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Abstract ─ In this paper, different non-intrusive 

stochastic approaches are compared in view of human 

exposure assessment from an inductive power transfer 

system at 85 kHz, dedicated to automotive applications. 

The stochastic approaches are combined with a 3D finite 

element method to build adequate meta-models based on 

Kriging and Polynomial Chaos Expansion. These models 

are used to consider the uncertainty and variability of 

several parameters defining the electromagnetic problem. 

Such fast predictions of uncertainties may help to improve 

the design of shields for inductive power transfer systems 

considering health and safety standards. 

 

Index Terms ─ Human exposure, Stochastic models, 

wireless power transfer. 
 

I. INTRODUCTION 
During recent years, inductive power transfer (IPT) 

systems have been widely developed in several fields 

such as biomedical engineering, consumer electronics 

and the automotive industry [1-7]. With such increasing 

use, the human exposure to the radiated electromagnetic 

fields from these systems in day to day life must be 

deeply investigated. It is therefore needed to evaluate the 

compliance to health and safety guidelines [8].  

International guidelines for human exposure safety 

(such as ICNIRP 2010) include two recommendations: 

reference levels and basic restrictions. The first 

recommendation to be checked is the reference level. If 

the reference level is exceeded, then a dosimetry analysis 

(involving the human body) has to be performed in order 

to be compliant to the guidelines. The work presented in 

this paper deals with the reference level. At the standard 

frequency for inductive power system for wireless 

charging, 85 kHz, the maximum magnetic flux density 

allowed according to the ICNIRP in 2010 is 27 µT 

(reference level). 

In order to assess human exposure near IPT systems 

in automotive applications, adequate modeling methods 

need to be developed. Nowadays 3D computational models 

are studied and applied to solve the electromagnetic 

problem involving the wireless system, the vehicle and 

the human body (in the vehicle or located beside it) [4-

7]. Such full wave computational approaches give reliable 

results for the radiated fields around the system or the 

induced quantities in the human body. This may lead to 

heavy computations that must be repeated for each new 

configuration. A major point in such problems is that the 

level of field is highly dependent on various parameters: 

the shape or size of coils, the geometrical characteristics 

of the system (structural parts of the vehicle, shielding 

plates), materials properties (ferrite, frame of the vehicle), 

the possible misalignment between transmitter and 

receiver while charging, the position of the human body 

in case of dosimetry analysis. Moreover, each physical 

or geometrical parameter may be affected by some 

uncertainty. For such uncertainty propagation studies, 

statistical methods based on Monte Carlo simulations 

may provide reliable results [9]. With this approach, a 

large set of inputs is considered, and many evaluations 

of a model response are needed. This leads to a  

heavy computational cost in case of complex system 

configurations. To avoid the computational burden and 

deal with a large variability of data, it can be very useful 

to build adequate meta-models (or surrogate models).  

A meta-model is an approximated behavioral model, 

built with a reduced set of input data, whose behavior  

is representative of the original model for all data. 

Metamodeling is a well know procedure in reliability  

and uncertainty propagation in mechanics. It often relies 

on stochastic techniques (Kriging, polynomial chaos 

expansions). In electromagnetics, similar approaches have 

been developed and applied to various problems 

(electromagnetic compatibility problems, microwave 

devices design, etc.) [10-12]. Recently the quantification 

of the uncertainty relevant to electrical parameters of a 

simple wireless transfer system was studied using a 

polynomial chaos expansion [13]: both the transmitter 

and receiver units have simple shapes and only consist 

of a resonant coil (helical or spiral) and a matching loop. 

Also, Kriging provides an efficient approach that was 

combined with a finite element software for the design 

of an inductive power transfer system in [14] and used  

to verify the compliance of power transfer systems  
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regarding human exposure [15]. 

This paper presents a comparison of surrogate 

models, Kriging-based and Polynomial chaos-based for 

the prediction of radiated field in the case of a simplified 

but realistic 3D inductive power transfer system [16]. In 

[6] the level of exposure of this system was studied 

through a parametric analysis involving only the possible 

misalignment of the two coils. Nevertheless, in practice 

it is highly desirable to be able to determine the impact 

of different parameters involved in the electromagnetic 

analysis. The stochastic techniques used in this paper 

consider the variability of different parameters defining 

the 3D configuration in order to evaluate the impact on 

the radiated magnetic field. In particular, the results show 

that with a reduced set of input data, accurate predictions 

can be obtained over a wide range of parameters. These 

approaches are used to check if the reference levels 

relevant to the magnetic field are compliant with the 

recommendations. A sensitivity analysis is performed to 

evaluate the relative impact of the different parameters. 
 

II. STOCHASTIC MODELING 

A. Studied wireless power system 

The structure considered in this paper contains two 

rectangular coils (the transmitter and the receiver), and 

two ferrite plates [16]. This test case corresponds to an 

existing inductive power system that has been built in 

Politecnico di Torino, Italy; the structure studied in this 

paper involves the main parts of the coupling system. 

The design also includes a steel plate that represents the 

chassis of the electric vehicle (Fig. 1). Previous studies 

[6] have shown that such a simplified chassis is sufficient 

to evaluate its impact on the results. The dimensions of 

the system are shown on Table 1. Each coil has 10 turns. 

This system has been designed for dynamic charging  

but only static charging is considered in this study. The 

power electronics controls and keeps the rms value of the 

current in the transmitter at 36 A and the current in the 

receiver at 75 A. 
 

 
 

Fig. 1. Wireless power system. 
 

Table 1: Dimensions of the system 

 Width (m) Length (m) 

ransmitter  1.5 

Receiver  0.25 

Ferrite  0.3 

Frame  0.5 

B. Kriging 

Kriging is a stochastic interpolation algorithm which 

assumes that the model output M(x) is a realization of a 

Gaussian process indexed by the input x. A Kriging 

meta-model is described by the following equation: 

 𝑀(𝑥)~𝑀𝐾(𝑥) = 𝛽𝑇𝑓(𝑥) + 𝜎2𝑍(𝑥, 𝜔). (1) 

The first term in (1), is the mean value of the 

Gaussian process (trend) and it consists of the regression 

coefficients βj (j = 1,…P) and the basis functions fj  (j = 

1,…P). Ordinary Kriging has a constant trend. A trend 

based of linear or quadratic polynomial can also be used. 

The second term in (1) consists of σ2, the (constant) 

variance of the Gaussian process and Z(x, ω), a zero 

mean, unit variance, stationary Gaussian process. The 

underlying probability space is represented by ω and is 

defined in terms of a correlation function R and its hyper-

parameters θ. The correlation function R = R(x; x0 ; θ) 

describes the correlation between two samples of the 

input space, e.g., x and x0 and depends on the hyper-

parameter θ. In the context of meta-modelling, it is of 

interest to calculate a prediction MK(x) for a new point 

x, given X = (x1,…xn), the experimental design and  

y = (y1 =M(x1),…,yn = M(xn)), the corresponding (noise-

free) model responses. A Kriging meta-model (Kriging 

predictor) provides such predictions based on the 

Gaussian properties of the process.  

 

B. Polynomial chaos expansion 

The polynomial chaos is a spectral method and 

consists in the approximation of the system output in  

a suitable finite-dimensional basis Ψ(X) made of 

orthogonal polynomials. A truncation of this polynomial 

expansion can be written as follows: 

       𝑀(𝑥)~𝑀𝑃𝐶(𝑥) =  ∝𝑗

𝑃−1

𝑗=0

Ψ𝑗 (𝑋),                  (2) 

where M(x) is the system output, 𝑋 is the random input 

vector made of the input parameters xi, Ψj are the 

multivariate polynomials belonging to Ψ(𝑋), αj are the 

coefficients to be estimated, 𝜀 is the error of truncation, 

and 𝑃 is the size of the polynomial basis Ψ(𝑋). Each 

multivariate polynomial Ψj is built as a tensor product of 

univariate polynomials orthogonal with respect to the 

probability density function of each input parameter xi: 

                          Ψ𝛼(𝑋) = ∏ Ψ𝑖(𝑥𝑖)
𝑁
𝑖=1 .                           (3) 

Here, inputs Gaussian distributions are used, and the 

corresponding polynomial families Ψ𝑖 are the Hermite 

polynomials families. The coefficients in (2) can be 

estimated by using spectral projections or least-square 

regressions [21]. 
 

C. Polynomial chaos – Kriging 

Kriging interpolates the local variations of the 

output as a function of the neighbouring experimental 

design points, whereas PCE approximates well the 

global behaviour of the output. By combining the global 

DESHMUKH, LAGOUANELLE, PICHON: HUMAN EXPOSURE IN CASE OF WIRELESS POWER TRANSFER 339



and local approximation of these techniques, a more 

accurate meta-model is achieved. Polynomial Chaos-

Kriging (PC-Kriging) can be understood as a universal 

Kriging model the trend of which consists of a set of 

orthonormal polynomials: 

𝑀(𝑥)~𝑀𝑃𝐶𝐾(𝑥) =  ∝𝑗

𝑃−1

𝑗=0

Ψ𝑗 (𝑋) + 𝜎2𝑍(𝑥, 𝜔),     (4) 

where the first term in the right-hand side is a weighted 

sum of orthonormal polynomials describing the trend of 

the PC-Kriging model, and where the second term 

includes the variance and the zero mean, unit variance, 

stationary Gaussian process respectively. 

The three meta-models summarized above and  

used in this paper are proposed in the framework for 

uncertainty quantification are freely available [17]. 

Kriging (with different trends), Polynomial Chaos 

Expansion based on the Least Angle Regression (PCE), 

Kriging combined with Polynomial Chaos Kriging 

(PCK) are applied to check the compliance regarding  

the reference levels of radiated magnetic field. For the 

frequency of interest (85 Hz), the maximum admissible 

value of the magnetic flux density is 27 µT according to 

the ICNIRP Guidelines (2010). The experimental design 

is evaluated by the finite element method using the 

commercial software COMSOL. The magneto-dynamic 

problem is solved with a 3D vector potential formulation. 

The mesh includes around 8000 first order tetrahedral 

finite elements (Fig. 2). The average size of edges is 

around 30 mm in coils, ferrite and frame. The mean  

of the flux density provided by the meta-models in  

a vertical line, located at 50 cm from the frame 

representing the possible location of a bystander. 

 

 
 

Fig. 2. Finite element mesh used for the computations. 

 

 
 

Fig. 3. Position of the observation points (blue line). 

 

III. NUMERICAL RESULTS 

A. Configuration with 3 parameters 

In the first example, the uncertainty regarding the 

frame conductivity, distance between coils and length  

of reception coil is investigated. Here, σ, d, L are the  

frame conductivity, distance between coils and length of 

reception coil respectively. The range of variation is 

shown in Table 1. Regarding the conductivity, the range 

includes typical values relevant to composite materials 

which are used in automotive applications [18,19]. These 

three parameters are important for such analysis since 

once a park or a road is equipped with defined transmitter 

coils, different kinds of vehicle may be charged by the 

system. The level of radiated field then depends on the 

type of the receiver system (L and d) and car body (σ). 

They may strongly vary according to the vehicle. The 

relative permeability of ferrite is 2200. 

 

Table 2: Parameters: Range of variations 

Parameter Min Max 

σ (S/m)  106 

d (m)  1. 

L (m)  0.3 

 

The accuracy of the meta-model is checked thanks 

to the LOO (leave-one-out) cross-validation provided by 

each meta-model and defined according to [16]: 

 𝐿𝑂𝑂 = ∑ (𝑀(𝑥𝑖) − 𝑀̂
−𝑖(𝑥𝑖))

2𝑁
𝑖=1 ∑ (𝑀(𝑥𝑖) − 𝑚)

2𝑁
𝑖=1⁄ . 

 (5) 

This quantity involves N meta-models M̂-i, each one 

created on a reduced experimental design excluding xi 

and comparing the prediction to the real value M(xi). In 

equation (5), m is the mean of the experimental design 

response. If the LOO is close to 1, the meta-model is 

highly modified if one data point is erased, whereas the 

smaller it is, the least it will be modified. 

In order to measure the accuracy of the output model 

according to the number of sampling points, another  
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estimate of the accuracy can be defined, the OSE (Out-

of-Sample Error): 

 𝑂𝑆𝐸 =
1

𝑁−𝑘
∑ (

𝑀(𝑥𝑖)−𝑀
𝑘(𝑥𝑖)

𝑀(𝑥𝑖)
)
2

,𝑁−𝑘
𝑖=1  (6) 

where Mk is the predictor that was trained using k data-

points among the N available. 

The OSE is a measure of the accuracy of the meta-

model with a reduced set of sampling values. 

For the studied case, the meta-model is constructed 

with 10 randomly selected data points out of 27 (3 

samples for each of the three parameters). The computing 

cost for one simulation (three given parameters) is less 

than 2 minutes on a work station DELL XEON E5-1630 

V3 (64 Go). The number of 27 data inputs points  

(full wave computations) was chosen as a compromise 

between accuracy and reasonable computing time in 

view of an engineering-oriented tool. The accuracy of 

the meta-model is then calculated on the remaining 17 

points out of 27 to get the OSE and the LOO (Table 3). 

Regarding Kriging, a significant lower LOO is obtained 

using a linear or quadratic term compared to an ordinary 

trend. Among the three types of approaches PCK clearly 

appears as the more accurate. 
 

Table 3: Comparison of different meta-models 

 OSE Eq.(5) LOO Eq.(6) 

Kriging 

(ordinary trend) 
 2.1 10-4 

Kriging 

(linear trend) 
 1.7 1-6 

Kriging 

(quadratic trend) 
 1.3 10-5 

PCK  5.2 10-11 

PCE  1. 10-6 

 

In order to study the influence of the number of 

samples on the predictions, the meta-models were 

constructed on 8,10,15 randomly selected points out of 

27 data points. The values of LOO for different methods 

and for the three given cases are shown in Table 4. In 

practice it was shown that using more than 10 points is 

unnecessary to get a sufficiently accurate surrogate 

model. 
 

Table 4: LOO values for different numbers of samples 

 8 points 10 points 15 points 

Kriging 

(ordinary trend) 
x 2. x 10-4 1.6 x 10-4 

Kriging 

(linear trend) 
x 1.7 x 10-6 1.2 x 10-8 

Kriging 

(quadratic trend) 
x 1.3 x 10-5 8.8 x 10-7 

PCK x 5.2 x 10-11 3.7 x 10-13 

PCE x 1. x 10-6 8.1 x 10-7 

B. Configuration with 5 parameters 

In this second example, the uncertainty regarding 

the frame conductivity (σ), distance between coils (d), 

length of reception coil (L), shift between coils (D) and 

frame relative permeability (µ) is studied. By increasing 

the number of parameters, the objective is to evaluate  

the quality of the meta-models to deal with a larger 

variability of practical configurations. The distance D 

refer to a possible misalignment between the transmitter 

and receiver due to the vehicle position, while charging. 

The permeability of the frame refers to different type of 

steel material of the car body. The range of variation of 

the parameters is shown in Table 5. 

 

Table 5: Parameters: range of variations 

Parameter Min Max 

σ (S/m)  106 

d (m)  1. 

L (m)  0.5 

D (m)  0.5 

µ (H/m)  3000. 

 

The efficiency of the different meta-models is 

checked in case of 20 randomly selected data points 

among 243 (3 samples for each of the five parameters). 

The corresponding values of the LOO and the OSE are 

shown in Table 6. 

 

Table 6: Comparison of different meta-models 

 OSE LOO 

Kriging 

(ordinary trend) 
x 1. x 10-3 

Kriging 

(linear trend) 
x 4.1 x 10-4 

Kriging 

(quadratic trend) 
x 8.1 x 10-4 

PCE x 4.2 x 10-6 

PCK x 1.5 x 10-4 

 

The influence of the number of samples is described 

in Table 7. Again, PCK provides the lowest error. 

 

Table 7: LOO values for different number of samples 

 15 points 20 points 25 points 

Kriging 

(ordinary trend) 
x  1. x 10-3 8.4 x 10-4 

Kriging 

(linear trend) 
x  4.1 x 10-4 5.5 x 10-5 

Kriging 

(quadratic trend) 
x  8.1 x 10-4 3.5 x 10-5 

PCK x  4.2 x 10-6 5.2 x 10-7 

PCE x  1.4 x 10-4 1.6 x 10-5 
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The maximum mean value of the B field recorded 

on the vertical line shown on Fig. 3 occurs in front of the 

air gap between the coils. If the number of samples is 

sufficient (above 20 in the present case) the three meta-

models give the same outputs: the relative error between 

the field obtained but the meta-model and that deduced 

from the finite element method remains below 0.6% for 

all the values computed along the vertical line. The 

predictions remain under the ICNIRP limit of 27 µT.  

Table 8 gives the values of the Sobol indices which 

quantify the impact of uncertain input variables on the 

output [20]. These indices may be useful in case of  

a sensitivity analysis. The higher the Sobol index, the 

stronger the influence of the related input in the  

output uncertainty. The Sobol indices are directly and 

analytically extracted from the polynomial chaos 

expansion [21]. This is a key interest of PCE: the results 

are obtained sensitivity indices and are computed at 

almost no additional cost with a computing time which 

is several orders of magnitude lower compared to a 

standard Monte Carlo analysis. As expected in this 

simplified studied case, the distance between the coils 

has the greatest impact on the magnetic field. Because of 

the position of the observation point, the physical 

properties of the plate has negligible effect. The two 

other parameters which have a significant impact are the 

shift between the coils and the length of the reception 

coil. Of course, in the case of a dosimetry analysis 

involving a realistic human exposure situation, the field 

has to be evaluated accurately using many observation 

points near the system (and not only on the vertical line 

of interest) and in the biological tissues [22-24]. Then the 

conclusions may be different. 
 

Table 8: Sensitivity of parameters 

Parameter Sobol Index 

σ (S/m) x 

d (m) 

L (m) 

D (m) 

µ (H/m) x 
 

IV. CONCLUSION 
Predictions of the radiated magnetic field have been 

obtained from stochastic models based on Kriging and 

Polynomial chaos expansions in the case of a simplified 

but realistic wireless power transfer system. This 

feasibility analysis shows that meta-models provide 

efficient approaches to consider uncertainties of different 

physical or geometrical parameters. With a reduced 

number of samples, the combination of Kriging and 

Polynomial chaos expansions can be used as a fast 

predictor to check if reference levels fit the guidelines 

for human exposure. The work is now extended to 

investigate more complex configurations, which consider  

the global structure of the vehicle. Such an approach will 

also make any sensitivity analysis when designing the 

system with appropriate shielding structural parts easier. 
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