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Abstract ─ A robust, fast and simple scheme for 

calculation of potential integrals that encountered 

singular terms in time domain integral equation (TDIE) 

for planar PEC scatterers in free space is presented. In 

this method singular terms of the potential integrals, like 

other terms, calculated numerically by selecting some 

points in the source and observation patches in TD-MoM 

solver. In fact this method cancelled dealing with the 

singularity of self-terms. 

The numerical integration of the potential integrals 

is almost two times faster than other methods that 

extracted or cancelled singularity of self-terms. Numerical 

results illustrate the accuracy and simulation time of the 

proposed technique.  

 

Index Terms ─ Potential integral, singularity, time 

domain and numerical integration. 
 

I. INTRODUCTION 
Perfect electric conductor (PEC) surfaces in 

electromagnetic structures are used in many applications 

such as electromagnetic interference (EMI), electronic 

packaging, radar cross section, and antenna design  

[1, 2]. Numerical techniques for the prediction of 

electromagnetic fields scattered by complex objects, 

directly operating in time domain (TD), have recently 

received considerable attention [3]. 

Time domain analysis of PEC surfaces is required 

due to using narrow band exciting pulse to obtain the 

transient response in initial moments in some cases. 

Numerically solutions for this analysis are usually based 

on surface integral equation (IE) formulations [4]. To 

solve the time-domain integral equations, method of 

moments (MoM) [5] is selected as the most common 

numerical method. In the MoM solution, the induced 

electric and magnetic currents are unknowns, and the 

surface of the scatterers or targets is usually subdivided 

into small planar patches of a simple shape [6]. These 

unknown currents approximated by the basis functions. 

Depending on the shape of patches, the suitable basis 

function is selected. 

In the process of MoM, we deal with evaluation of 

double integrals with singular kernels of surface integral 

equation (IEs) [6]. These singular kernels related to the 

potential integrals in the IEs of electromagnetics need to 

be evaluated analytically or numerically. Singularities 

occur when testing and source subdomains coincide in 

the kernels of self-terms in the MoM procedure [7]. 

Several singularity subtraction or cancellation 

methods have been proposed. For example, analytic and 

numerical integration are proposed by Gibson [1], a new 

singularity subtraction integral formula [6], Duffy’s 

transformation [8], Khayat-Wilton method [7], analytical 

evaluation method [9], analytical computation of singular 

part [10], an accurate method for the calculation of 

singular integrals [11] and a proposed method in [12] for 

the evaluation of singular integrals arising in method of 

moments. Almost all the methods suffer from a few 

disadvantages; for instance, Duffy’s transformation is 

derived for functions having a point singularity of order 

1/R so singularities of order ∇(1/R) appeared in integral 

equations cannot be easily evaluated [13]. Also, Duffy’s 

transformation does not work well for nearly singular 

integrals occurring when an observation point is near  

a source point [3]. For the method presented in [6], a  

new subtraction method is introduced that covers both 

triangular and rectangular basis functions but the 

singularity subtraction is based on Taylor’s series at R=0 

in which R is the distance between testing and source 

subdomains. Therefore, it is valid only for sufficiently 

small values of R and the accuracy of the computation is 

deteriorated for large values of R [6]. In another research 

[12], the kernels of integrals arising in method of 

moments are categorized to regular, nearly singular, 

weakly singular and strongly singular. For each of these 

different types of integrals, a particular method is 

presented leading to complicated calculation procedure. 

Other mentioned methods also suffer from complexity 
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analytical computation of singular terms in regard to the 

other terms. 

In this paper, we analyse the time-domain mixed 

potential integral equation (TD-MPIE) of PEC surfaces 

in free space with calculation of the potential integrals 

by a simple method that does not deal with extracting or 

cancelling the singularity of self-terms. In fact, a few 

points are used for source and observation patches 

resulting in the calculation of the potential integrals 

numerically. The proposed method based on Makarov’s 

work [14] is extended for multi-points in source and 

observation patches in time domain. This method is 

compared with analytic and numerical integration 

proposed by Gibson [1] since the Gibson method has 

used analytical singularity calculation regarding to the 

other introduced methods. The Gibson method can be 

applied to N-sided planar polygons of an arbitrary shape. 

Also, its singularity computation is independent on the 

type of integral equation formulation. Also the Gibson 

method is accurate enough to compare with the other 

methods. 

 

II. FORMULATION 
Let S denote the surface of a finite PEC in free space 

illuminated by a transient electromagnetic pulse as shown 

in Fig. 1. This pulse induces a surface current, J(r, t), on 

S which then reradiates a scattered field. 

 

 
 

Fig. 1. A PEC excited by incident electromagnetic field. 

 

The boundary conditions require that the total 

tangential electric field on PEC be zero or, 

 {𝑬𝑠 + 𝑬𝑖}𝑡𝑎𝑛 = 0. (1) 

The scattered fields radiated by the current J(r, t), 

may be written in terms of the magnetic vector 𝑨(𝒓, 𝑡) 
and electric scalar potentials Φ(𝒓, 𝑡) as [15]: 

𝑬𝑠 = −
𝜕𝑨

𝜕𝑡
− ∇Φ, (2) 

where 

𝑨(𝒓, 𝑡) = 𝜇 ∫
𝑱(𝒓′,𝑡−𝑅 𝑐⁄ )

4𝜋𝑅
𝑑𝑠′, (3) 

and 

Φ(𝒓, 𝑡) =
1

𝜖
∫
𝑞𝑠(𝒓

′, 𝑡 − 𝑅 𝑐⁄ )

4𝜋𝑅
𝑑𝑠′, (4) 

and  𝑅 = |𝒓 − 𝒓′|. In Equations (1)-(4), 𝜇 and 𝜖 are the 

permeability and permittivity of the surrounding medium, 

c is the velocity of propagation of the electromagnetic 

wave, and r and r' are the arbitrarily located observation 

point and source point on the scatterer, respectively. 

Surface charge density 𝑞𝑠 in Equation (4) is related 

to the surface divergence of J through the continuity 

equation, so the scalar potential term can be given as: 

Φ(𝒓, 𝑡) = −
1

4𝜋𝜖
∫∫

∇𝑠 .  𝑱(𝒓
′, 𝜏)

𝑅

𝑡−𝑅 𝑐⁄

0

𝑑𝜏𝑑𝑠′. (5) 

Using Equation (1) and Equation (2), the time 

domain electric field integral equation (TD-EFIE) can be 

obtained as follows: 

{
𝜕𝑨(𝒓, 𝑡)

𝜕𝑡
+ ∇Φ(𝒓, 𝑡)}

𝑡𝑎𝑛

= 𝑬𝑡𝑎𝑛
𝒊 (𝒓, 𝑡).   (6) 

For the numerical solution of Equation (6), we now 

approximate the conducting surface by triangular patches 

and employ the triangular current expansion on S by: 

𝑱(𝒓, 𝑡) = ∑𝐼𝑘(𝑡)𝒇𝑘(𝒓)

𝑁

𝑘=1

.   (7) 

N is the number of non-boundary edges. Note that a 

boundary edge is an edge which is associated with only 

one triangular patch. 𝐼𝑘(𝑡) represents a temporal basis 

function and 𝒇𝑘(𝒓) is the vector basis function associated 

with the kth edge. As in [16], the vector basis function is 

defined as: 

𝒇𝑘(𝒓) = {

𝑙𝑘

2𝐴𝑘
± 𝝆𝑘

±           𝒓 ∈ 𝑇𝑘
±

0                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (8) 

where 𝑙𝑘 and 𝐴𝑘
± are the length of the edge and the area 

of the triangle 𝑇𝑘
±, respectively and 𝜌𝑘

± are the position 

vectors referenced at the free vertex of 𝑇𝑘
±, as shown in 

Fig. 2. The surface divergence is then given by: 

∇. 𝒇𝑘(𝒓) =

{
 

 
𝑙𝑘

𝐴𝑘
+     𝒓 ∈ 𝑇𝑘

+

−
𝑙𝑘

𝐴𝑘
−     𝒓 ∈ 𝑇𝑘

−

    0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (9) 

Using time domain MoM (TD-MoM) solver for the 

TD-MPIE and Galerkin method, the spatial test functions 

are the same as the expansion function 𝒇𝑘(𝒓). The inner 

product is chosen as: 

〈𝒂, 𝒃〉 = ∫𝒂. 𝒃 𝑑𝑠. (10) 

We divide the times axis into equal intervals of 

segment Δ𝑡, and define 𝑡𝑗 = 𝑗Δ𝑡. By applying the testing 

procedure to Equation (6), and approximating the time 

derivative by the forward-difference approximation, we 

can rewrite Equation (6) as: 

〈𝒇𝑘, 𝑨(𝒓, 𝑡𝑗)〉 + 〈𝒇𝑘 , (∆𝑡)∇𝑠Φ(𝒓, 𝑡𝑗)〉 =

〈𝒇𝑘, (∆𝑡)𝑬
𝑖(𝒓, 𝑡𝑗)〉 + 〈𝒇𝑘, 𝑨(𝒓, 𝑡𝑗−1)〉 . 

(11) 

Next, using the vector identity ∇𝑠 . (Φ𝑨) =
𝑨.  ∇𝑠Φ+Φ  ∇𝑠 . 𝑨, and using the properties of the basis 

function [16], we rewrite Equation (11) as: 

〈𝒇𝑘 , 𝑨(𝒓, 𝑡𝑗)〉 − 〈∇𝑠 . 𝒇𝑘, (∆𝑡)Φ(𝒓, 𝑡𝑗)〉 =

〈𝒇𝑘 , (∆𝑡)𝑬
𝑖(𝒓, 𝑡𝑗)〉 + 〈𝒇𝑘, 𝑨(𝒓, 𝑡𝑗−1)〉  . 

(12) 
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Thus, substituting Equation (3) and Equation (4) 

into Equation (12) yields, after a few steps of algebra, the 

following set of Equations [15], given by: 

∑𝑍𝑚𝑘
𝑎 (𝑡𝑗)

𝑁

𝑘=1

+ Δ𝑡∑𝑍𝑚𝑘
𝑏 (𝑡𝑗)

𝑁

𝑘=1

  

= 𝐹𝑚(𝑡𝑗) +∑𝑍𝑚𝑘
𝑎 (𝑡𝑗−1)

𝑁

𝑘=1

 

  𝑚 = 1,2, …𝑁,     

(13) 

where 

𝑍𝑚𝑘
𝑎 (𝑡𝑗) = 𝑂𝑚𝑘

++ + 𝑂𝑚𝑘
± + 𝑂𝑚𝑘

∓ + 𝑂𝑚𝑘
— , (14) 

𝑍𝑚𝑘
𝑏 (𝑡𝑗) = 𝑄𝑚𝑘

++ − 𝑄𝑚𝑘
± − 𝑄𝑚𝑘

∓ + 𝑄𝑚𝑘
−−, (15) 

𝑂𝑚𝑘
±± = {𝐼𝑘(𝑡𝑅

±±)}{
𝜇𝑙𝑚𝑙𝑘

2𝐴𝑘
± 𝜌𝑚

± . ∫
𝜌𝑘
±

4𝜋𝑅𝑚𝑘
±± 𝑑𝑠

′

𝑇𝑘
±

}, (16) 

𝑄𝑚𝑘
±± = {∫ 𝐼𝑘(𝜏)𝑑𝜏

𝑡𝑅
±±

0

} {
𝑙𝑚𝑙𝑘

𝜖𝐴𝑘
± ∫

𝑑𝑠′

4𝜋𝑅𝑚𝑘
±±

𝑇𝑘
±

} ,    (17) 

and 

𝐹𝑚(𝑡𝑗) =
𝑙𝑚∆𝑡

2
{𝜌𝑚

𝑐+. 𝑬𝑖(𝒓𝑚
𝑐+, 𝑡𝑗)

+ 𝜌𝑚
𝑐−. 𝑬𝑖(𝒓𝑚

𝑐−, 𝑡𝑗)}.   
(18) 

In Equation (16) and Equation (17), 𝐴𝑘
± represents 

the area of the triangle 𝑇𝑘
±, 𝑡𝑅

±± = 𝑡𝑗 − 𝑅𝑚𝑘
±± 𝑐⁄ , and 𝑅𝑚𝑘

±± 

is the distance between the source and observation 

patches. 
 

 
 

Fig. 2. The spatial vector basis function. 
 

To calculate the distance between the source and 

observation patches, we consider special points in triangle 

patches corresponding to the source and observation as 

shown in Fig. 3 and Fig. 4, respectively. Actually, the 

distance between source and observation patches is the 

difference between two matrixes that the elements of 

each one contain the position of selected points. To  

clear the matter, if we select 𝑛 points from  𝑝1 to 𝑝𝑛 in 

the source patch and 𝑚 points from  𝑞1 to 𝑞𝑚 in the 

observation patch, the distance define as: 

𝑹 = [

𝑥𝑝1 
𝑦𝑝1 
𝑧𝑝1 

𝑥𝑝2 
𝑦𝑝2 
𝑧𝑝2 

⋯
…
…

 𝑥𝑝𝑛
 𝑦𝑝𝑛
 𝑧𝑝𝑛

] − [

𝑥𝑞1 
𝑦𝑞1 
𝑧𝑞1 

𝑥𝑞2 
𝑦𝑞2 
𝑧𝑞2 

⋯ 
… 
… 

𝑥𝑞𝑚
𝑦𝑞𝑚
𝑧𝑞𝑚

]. (19) 

So we obtain: 

∫
1

𝑹𝑇𝑚

=
𝐴𝑚
𝐹
∑

1

|𝒓𝑠(𝑘) − 𝒓𝑜(𝑘)|

𝐹

𝑘=1

 . (20) 

𝐴𝑚 is the area of the triangle, F is the lowest common 

multiple of the number of source and observation points, 

and 𝒓𝑠 and 𝒓𝑜 are the position of source and observation 

points, respectively. 
 

 
 

Fig. 3. Source patch barycenteric subdivision. 
 

 
 

Fig. 4. Observation patch barycenteric subdivision. 

 

III. NUMERICAL RESULTS 
In this section, we present the numerical results of 

applying the presented method on various structures. 

Also, the results compared within the analytic and 

numerical method presented by Gibson [1] that calculates 

potential integrals with singular kernel of 1 𝑅⁄ . All the 

objects are illuminated by a Gaussian plane wave, given 

by: 

𝑬𝒊(𝒓, 𝑡) = 𝐸0
4

√𝜋𝑇
𝑒−𝛾

2
, (21) 

where 

𝛾 =
4

𝑇
{𝑐𝑡 − 𝑐𝑡0 − 𝒓 ⋅ 𝒂𝒌}, (22) 

with 𝐸0 = 120𝜋𝒂𝒙, 𝒂𝒌 = −𝒂𝒛, 𝑇 = 13.34 𝑛𝑠, and 

 𝑐𝑡0 = 20 𝑛𝑠. 
First, to choose optimum number of points in source 

and observation patches, we consider a 1m × 1m square 

plate, located in the xy plane and centered about the 

origin. By changing the number of points, some that 

cause stable response have been listed in Table 1. For 

each case, the relative error, the exact value presented by 

Gibson [1] is used, and the computation time have been 

computed. We select 9 and 16 points for source and 

observation patches, respectively. 

As shown in Table 1, as the number of selection 

points is greater, the relative error reduces but the 
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computation time increases. So, this choice of numbers 

is optimum. The following consideration has been done 

based on 9 and 16 points for source and observation 

patches, respectively.  

The mentioned unit square PEC plate has been 

subdivided into 44 triangular patches with 58 unknowns. 

Figure 5 shows the space-time distribution of x-directed 

current induced at center of the square using the proposed 

solution and the results are compared with the Gibson 

method [1]. The curves show the good agreement between 

two methods. Also, the currents induced at the corners of 

the square are depicted in Fig. 6. 

 

Table 1: Computation time and relative error for different 

source and observation points 

No. of 

Source 

Points 

No. of 

Observation 

Points 

Computation 

Time 

(S) 

Relative 

Error 

(%) 

4 9 8.464983 0.0093 

9 16 8.860424 0.0063 

49 36 14.08472 0.0057 

 

 
 

Fig. 5. The x-directed induced surface current density at 

the center of the 1m × 1m square PEC plate. 

 

 
 

Fig. 6. The x-directed induced surface current density at 

the corners of the 1m × 1m square PEC plate. 

 

As a second example, the x-directed current density 

at the center of an equilateral triangle by means of two  

methods is shown in Fig. 7. The triangle is subdivided to 

29 triangular patches with 35 unknowns. Figure 8 shows 

the current density at two x-axis symmetric points A and 

B in corners of the triangle. 

In the third example, a unit circle that subdivided  

to 94 triangular patches with 129 unknowns has been 

considered. Figure 9 shows the x-component of the 

induced current density at the center of this circle by 

means of two methods. In Fig. 10, the x-directed induced 

current density at two symmetry points on central cross 

section of the circle is shown.  

As the last consideration, we obtain the x-directed 

induced surface current density at point (0,0,0) of a pie 

shaped plate. The geometry consists of an equilateral 

triangular plate 1 m on a side joined to a semicircular 

disk with a 1 m diameter. The plate lies in the xy plane 

with the "center" of the disk located at the origin. The 

triangular portion is divided into 23 triangles. Also,  

the disk portion is divided into 16 triangular patches 

resulting in a total of 39 patches with 74 unknowns. 

Figure 11 shows the x-component of the induced current 

density for both the proposed method and the Gibson 

method [1]. 

 

 
 

Fig. 7. The x-directed induced surface current density at 

the center of a unique equilateral triangle. 

 

 
 

Fig. 8. The current density at two x-axis symmetric 

points A and B in the corners of the triangle. 
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Fig. 9. The x-directed induced surface current density  

at the center of a unit circle. 
 

 
 

Fig.10. The x-directed induced surface current density  

at two symmetry points on central cross section of the 

circle. 

 

 
 

Fig. 11. The x-directed induced surface current density 

at the center of a pie shape. 

 

Relative error between two implemented methods is 

calculated and shown in Table 2. It is observed that the 

relative error is smaller than 0.1 percent for all the cases, 

that means the proposed method is sufficiently accurate. 

To approve the outstanding property of the presented 

method, the computation time is reported in Table 3. 

Note that, the proposed method is about three times faster 

than the other. The computer used in this comparison has 

an Intel Core 2 CPU 2.13 GHz processor and 2 GB of 

RAM. 

Table 2: Relative error between the Gibson Method [1] 

and the proposed method (in percent) 

Object Relative Error 

Unit square 0.0063 

Triangle 0.0021 

Unit circle 0.0047 

Pie shape 0.0263 

 

Table 3: Comparison of the computation time between 

two methods (time in seconds) 

Object 
Proposed 

Method 

The Gibson 

Method [1] 

Unit square 8.67100 33.30909 

Triangle 3.92005 12.97828 

Unit circle 38.67338 159.68715 

Pie shape 6.85649 24.96783 

 

IV. CONCLUSION 
In this work, we presented a computationally 

efficient method to obtain the solution to the potential 

integrals of time domain integral equations for the PEC 

surfaces in free space. This method by selecting some 

points in the source and observation patches in the MoM 

context, numerically calculate the potential integrals  

and does not encounter the singularity of self-terms.  

This method can be applied for the integral equation 

formulation of scattering problems dealing with 

singularity of 1/R. We used the proposed method for 

triangular basis functions while this method can be used 

for each arbitrary shapes of basis functions. 

In addition, the proposed method can be used to 

analyze planar PEC structures in multilayered media for 

both frequency and time domains. It is expected that 

results of these studies will be reported in the near future. 
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