compute spatial derivatives. As 
well known, electromagnetic transients 
phenomena are described by Maxwell’s curl 
equations in time domain, which in a non-
dissipative medium can be written as follows: 
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S , ε  is the medium permittivity, 

µ  the medium permeability and: 
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is the curl operator matrix. In contrast to general 
second-order problems (e.g., wave equations) 
where only one field, electric or magnetic, needs 

to be calculated, special arrangements of the 
particles need when the Maxwell’s equations in 
first-order form are solved [18]. In the present 
paper, by following the FDTD method [19], in 
which the staggered Yee scheme yields second-
order accuracy, two set of staggered particle 
distributions for E and H fields are considered. All 
fields components are stored in two set of nodes,  
E-particles and H-particles, respectively (Fig. 3) 
[16-17]. This position leads to two separate set of 
shape functions that approximate the E and H field 
component values, respectively (Fig. 4). The 
spatial derivatives of the electric field E are 
approximated by means of the derivatives of the 
kernel function centred in an E-particle and 
considering the H-particles as neighbouring, i.e. 

),( H
j

E
iEqq rrWE ∂≈∂ , z,y,xq = . In a similar way 

the spatial derivatives of the magnetic field H are 
approximated by means of the derivatives of the 
kernel function centred in an H-particle and by 
considering the E-particles as neighbouring, i.e. 

),( E
j

H
iHqq rrWH ∂≈∂ , z,y,xq = . 

 

 
Fig. 3. E-particles and H-particles distribution. 
 

 
Fig. 4. Kernel functions with staggered E- and H-
particles distribution. 
 

In a transverse electric (TE) case with the 
yxz HHE ,,  field components propagating in the x-

y- directions, the problem is reduced to the 
following form:    
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yxz HHE ,,  are vectors of length equal to the 
electric and magnetic field particles respectively. 
The matrix for TE waves contains the spatial 
derivatives in the x- and y-directions: 

W H W E 

E - particle 
H - particle 
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In the matrix hL , the spatial derivatives of the 
shape functions EW  and HW in the x- and y- 
directions centred in the electric and magnetic 
field particles are employed, respectively:  
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The temporal derivatives are discretized by a 
staggered march in time scheme and, by retaining 
the nomenclature of the previous section, the 
explicit time-domain update equations can be 
expressed as: 
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where the superscripts indicate the index of the 
time step, and the condition: 

0

min

c
d

mint i≤∆   (14) 

for the time stepping has been employed. This 
estimate is based on the distance to the closest 
neighbour of node and the speed of light 0c . 

In order to simulate unbounded propagation, 
in SPEM the domain is truncated by introducing 
the well-known perfectly matched layer (PML) 
[20]. In this way, magnetic and electric field are 
progressively forced to zero within the external 
layer. As a consequence, the PML boundary 
conditions considerably reduce the numerical 
results corruption deriving from particles lacking 
outside the boundaries [8]. The particle belonging 
to PML are treated in the same way as for the 
particle in the interior domain. 

 
III. THE PARALLEL APPROACH 
In SPEM, the approximation process can be 

divided into two fundamentals steps. A pre-
processing step for the selection of the 
neighbouring particles and the computation of the 
kernel derivatives, and a time dependent step for 
updating the electric and the magnetic field 
components values. In Fig. 4 a briefly description 
of the computation scheme is reported. 

PRE-PROCESSING STEP 
1. Computation of the distances  

2. Computation of the electric field  
derivatives EW∂  

3. Computation of the magnetic field derivatives 

HW∂  

TEMPORAL  STEP 

4. Initial Condition 

5. Temporal Loop 

5.1   Updating of the electric field 

5.2  Updating of the magnetic field 

Fig. 4.  Sketch of the computational process. 
 

A. Pre-processing step 
In order to avoid inefficient implementations, 

the particles must be carefully distributed in the 
problem domain. With the aim of generating a 
good load balancing and reducing the data 
transfer, the problem domain is broken up into 
strips among the processors. Each processor 
contains its own strip and it is in charge of 
calculating the interaction of each fixed particle 
with the neighboring ones. For the computation of 
the fields derivatives the interactions of each 
particle with its neighbors need, and it is 
performed out of the temporal step. A large part of 
the computational burden depends on the search 
procedure; it is therefore essential that efficient 
methods in a sequential way have been adopted for 
such a search. The determination of which 
particles are inside the interaction range, requires 
the computation of all pair-wise distances, whose 
computational time would be unpractical for large 
problems. This was a huge waste of CPU time 
since each particle gets non-zero values from only 
a small fraction of the total N particles. 
Simulations with a large number of particles are 
possible only if an efficient neighborhood search 
algorithm is employed. Working in a parallel way 
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this bottle-neck is really reduced. Anyway, a 
framework of fixed cells is carried out to improve 
the neighboring search. For each particle, the 
interactions with its neighbours only within the 
kernel support of radius equal to 2h, have to be 
computed. 

 
Fig. 5.  Underlying  grid. 
 

Therefore firstly, a tessellation of the physical 
space through a cartesian grid composed of square 
cells with size equal to the kernel radius is carried 
out (Fig. 5). For a given particle a list of the 
particles contained in its cell, as well as in eight 
cells in 2-d around it have to be generated in order 
to find its neighbouring. Thus, only particles in the 
approximating area are tested, and any chance of 
missing an interaction is avoided. In the context of 
variable smoothing length, since the cell sizes may 
differ from the kernel radius, the number of cells 
to be explored is greater than nine. In this case the 
cell size is set as the lowest value of the smoothing 
length. It is important to address that the 
underlying grid is only used for the neighbouring 
search procedure. 

In order to increase the speed up of the code a 
neighbour list for each particle is generated. A 2-d 
array X of cells is used to keep track of 
neighbours. Each cell in the grid contains two 
linked lists, one for the free particles in that cell 
and one for the boundary particles. Each cell in X 
was a square with side equal to 2h, or two times 
the smoothing length. The reason the cells are 2h 
in size is because the particles only interact up to 
distance minor than 2h and thus only need to 
check the current cell and neighbouring cells to 
find all the possible particles that interact with the 
current ones.  
 
B. Temporal step 

In SPEM the processing is totally independent 
on each particle at a given time step, so the 

parallelization is done mainly based on particles 
distribution to processors. As reported in section II 
the algorithm uses a leap-frog integration time 
step: first the values must be predicted at a half 
step forward and then they are used to compute the 
changes in all variables due to interacting with 
neighbours. 

Then all these information are used to 
compute the values at full time step ahead. After 
each time step, the buffer row is reloaded. These 
buffer rows include the particles that border but 
belonging to another processor. Only the fields 
computed on the particles lying on the boundaries, 
as shown in Fig. 6 in grey, have to be transferred 
to the adjacent processor. Each processor is 
interested in this data transfer. After the fields 
computation, all processors are synchronized in 
sending the updated fields. So working a good 
load balancing and a good data transfer is 
performed. In Fig. 7 the computational scheme at 
each time step t is reported by considering the NP  
processors used in the computation.  As reported 
in Fig. 7 each processor is computing the same 
operations: first of all the distances and the kernel 
derivatives are performed. The full line address the 
synchronization statements until all the processors 
end their work; at the end of the elaboration each 
processor produces the data regarding its region 
domain. 

 
IV.  VALIDATION  RESULTS 

In this section a TE case study has been 
addressed. A Gaussian pulse propagating in a 2-d 
domain of 6400 randomly placed particles is 
considered (Fig. 8). The source is placed in the 
domain in the central position and the wave 
propagation is to the boundaries of the domain. In 
Fig. 8 the simulations for computing the electric 
field zE  at different time steps are reported: the 
propagating wave crosses over the boundary and 
the propagation go over the space. As already 
underlined, in the simulation the PML [19] have 
been used by avoiding the wave reflections. In 
Table 1 the computational time for 1N P =  and 

4N P =  processors has been reported. The code 
has been written by employing the MPI paradigm. 
For the sake of completeness, the obtained results 
have been compared with classic FDTD 
simulation. The obtained 2⋅ relative error is equal 
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to 51061.5 −⋅ , by using about 50  neighbors for a 
fixed particle [16]. 

 
Fig. 6.  Non-overlapping data regions. 

 
Fig. 7 . Computational scheme at each time step t . 

 
The computing infrastructure is based on 

IBM Blade Centre H chassis each containing up to 
14 IBM LS21 “blades” interconnected both with a 
double Gigabit Ethernet network, for normal 

communications with redundancy and load 
balancing, and a CISCO Topspin Infiniband-4X 
network, required to provide the Grid with high 
performance computing (HPC) functionalities. 

 
Table 1: Elaboration Time [ms] 

Computational 
stage NP =1 NP =4 

Pre-processing step 19217 4930 
Temporal steps 
(n=4) 

200 58 

Total 19417 4988 
 
The infrastructure is built with identical 

hardware and software at all sites. This choice was 
made on purpose to allow for the maximum 
interoperability and realizes a homogeneous 
environment which is a fundamental condition for 
an HPC Grid environment be able to run 
distributed parallel jobs of applications adopting 
the MPI paradigm. Each “blade” is equipped with 
2 AMD Opteron 2218 rev. F dual-core processors 
with a clock rate of 2,6 GHz able to natively 
execute x86 32 and 64 bits binary code. Each 
processor has 2 GB of DDR2 RAM at 667 MHz (8 
GB in total per “blade”) and it is equipped with a 
direct communication channel to the other 
processor on the same motherboard. The memory 
controller is integrated on board. The storage 
infrastructure is based on IBM DS 4200 Storage 
Systems that provide high features of redundancy, 
management and reliability. In fact, a DS 4200 
Storage System supports several types of RAID 
and has an intrinsic redundancy of all critical 
components (fan, power, controller, etc.) to assure 
maximum reliability. It allows expansions up to 56 
TB each with SATA disks. Each Storage System 
is managed by two IBM x3655 servers that 
“export” the IBM GPFS parallel file system to all 
computing nodes. Overall, about 2000 CPU cores 
and more than 200 TB of disk storage space are 
currently available on the infrastructure. A 
reasonable time estimation [21] for the parallel 
implementation is: 

ONTT Psp +=  (15) 
where Ts  is the serial computational time, NP is the 
number of processors and O is the overhead. The 
overhead O in the case of the proposed non-
overlap paradigm is constant and is determined 
only by small data exchange between two adjacent 

P 1 

P 1 

P N 

Magnetic Field updating 
 

Electric Field updating 
 

P1  P2 … PN 
 

Boundary 
Data Transfer 
 

Boundary 
Data Transfer 
 

Boundary 
Data Transfer 
 

… 
 

Boundary 
Data Transfer 
 

Boundary 
Data Transfer 
 

Boundary 
Data Transfer 
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234 ACES JOURNAL, VOL. 27, NO. 3, MARCH 2012



processors Pi and Pi+1. Due to these considerations, 
by using the non-overlap data paradigm, a real 
speed-up close to the theoretical one and a highly 
scalable algorithm are obtained. 
 

V. CONCLUSIONS 
In this paper a parallel approach of the meshless 

solver SPEM to investigate transient electromagnetic 
propagation, is presented.  

An insight is given into the relative computational 
burden, and some suggestions are provided on the 
computational and data structure of the neighborhood 
search by working with a GRID computational 
environment with HPC functionalities. Results are 
provided for a TE case study. The process involves local 
operators which use neighboring values to generate 
partial results; data strip partitioning with no data 
overlapping has shown to be suitable by working on 
distributed multiprocessor systems. Each data strip can 
be handled as a stand-alone problem and an exiguous 
amount of data transfer needs at each time step and a 
good task balancing is provided. 
 

(a)

 (b) 

(c) 

(d) 

(e) 

(f) 

(g) 
 

(h) 
Fig. 8.  Electric field Ez [V/m] propagation at different 
time steps, for the TE case study. 
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