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Abstract ─ Short pulse propagation along microstrip 

meander delay lines is considered. Electromagnetic 

analysis is used in the CST MWS software. A quasi-

static analysis in TALGAT software is used as another 

approach, for which the complete computational models 

for capacitive matrix calculation are presented. The 

results of simulations are given. It is shown that if a 

number of turns is increased and their length is reduced 

proportionally, distortions of a pulse signal in the line are 

reduced. At the same time, though the electrical width of 

the structure increases, an agreement between the  

results of quasi-static and electromagnetic analyses is 

improved. Memory costs of electromagnetic analysis 

and quasi-static analysis are comparable, while the latter 

is significantly less time-consuming. Thus, it is 

demonstrated that a quasi-static analysis can be quite 

relevant during the design of the microstrip meander 

delay lines with minimal distortions. 

 

Index Terms ─ Electromagnetic analysis, meander delay 

line, quasi-static approach. 

 

I. INTRODUCTION 
Trends of modern electronics devices development 

(decrease in dimensions, increase in the upper frequency 

of signal spectrum, etc.) lead to increase in package 

density and to the need for signals asynchrony 

minimization. In this regard, delay lines, particularly in 

the form of a meander, as the simplest structure, are 

widely used. However, crosstalk arises, and it can distort 

waveform and reduce delay time of a pulse propagating 

in the line [1]. There are different approaches to crosstalk 

level reduction, for example, use of guard traces [2], but 

it increases the area of meander lines. Meanwhile, it is 

often required to minimize the area of meander lines. 

These factors lead to the need for numerical analysis 

of meander lines. Two approaches to the analysis are 

used: quasi-static and electromagnetic. The first 

approach is usually less consumptive but it is an 

approximation, as it is based on the telegraph equations, 

which are valid only for small electrical width of a 

structure. The second approach takes into account higher 

order modes but is more consumptive and requires more 

user’s competencies [3] than the work with the quasi-

static approach. 

Electromagnetic analysis for a one set of parameters 

of the microstrip meander delay line is presented in [4]. 

A similar analysis, but in the range of parameters, is 

made in [5]. Comparison between the electromagnetic 

and quasi-static analysis results and the experimental 

results obtained for the strip line is given in [6]. 

Comparison of the results obtained by three different 

numerical methods for one set of microstrip line 

parameters is presented in [7]. These studies did not 

investigate applicability of the quasi-static analysis for 

the case of electrically wide structures, in particular, 

when delay time and area of the meander microstrip line 

are defined and it is necessary to minimize distortions of 

the pulse signal. Meanwhile, such a research is very 

important for design process because it will help to 

optimize both parameters and analysis process of the 

meander delay lines. The aim of this paper is to compare 

the results of electromagnetic and quasi-static 

simulations of a short pulse propagation along microstrip 

meander delay lines with design constraints. 

 

II. SIMULATION APPROACHES 
In this paper simulation of the meander lines  was 

executed in the CST MWS and TALGAT software 

without accounting the losses in conductors and 

dielectrics.  

In CST MWS a combination of the perfect boundary 

approximation with the Finite Integration Technique is 

used [8]. The transient solver allows to make full-wave 

3D analysis of structures of various complexities. In 

general, the system is widely known to give it a more 

detailed description. In order to demonstrate that quasi-

static approach can be useful for simulation of meander 

lines, TALGAT software is used. Let us give a more 

detailed description of the features of quasi-static 

1054-4887 © 2016 ACES

Submitted On: August 19, 2015
Accepted On: February 26, 2016

238ACES JOURNAL, Vol. 31, No. 3, March 2016



approach implemented in TALGAT software. 
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Fig. 1. Cross section of a turn model (a) and top view of 

two turns (b). 

 

The TALGAT software is based on the method of 

moments and allows to make 2D quasi-static analysis. 

The algorithm implemented in the system allows to 

calculate all elements of a moment matrix by fully 

analytical formulae only, avoiding the time-consuming 

and approximate numerical integration. It can be useful 

for effective calculation of a capacitive matrix of two-

dimensional systems of various complexities [9]. In  

this paper the simulation of the short pulse propagation 

in meander lines is carried out. A multiconductor 

transmission line is a base of the considered structures. 

It is assumed in the analysis that a transmission line is 

uniform along its length with an arbitrary cross section. 

The cross section, in general case, with N signal 

conductors and a reference, is represented by the 

following N×N matrices of line per unit length 

parameters: inductance (L), coefficients of electrostatic 

induction (C), resistance (R), conductance (G). In paper 

[10], an approach based on a modified nodal admittance 

matrix has been presented for formulation of network 

equations including the coupled transmission line, 

terminal, and interconnecting networks. The approach is 

used and voltages in the time domain are obtained by 

applying the inverse fast Fourier transform. Matrixes L 

and C are calculated by a method of moments and the 

mathematical model for considered case of linear and 

orthogonal boundaries of conductors and dielectrics [11] 

implemented in TALGAT system is described below. 

First we are segmenting the conductor-dielectric 

boundaries (subdividing them into intervals further 

called subintervals) and assign numbers from 1 to Nс to 

these subintervals. Then we digitize the dielectric-

dielectric boundaries and assign them numbers from  

Nс + 1 to N. (The infinite ground plane is not digitized. 

If there is a second infinite plane, it is bounded at a point 

far removed from the conductors, digitized as a 

conventional conductor, and considered to be at zero 

potential. If there are other conductors that are always at 

zero potential, they all are conventionally digitized.) In 

so doing, we first digitize and number the conductor-

dielectric subintervals orthogonal to the Y axis (the serial 

number of the last subinterval is NcY), digitize and 

number the conductor-dielectric subintervals orthogonal 

to the X axis (the serial number of the last subinterval is 

Nc), digitize and number the dielectric-dielectric 

subintervals orthogonal to the Y axis (the serial number 

of the last subinterval is NdY), and finally digitize and 

number the dielectric-dielectric subintervals orthogonal 

to the X axis (the serial number of the last subinterval is 

N). 

Each subinterval has the following parameters: the 

coordinate of the X-center of the nth subinterval is xn, the 

coordinate of the Y-center of the nth subinterval is yn, the 

length of the nth subinterval is dn; the permittivity of the 

nth conductor-dielectric subinterval is εn, and the 

permittivities on the positive (to which the vector nn is 

pointed) and negative sides (from which the vector nn is 

emanated) of the nth dielectric-dielectric subinterval are 

εn
+ and εn

−, respectively. Here nn is a unit normal vector 

drawn from the center of the nth subinterval. These 

parameters are used to calculate the entries of matrix of 

linear system to be solved. 

For the matrix rows with numbers m = 1, …, Nс we 

have: 

  
0

=1, ..., 1
ˆ ,  

=1, ..., 2
mn mn mn

m Nc
S I I

n N
 





.  

Here for n = 1, …, NcY, (Nc + 1), …, NdY we have: 
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c
     
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 
 

 

 2 2

2 2 1 2 1

2

1

ln 2 2 arctg ,a a c a c
a

c
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(1) 

where 

 
1 2 1

( );  ( );  .
2 2

n n

m n m n m n

d d
a x x a x x c y y


         (2) 

ˆ
mn

I
 
is calculated from Eq. (1) in which c1 is substituted

 
by c2. Then we obtain: 

 
1 2 1

( );  ( );  .
2 2

n n

m n m n m n

d d
a x x a x x c y y


         (3) 

For n = (NcY + 1), …, Nc, (NdY + 1), …, N, Imn is 

calculated from Eq. (1) and, 

 
1 2 1

( );  ( );  .
2 2

n n

m n m n m n

d d
a y y a y y c x x


         (4) 
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ˆ
mn

I is calculated from Eq. (1) in which c1 is replaced by 

c2: 

 
1 2 2

( );  ( );  ,
2 2

n n

m n m n m n

d d
a y y a y y c x x


        . (5) 

For the matrix rows with numbers m = (Nc + 1), …, N, 

we have: 

  

  
0 0

1 1
ˆ ,  =( 1),  ... ,

2 2

m m

mm mm mm

m m

S I I m Nc N
 

   

 

 


   


 

where for the rows with numbers m = (Nc + 1), …, NdY 

for n = 1, …, NcY, (Nc + 1), …, NdY, 

 
1 2

1 1

arctg arctg
mn

a a
I

c c
 

   
   
   

, (6) 

and the variables coincide with those defined by Eq. (2); 

ˆ
mn

I is calculated from Eq. (6) after replacement of c1 by 

c2 and substitution of Eq. (3), and for n = (NcY + 1), …, 

Nc, (NdY + 1), …, N, we have: 

 

2 2

2 1

2 2

1 1

1
ln

2
,

mn

a c
I

a c






 
 
 

 (7) 

where the variables coincide with those defined by Eq. 

(4), and ˆ
mn

I  is calculated from Eq. (7) taken with 

opposite sign after replacement of c1 by c2 and 

substitution of Eq. (5). For the matrix rows with numbers 

m = (NdY + 1), …, N for n = 1, …, NcY, (Nc + 1), …, NdY, 

Imn is calculated from Eq. (7) with variables defined  

by Eq. (2), and ˆ
mn

I  is calculated from Eq. (7) after 

replacement of c1 by c2 and substitution of Eq. (3). For  

n = (NcY + 1), …, Nc, (NdY + 1), …, N, Imn is calculated 

from Eq. (6) with the variables coinciding with those 

defined by Eq. (4), and ˆ
mn

I  is calculated from Eq. (6) 

after replacement of c1 by c2 and substitution of Eq. (5). 

Now the linear system to be solved assumes the 

form: 

 
1

, =1,  ..., ,

0,  =( +1),  ...,

N
i

mn n

n

V m Nc
S

m Nc N









 . 

The subscript i here means that each digitized 

element belonging to the ith conductor is at the potential 

required for the determination of the capacitance matrix. 

The components Smn gathered together yield the 

quadratic matrix S relating the charge densities of 

segmented elements on the conductors and the dielectric 

boundaries, forming the vector σ, with the potentials of 

these elements forming the vector V, and the problem 

itself is expressed in the compact linear system form 

Sσ = V, which is solved Ncond times (where Ncond is  

the number of conductors in the system disregarding the 

reference conductor), and in the ith solution, the 

conductor potential Vi, i = 1,…, Ncond, is set equal to 

1 V, and the potentials of all remaining conductors are 

set equal to 0 V. Finally, from the definition of the entry 

of the capacitance matrix we obtain: 

 
( )

0

, , 1, ...,
i

i

NL

jn

ij n n

n NF

C d i j Ncond





  . 

Here, NFi and NLi are the numbers of the first and last 

subintervals of the ith conductor, the subscript i denotes 

the conductor for which charges σn
(j) are summed, and 

the superscript j indicates the serial number of σn 

calculated when the potential of the jth conductor is  

set equal to 1 V and the potentials of the remaining 

conductors are set equal to 0 V. 

 

III. SIMULATION RESULTS 
In the TALGAT system the meander line structure 

was represented like N-conductor transmission line, with 

ends of the conductors connected respectively (see  

Fig.  2). Structures with N = 2; 4; 8; 16; 32, with the 

length (l) of 20; 10; 5; 2.5; 1.25 mm were selected 

respectively. It allows to get electrically narrow and wide 

structures with a constant total length of conductors. The 

cross section of the analyzed structure is shown in  

Fig. 1 (a). Its parameters are: conductors thickness  

(t) – 35 m, conductors width (w) – 50 m, distance 

between conductors (s) – 50 m, dielectric material  

(r = 3.8; thickness (h) – 2 mm). These parameters were 

chosen in such a way that a high level of electromagnetic 

coupling is generated between the half-turns, which 

maximizes the pulse distortions. The value of the 

resistance at the ends of the line was chosen under 

pseudomatching conditions as 205 Ω. A trapezoidal 

signal with EMF 1 V and duration of rise and fall – 0.1 ns, 

flat top – 1 ns was chosen as the excitation source. 

Memory costs and computational costs are given in 

Table 1. Waveforms at the output of the meander line are 

shown in Fig. 3. Signal propagation delays at "0.5" level 

are given in Table 2.  
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Fig. 2. Circuit diagram of a meander line model for 

quasi-static simulation with N = 4. 
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Table 1: The consumption of computer memory and 

CPU time for CST MWS and TALGAT 

 CST MWS TALGAT 

N 
Time, 

sec 

Peak Memory 

Usage, Mb  

Time, 

sec 

Peak Memory 

Usage, Mb  

2 1002 345 3 85 

4 822 306 6.2 107 

8 730 288 17.3 185 

16 635 263 60 586 

32 796 303 62 501 

 

Table 2: Comparison of delay times at level «0.5» 

from Fig. 3 

N 
l, 

mm 

TСST, 

ps 

TTALGAT, 

ps 
T, 

ps 
%100





TALGATCST

TALGATCST

TT

TT
 

2 20 87 206 119 40 

4 10 105 129 24 10 

8 5 93 109 16 8 

16 2.5 90 100 10 5 

32 1.25 89 104 15 8 

 

 
 (a) 

 
 (b) 

 
 (c) 

 
 (d) 

 
 (e) 

 

Fig. 3. Output waveforms of the examined structures 

with N = 2 (a); 4 (b); 8 (c); 16 (d); and 32 (e). 

 

From these results it is clear that the waveform of 

the signal is subjected to distortions caused by 

electromagnetic coupling between the half-turns. 

However, the results of quasi-static and electromagnetic 

analysis showed good agreement: delays difference does 

not exceed 10%, and only in case of N = 2 it equals to 

40% due to the difference of the near end crosstalk 

levels, that may be caused by neglect of edge effects at 

the ends of the halfturns in quasi-static analysis. 

Reduction of pulse distortion, obtained through the 

increase of N and corresponding reduction of half-turn 

length, can be explained by the reduction of propagation 

delay in a single turn and, consequently, reduction of 

delay between the signal and the near end crosstalk. It 

leads to the reduction of distortions at the rise and fall of 

a pulse, which are significant for N = 2 only. As far as 

the difference between the results of electromagnetic and 

quasi-static analyses is most obviously observed in 

difference of their amplitudes of the near end crosstalk 

(which is clearly seen in Fig. 3 (а)), the increase of N and 

the corresponding decrease of the turn length provide 

more coincident results.  

For the upper frequency of signal spectrum 

(10 GHz) the wavelength in vacuum equals to 3 cm and 

with the dielectric it is somewhat smaller. When N = 32, 

structure width (3.25 mm) is more than 0.1, which can 

lead to incorrect results of quasi-static analysis. 

However, we observe the overall coincidence of quasi- 
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static and electromagnetic analysis results that allows us 

to conclude the correctness of the quasi-static analysis 

for structures of this type. For the considered cases, 

memory costs of CST MWS and TALGAT are 

comparable, while TALGAT is 12–334 times less time-

consuming.  
 

IV. CONCLUSION 
The complete computational models for capacitive 

matrix calculation of quasi-static approach are presented. 

In spite of the considered simplicity and limitations of 

the quasi-static approach, it can give accurate, on a par 

with electromagnetic approaches, and fast results even 

for structures with complex electromagnetic coupling. It 

is worth noting, though the electrical width of a structure 

increases, the agreement between the results of quasi-

static and electromagnetic analyses is improved. Thus, it 

is demonstrated that a quasi-static analysis can be quite 

relevant during the design of microstrip meander delay 

lines with minimal distortions. This is especially 

important at the stage of optimization that requires 

repetitive calculations.  

Results of simulation allow to conclude that the 

larger number of turns gives smaller waveform 

distortions for structures with the same total length of 

lines. 
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