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Abstract ─ On the basis of the stretched coordinate 
perfectly matched layer (SC-PML) formulations, 
the Z-transform method, and D-B formulation, an 
efficient and unsplit-field implementation of the 
higher-order PML scheme with more than one pole 
is proposed to truncate the finite-difference 
time-domain (FDTD) lattices. This method is 
completely independent of the material properties 
of the FDTD computational domain and hence can 
be applied to the modeling of arbitrary media 
without any modification. The higher-order PML 
has the advantages of both the conventional PML 
and the complex frequency shifted PML 
(CFS-PML) in terms of absorbing performances. 
The proposed algorithm is validated through two 
numerical tests carried out in three dimensional and 
two dimensional domains. It is shown in the 
numerical tests that the proposed PML 
formulations with the higher-order scheme are 
efficient in terms of attenuating both the 
low-frequency propagating waves and evanescent 
waves and reducing late-time reflections, and also 
hold much better absorbing performances than the 
conventional SC-PML and the convolutional PML 
(CPML) with the CFS scheme. 
 
Index Terms ─ finite-difference time-domain 
(FDTD), perfectly matched layer (PML), and 
Z-transform method. 
 

I. INTRODUCTION 
Since the introduction of the perfectly matched 

layer (PML) absorbing boundary condition (ABC) 
by Berenger [1], various modified PMLs have been 
presented to terminate the finite-difference 
time-domain (FDTD) lattices. With the advantage 
of simple implementation in the corners and the 
edges of the PML regions, the stretched coordinate 
PML (SC-PML) [2] was proposed through 
mapping Maxwell’s equations into a complex 
stretched coordinate space. As original Berenger’s 
PML, the SC-PML formulations in [2] were 
ineffective at absorbing the evanescent waves. 
Besides, the complex frequency shifted PML 
(CFS-PML) [3], implemented by simply shifting 
the frequency dependent pole off the real axis and 
into the negative-imaginary half of the complex 
plane, has drawn considerable attention due to the 
fact that this PML is efficient in attenuating the 
low-frequency evanescent waves and reducing 
late-time reflections [4]. In [4], the convolutional 
PML (CPML), based on the SC-PML formulations 
and the convolution theorem, was presented in 
detail to efficiently implement the CFS-PML. 
However, the CFS-PML would have a poor 
absorption of low-frequency propagating waves as 
shown in [5-7]. To overcome the limitations of both 
the conventional PML and the CFS-PML, the 
higher-order PML was proposed by Correia, which 
retains the advantages of both the CFS-PML and 
conventional PML in [7]. It has shown that the 
second-order PML is highly effective in absorbing 
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both evanescent and low-frequency propagating 
waves in both open-region and periodic problems 
in [8]. In [8], the 2nd-order PML based on the 
SC-PML was implemented by using the split-field 
PML formulations and the auxiliary differential 
equation (ADE) method. However, besides the 
drawback of more requirements of the memory and 
the computational time, the higher-order PML 
implementation proposed in [8] was difficult to be 
extended to the case with more than two poles 
because the polynomial expansion was employed. 

In this paper, an efficient and unsplit-field 
implementation of the higher-order PML based on 
SC-PML formulations and the Z-transform method 
is proposed. For convenience, this PML is referred 
to here as the MZT PML. The proposed MZT PML 
algorithm is different from the proposed PML 
algorithm in [9] and [10-15], the proposed MZT 
PML algorithm is based on D-B formulations, and 
this method is fully independent of the material 
properties of the FDTD computational domain and 
hence can be applied to the modeling of arbitrary 
media without any modification. In addition, the 
proposed higher-order PML scheme requires less 
memory and computational time as compared with 
that in [8]. Only the 2nd-order case is described in 
this paper, but this approach is easy to be applied to 
any number of poles. 
 

II. FORMULATION 
In three-dimensional (3-D) SC-PML regions, 

the normalized frequency-domain modified 
Maxwell’s curl equations can be written as, 

  0( )E( )= H( )r sj c                 (1) 

0( )H( )= E( )r sj c      ,        (2) 

where c0 is the speed of light in free space, r() 
and r() are, respectively, the relative permittivity 
and permeability of the FDTD computational 
domain and the operator s is expressed as, 

1 1 1ˆ ˆ ˆs x x y y z zxS yS zS
               (3) 

where x, y, and z  are the partial derivatives with 
respect to x, y, and z and S, ( = x, y, z) are the 
complex stretched coordinate metrics, which was 
originally proposed [1] to be, 

01S j                       (4) 

with the CFS scheme and  S ( = x, y, z) were 
defined as,  

0( )S j                 (5) 

where  and  are assumed to be positive real and 
K is real and  1. In order to make the PML 
completely independent of the material properties 
of the FDTD computational domain, both equations 
(1) and (2) can be written in terms of the electric 
flux density D and the magnetic flux density B as, 

0D( )= H( )sj c                 (6) 

0B( )= E( )sj c     ,          (7) 

where D and B are given by, 

D( )= ( )E( )r                    (8) 

B( )= ( )H( )r     .             (9) 

Consequently, this PML can be applied to truncate 
arbitrary media, such as lossy, dispersive, 
anisotropic, inhomogeneous or nonlinear without 
any modification and all that is needed is to modify 
equations (8) and (9) under consideration. The 
method is available in [16] to obtain E from D using 
equation (8) [and H from B using equation (9)]. It 
must be noted that if r() or r() is not 
frequency-dependent, E or H formulation should be 
adopted to reduce memory requirement and save 
computational time. 

 The idea of the higher-order PML was 
proposed in [8] by generalizing this metric for the 
case where more than one pole was present. For the 
2nd-order PML, S is defined as, 

1
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   (10) 

 Owing to the frequency dependence of S, the 
transformation of equation (6) to the time domain 
will lead to convolutions on the right hand side [4]. 
However, because the convolution in the time 
domain is just a multiplication in the Z-domain [17], 
it is more efficient as shown below that equation (6) 
is first transformed to the Z-domain and then to the 
FDTD form.  

1

0
1 ( ) ( ) yz

x y z
HHz D S z S z

t y z


     
  

  (11) 

where t is the time step and S(z), ( = y, z), is the 
z-transform of 1/S, which can be obtained by first 
transforming 1/S to the s-domain using the relation 
j  s, and then applying the matched z-transform 
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method [17] using the relation (sp)  (1eptz1), 
1 1

1 2
1 21 1

1 2

1 1
( )

1 1

h z h z
S z w w

g z g z
 

  
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   
   
   
   

   
 

   
 

(12) 
where  
wm = 1/Km, gm = exp[(t/0)(m + m/Km)] 
and hm = exp(mt/0), (m = 1, 2). Substituting 
equation (12) into equation (11), we obtain 

1

0

1 1
1 2

1 2 1 1
1 2

1 1
1 2

1 2 1 1
1 2

.

1

1 1

1 1

1 1
1 1

x

y y z
y y

y y

yz z
z z

z z

z D
t

h z h z Hw w
yg z g z

Hh z h z
w w

zg z g z




 

 

 

 

  
  
  
  
  
    
  

 


    
   

   
   

  (13) 

Introducing four auxiliary variables Qxn and Pxn ( 
= y, z). 
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Considering that the z1 operator corresponds to a 
single-step delay in the discrete time domain, 
equations (14) – (17) can be written in the FDTD 
form, respectively, as in equations (18) – (21), 
where 

 
1
1/2, , 1 ( ) 1/2, ,

1/2 1/2
( ) 1/2, 1/2, 1/2, 1/2, 

n n
xy xyi j k y j i j k

n n
z zy j i j k i j k

Q g Q

u H H


 

 
   

 

  
   (18) 

1
1/ 2, , 2 ( ) 1/ 2, ,

1
1/ 2, , 2 ( ) 1/ 2, , ,      

n n
xy xyi j k y j i j k

n n
xy xyi j k y j i j k

P g P

Q h Q


 


 

 

  
      (19) 

 
1
1/ 2, , 1 ( ) 1/ 2, ,

1/ 2 1/ 2
( ) 1/ 2, , 1/ 2 1/ 2, , 1/ 2 , 

n n
xz xzi j k z k i j k

n n
y yz k i j k i j k

Q g Q

u H H


 

 
   

 

  
  (20) 

1
1/ 2, , 2 ( ) 1/ 2, ,

1
1/ 2, , 2 ( ) 1/ 2, , .       
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xz xzi j k z k i j k

n n
xz xzi j k z k i j k

P g P

Q h Q


 


 

 

  
       (21) 

Equation (11) can be written as, 

 
1 1
1/2, , 1/2, , 1/2, , 1 ( )

1
1/2, , 1/2, , 1 ( ) 1/2, ,     

n n n
x x xyi j k i j k i j k y j

n n n
xy xz xzi j k i j k z k i j k

D D P h

P P h P

 
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
  

  

   

  (22) 
where uy = w1yw2yt/(0y), uz = w1zw2zt/(0z). 
Both y and z are the space steps. All coefficients, 
which are calculated once prior to the field 
computation and stored in one-dimensional vector 
arrays, auxiliary variables and field components, 
are evaluated at the corresponding Yee grid 
position. Noting that storage of Pxy|

n
i+1/2,j,k, 

Pxz|
n

i+1/2,j,k, Qxy|
n

i+1/2,j,k and Qxz|
n

i+1/2,j,k can be avoided 
by means of temporary storage variables [18]. 
Consequently, the FDTD implementation of 
equation (1) by using equations (18) – (22) requires 
only the storage of four auxiliary variables (i.e., 
Pxy

n+1, Pxz
n+1, Qxy

n+1, and Qxz
n+1) per field 

component per cell in the SC-PML region. 
The above formulations are applied to the 

corner PML regions and the edge PML regions, 
which run parallel with x direction (i.e., both Sy  1 
and Sz  1 are chosen as in equation (12)). In the 
faces of the PML regions, which are normal to the y 
direction and the edge PML regions that run 
parallel with the z direction (i.e., Sy  1 as in 
equation (12) and Sz = 1 are chosen), Ex can be 
obtained by using only two auxiliary variables, Pxy 
and Qxy. Likewise, in the faces of the PML regions, 
which are normal to the z direction and the edge 
PML regions that run parallel with the y direction 
(i.e., Sy = 1 and Sz  1 as in equation (12) are 
chosen), Ex can be obtained by using only two 
auxiliary variables, Pxz and Qxz. For the face PML 
regions, which are perpendicular to x direction (i.e., 
both Sy = 1and Sz = 1 are chosen), no auxiliary 
variable is required. Similar formulations can be 
obtained for other field components of E and H.  
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In order to perform a comparison of the 
proposed formulations and the formulations in [8] 
in terms of memory, we assume a vacuum 3D 
FDTD computational domain with LMN cells. 
A W-cell thick PML is used to truncate the FDTD 
computational domain on all directions. To obtain 
Ex, the proposed formulations require 4 (L+2W) 
  W W 4 =32W 3 + 16LW 2 auxiliary variables 
in the corner PML regions and the edge PML 
regions, which run parallel with x direction (i.e., 
both Sy  1 and Sz  1 are chosen, and Pxy, Pxz, Qxy, 
and Qxz are required), 2   (L+2W)   W  N  2 
=8NW 2+ 4LNW auxiliary variables in the faces of 
the PML regions which are normal to y direction 
and the edge PML regions which run parallel with 
the z direction (i.e., Sy  1 and Sz = 1 are chosen, and 
Pxy and Qxy are required), 2  (L+2W)   M W 2 
=8MW 2 + 4LMW auxiliary variables in the faces of 
the PML regions which are normal to the z direction 
and the edge PML regions that run parallel with the 
y direction (i.e., Sy = 1 and Sz  1 are chosen, and Pxz 
and Qxz are required), and 0 auxiliary variables in 
the face PML regions, which are perpendicular to 
the x direction (i.e., both Sy = 1 and Sz = 1 are 
chosen). By using the same means, auxiliary 
variables to obtain Ey, Ez, Hx, Hy, and Hz can be 
computed. In consequence, the proposed 
formulations require 192W 3 + 64 (LW 2 + MW 2 + 
NW 2) + 16 (LMW + LNW + MNW) auxiliary 
variables in total to obtain 6 field components. 
However, the formulations in [8] require 288W 3 + 
112 (LW 2 + MW 2 + NW 2) + 32 (LMW + LNW + 
MNW) auxiliary variables. Therefore, the proposed 
formulations require 96W 3 + 48 (LW 2 + MW 2 + 
NW2) + 16 (LMW + LNW + MNW) auxiliary 
variables less than the formulations in [8] in the 
PML regions. 

As compared with [8], savings in the 
computation time can be achieved by the proposed 
algorithm due to the fact that the decrease of the 
auxiliary variables leads to the reduction of the 
calculation steps. The more the cells are required in 
the PML regions, the more the savings in memory 
and computation time. It is obvious that because of 
no polynomial expansion, the proposed 
implementation of the higher-order PML is easier 
than that in [8] to be extended to the case with more 
than two poles. 
 

III. NUMERICAL RESULT 
Two numerical tests are provided to validate 

the proposed method. In the first test, we implement 
the FDTD simulation for an inhomogeneous, 
dispersive, and conductive soil half-space problem 
in a highly elongated FDTD grid. It is shown in Fig. 
1 that the dielectric constant of soil is specified as 
the second-order Debye model with an added term 
r() =  + /j0 + 2

p=1 Ap/(1+jp), where  = 
4.15 is the infinite frequency permittivity, A1 = 1.8 
and A2 = 0.6 are the pole amplitudes, 1 = 3.79 nsec 
and 2 = 0.151 nsec are the relaxation time and  = 
1.11 ms/m is the conductivity [19]. The half-space 
occupies 50 % of the vertical height of the 
horizontally elongated simulation region. The 
simulation is done with a 126  46  26 grid 
including 10-cell-thick PML layers on all sides 
with the space steps x = y = z = 0.05 m and the 
time step t = 77 psec. Assuming that the origin is 
at a corner of FDTD grid, a vertically polarized 
point source located at (13, 13, 13) (just above the 
soil) is excited by a differentiated Gaussian pulse 
with a half pulse bandwidth = 1155 psec. Within 
the PML,  and K are scaled using a fourth-order 
polynomial scaling [20] and  is a constant. The 
relative reflection error (in decibel) versus time is 
computed at an observation point located at (113, 
33, 12) (at the opposing corner of FDTD grid from 
the source and just below the interface of free space 
and soil) by using,  

( )dBR t  ref
10

refmax

( ) ( )
20 log ( )

z z

z

E t E t

E


          (23) 

where Ez(t) represents the time-dependent discrete 
electric field of the observation point, Ezref(t) is a 
reference solution based on a larger computational 
domain, and Ezrefmax represents the maximum value 
of the reference solution over the full-time 
simulation. The relative reflection error is first 
computed over 1500 time iterations. This same 
example is repeated with SC-PML ( = 0, Kmax = 
11, and max = 0.18 S/m) and the convolutional 
PML (CPML) [4] ( = 0.0015, Kmax = 7, and max = 
0.24 S/m). For the 2nd-order PML including the 
formulations in [8] and the proposed formulations, 
the following parameters is chosen as follow, K1 = 
1, 1 = 0, K2opt = 8, 1 = 1opt  4, K2 = 1 + 
K2opt 2, 1opt = 0.175/150x, 2 = 0.0015 + 1, 
2opt = 4/150x and 2opt = 2opt 2 where  is 
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zero at the interface of the PML and the FDTD 
computational domains and 1 at the end. In all 
computations of this paper,  and K are evaluated as 
the average value in the cell around the index 
location [1]. These optimum parameters are chosen 
empirically to obtain the lowest reflection. The 
difference of the optimum parameters of MZT PML 
and CPML results from different scheme (i.e., the 
coefficients of equations (18) – (22) are different 
from the counterpart of CPML).  

These results are illustrated in Fig. 2. The 
maximum relative reflection errors of the 
conventional SC-PML, the CPML, the 2nd-order 
PML in [8] and the proposed 2nd-order PML are -43 
dB, -52 dB, -68 dB, and -66 dB, respectively. It can 
be concluded from Fig. 2 that the absorbing 
performance of the proposed 2nd-order PML 
formulations have 14 dB and 23 dB improvement in 
terms of the maximum relative error as compared 
with the CPML and the SC-PML, respectively, and 
holds much lower reflection error for the late-time 
region than the CPML and the SC-PML. 
 

Soil

 PML 

PML 

Excite source

Observation P

X

Z

 
 

Fig. 1. 3D FDTD grid for an inhomogeneous, 
dispersive, and conductive soil half-space problem. 

  
 

Tables 1 and 2 are using different perfectly 
matched layer algorithm procedures, which occupy 
memory and with different time steps occupy 
computational time, respectively. Obviously, when 
FDTD computational domain is invariant, saving 
memory will increase with the increase of PML 
layers and saving time will increase with the 
increase of time steps. 

In the second test, to simplify the problem, but 
without loss of generality, we model a 2D 
TE-polarized electromagnetic wave interaction 
with an infinitely long perfectly electric conductor 
(PEC) sheet with the finite width to validate the 
proposed formulations. Figure 3 shows the FDTD 

grid geometry used in this simulation. The space is 
discretized with the FDTD lattice with x = y = 1 
mm and time step t = 1.1785 psec. The FDTD 
computational domains consist of a 100-cell wide 
PEC sheet surrounded by free space. 10-cell thick 
PML layers terminate the grid and are placed only 
3-cells away from the PEC sheet in all directions. 
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Fig. 2. Relative reflection error versus time, for the 
conventional SC-PML, CPML, 2nd-order PML in 
[8], and 2nd-order MZT PML. 
 
 
Table 1: Using different perfectly matched layer 
algorithm procedures which occupy memory 
(bytes). 

 PML 
layers=10 

PML 
layers=16 

2nd-order PML in 
[8] 

49,506K 105,509K 

2nd-order  MZT 
PML 

29,848K 65,224K 

CPML 24,084K 49,664K 
SC-PML 24,084K 49,672K 

 
 

Table 2: Different time steps occupy computational 
time (s) (PML layers = 10). 

 Time steps 
=2000 

Time steps 
=4000 

2nd-order PML in 
[8] 

667.60 1344.58 

2nd-order  MZT 
PML 

382.33 770.39 

CPML 285.84 579.85 
SC-PML 303.62 604.23 
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Fig. 3. The FDTD grid geometry in this simulation. 
 

A y-polarized line electric current source, 
infinitely long in the z direction, is placed at the 
center and excited with a differentiated Gaussian 
pulse given by, 

2
0 0( ) 2 expy

w w

t t t t
J t

t t

    
   

              (24) 

where tw = 26.53 psec. and t0 = 4tw. The 
y-component of the electric field is measured at the 
point P, where we expect very strong evanescent 
waves to appear. The relative reflection error (in dB) 
versus time is computed at the observation point P 
by using, 

10
_ max

| ( ) ( ) |
( ) 20log

| |

R T
y y

dB R
y

E t E t
R t

E

 
 
 
 


       (25) 

where Ey
T(t) represents the time-dependent discrete 

electric field of the observation point, Ey
R(t) is a 

reference solution based on a larger computational 
domain, and ER

y_max represents the maximum value 
of the reference solution over the full time 
simulation. The reference grid is sufficiently large 
such that there are no reflections from its outer 
boundaries during 1500 time steps, which are well 
past the steady-state response. The same example is 
repeated with the conventional SC-PML 
(equivalent to the CPML with  = 0), the CPML 
and the 2nd-order PML in [8]. Within the 
conventional SC-PML and the CPML, K and  
are scaled by using a fourth-order polynomial 
scaling (m = 4) and  is a constant, as in [4]. The 
opt is chosen as,  

opt
1

150
m

x






. 

For the conventional SC-PML, Kmax = 9 and max = 
0.5 opt are chosen. In the CPML simulation, Kmax = 
9, max = 0.9 opt and  = 0.06 are chosen. For the 
2nd-order PML including the formulations in [8] and 

the proposed formulations, the following 
parameters are chosen, K1 = 1, 1 = 0, K2opt = 8, 
1 = 1opt  4, K2 = 1 + K2opt 2, 1opt = 
0.075/150x, 2 = 0.09 + 1, 2opt = 4/150x 
and 2opt = 2opt 2. These optimum parameters 
are chosen empirically to obtain the lowest 
reflection.  

The results are illustrated in Fig. 4. The 
maximum relative errors of the conventional 
SC-PML, CPML, 2nd-order PML in [8] and MZT 
PML are -49 dB, -75 dB, -90 dB and -90 dB, 
respectively. It can be concluded from figure that 
the absorbing performance of the proposed 
2nd-order PML formulations is similar to that in [8] 
and has 15 dB and 41 dB improvement in terms of 
the maximum relative error as compared with the 
CPML and the SC-PML, respectively. 
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Fig. 4. Relative reflection error versus time for the 
conventional SC-PML, CPML, 2nd-order PML in 
[8], and 2nd-order MZT PML. 

 
 

Tables 3 and 4 are similar to the first test by 
using different perfectly matched layer algorithm 
procedures which occupy of memory and different 
time steps that occupy computational time, 
respectively. Obviously, when FDTD 
computational domain is invariant, saving memory 
will increase with the increase of PML layers and 
saving time will increase with the increase of time 
steps. 

 
IV. CONCLUSION 

An efficient and unsplit-field implementation 
of the higher-order PML based on the SC-PML and 
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the z-transform method has been presented. It can 
be shown in the numerical tests that the proposed 
2nd-order PML formulations hold better absorbing 
performance in terms of attenuating both the 
low-frequency propagating waves and evanescent 
waves and require less memory and computational 
time compared with the 2nd-order PML 
formulations implemented by using the split-field 
PML formulations and the auxiliary differential 
equation (ADE) method. 

 
 

Table 3: Using different perfectly matched layer 
algorithm procedures, which occupy memory 
(bytes). 

 PML 
layers=10 

PML 
layers=16 

2nd-order PML in 
[8] 

1,256K 1,500K 

2nd-order  MZT 
PML 

1,204K 1,412K 

CPML 1,196K 1,220K 
SC-PML 1,332K 1,428K 

 
 

Table 4: Different time steps occupy computational 
time (s) (PML layers =10). 

 Time steps 
=60000 

Time steps 
=90000 

2nd-order PML 
in [8] 

61.60 92.46 

2nd-order  MZT 
PML 

57.47 86.70 

CPML 54.49 81.89 
SC-PML 66.75 100.57 
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