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Abstract ─ Method of moments (MoM) is an essential 

tool to model electromagnetic wave interactions with 

three-dimensional targets. Numerical integration is a key 

technique in MoM. Due to the singular nature of Green's 

function, MoM requires special treatment in the 

calculation of singular integration, which is usually time-

consuming. In this study, the barycentric subdivision 

method is investigated to compute numerical integration 

in three-dimensional surface integral equations. This 

method allows a uniform treatment for both singular and 

non-singular integrals. Numerical examples show that 

this method could reach the same level of accuracy as the 

singularity extraction method for RWG basis functions, 

and the computational time of setting up the matrix can 

be reduced by half. 

 

Index Terms─ Barycentric subdivision method, Method 

of moments (MoM), Rao-Wilton-Glisson (RWG) basis, 

singular integration, singularity extraction method. 
 

I. INTRODUCTION 
Rao-Wilton-Glisson (RWG) basis [1] has been 

widely used in Method of Moments (MoM) for modeling 

electromagnetic wave interactions with 3D targets. 

While setting up the matrix equation of MoM, we usually 

use numerical integration to evaluate the source integrals 

and field integrals, both of which contain the Green's 

function. Because of the singular nature of the Green's 

function, the integrals need to be treated carefully when 

the domain of the source integral overlaps with the one 

of the field integrals. The commonly used techniques 

include singularity extraction [1,2], Duffy coordinate 

transformation [3-5], polar co-ordinate transformation, 

and etc. 

The singularity extraction method was proposed by 

Wilton et al. [1]. This method evaluates the non-singular 

part of the integral by numerical quadrature and the 

singular part by analytical formula [2]. Khayat and 

Wilton proposed a simple and efficient numerical 

procedure, which uses singularity cancellation scheme 

[6]. Khayat et al. further optimized this method for the 

integration scheme [7]. Vipiana and Wilton presented a 

purely numerical procedure to evaluate strongly near-

singular integrals in the gradient of Helmholtz-type 

potentials for observation points at small distances from 

the source domain [8]. Popovic [9], Geng and Tong [10, 

11] also applied potential integral method to computing 

singular integrals based on bilinear surface modeling. 

Wang and Nie et al. used the singularity transferring 

method to calculate the integral with 1/R singularity in 

its integrand and remove the small area, which makes 

zero contribution to the numerical integration [12]. Hua 

and Xu reduced the order of singularity and avoided the 

coincidences between the source and field points [13]. 

Wu et al. extracted the strong singularity of Magnetic 

Field Integral Equation (MFIE) and used the integral 

domain transform to eliminate the residual mild 

singularity [14]. Vipiana and Wilton presented a simple 

and efficient numerical procedure for evaluating singular 

and near-singular source vector potential integrals 

involving junction basis functions based on a double 

transformation, which could cancel singularities [22]. 

Jarvenpaa presented recursive formulas by which they 

can extract any number of terms from the singular kernel 

and generalize the singularity extraction technique for 

surface and volume integral equation with high-order 

basis functions [23]. These methods can compute the 

singular integral with good accuracy. However, we have 

to carefully separate the singular and non-singular 

integral so that they can be treated differently. Also, 

compared with non-singular integrals, the singular 

integrals are more expensive to compute. It can become 
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a bottleneck in computing time for method of moments. 

The Duffy coordinate transform method was 

proposed by Duffy [3]. This is a simple transformation 

that facilitates the evaluation of integrals with singular 

integrands at a vertex. Zhao and Nie et al. used domain 

decomposition and Duffy coordinate transformation  

to remove the singularity in the integrand [4]. Botha 

presented a new family of systematically constructed 

near-singularity cancellation transformations, which 

yields quadrature rules for integrating near-singular 

kernels over triangular surfaces based on Duffy 

transformation [5]. Zhang and Sun constructed a general 

variable transformation based on the idea of diminishing 

the difference of the orders of magnitude, which can 

remove the near singularity efficiently by eliminating the 

rapid variations of the integrand in nearly singular 

integrals, and improve the accuracy of numerical results 

[23]. Duffy transformation eliminates the singularity  

in the integral through coordinate transformation and 

evaluates the integral numerically. But the non-singular 

and singular integrations are still treated separately. 

Besides, the errors of the numerical quadrature would 

increase for triangles with small aspect ratios. Because 

Duffy transformation requires coordinate transform and 

computation of quadrature points, fast evaluation of the 

singular integrals is still a challenge. 

In this work, we studied the barycentric subdivision 

method, which is also known as the nine-point numerical 

integration, for computing integrals in MoM. It was 

originally applied to image rendering in computer 

science [15]. Makarov introduced the method into RWG-

MoM [16], and he stated in his works that this technique 

was not very accurate. Hence, this method has not been 

widely used. Xiang et al. also studied this method in 

2017 [21]. In this method, the singular integrals are 

evaluated in the same fashion as the non-singular ones, 

which allows a uniform treatment of the numerical 

integrals. Therefore, the time of setting up the MoM 

matrix equation can be reduced. Numerical examples 

showed that the accuracy is still in remained in the 

results. 

Compared with [16], more details of the barycentric 

method are studied in this paper, especially its numerical 

accuracy, which is compared with one of the singularity 

extraction schemes. The accuracy is important in the 

application of the scheme for solving electromagnetic 

problems. Based on both derivation and numerical 

examples, we found that the accuracy of this scheme is 

comparable to the singularity extraction scheme. A more 

detailed convergence analysis of the numerical accuracy 

of this scheme is presented. It is proved that the integral 

will converge when the triangle gets smaller, similar as 

other integration schemes. This scheme is only applied 

to EIFE in reference [16], we also investigated its  

applicability for MFIE, PMCHWT and FEM-BI 

formulations. It seems to work as well. 

This paper is organized as follows: Section II 

describes the formulation. In Section III, numerical 

examples are given to show the efficiency and accuracy 

of this method. In Section IV, a convergence analysis is 

carried out. Section V summarizes this work. 

 

II. FORMULATION 

A. Electric field integral equation (EFIE) for PEC 

targets 

The electric field on the surface of a perfect electric 

conductor (PEC) target satisfies the following integral 

equation [17, 18]:
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where G(r,r') denotes the Green’s function in free space, 

J  denotes the scaled electric current density on the 

surface of the target. Discretizing J  by RWG basis and 

applying the Galerkin's method, we can setup a matrix of 

MoM with elements as [18]: 
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where Zmn represents the electric field generated by the 

n-th basis function and tested by the m-th basis function. 

fm(r) and fn(r) represent the RWG basis functions, which 

can be written as: 
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where 

mT  denote the two triangles associated with the m-

th edge, 

mA  are the areas of triangles 

mT , and 

m  are 

the vectors defined in Fig. 1, other symbols are the same 

as those in reference [1]. 

The integral in Eq. (3) then becomes: 
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Fig. 1. RWG basis function defined on the m-th edge.  

 

In this method, we can use one-point quadrature for 

the field integral. The barycenter of the m-th triangle 

elements is chosen as the testing point. The matrix 

element Zmn can then be written as: 
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Here 𝐫𝑚
𝑐± is the barycenter of triangle in the m-th basis 

function, A
~

 and Φ̃ represent the source integrals, which 

can be written as: 
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where rr R . The source integration in the n-th 

patch can be calculated by the barycentric subdivision 

method. 
 

B. Magnetic field integral equation (MFIE) for PEC 

targets 

The magnetic field on the surface of a perfect 

electric conductor (PEC) target satisfies the following 

integral equation [17, 18]:
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method as EFIE, we can get the impedance matrix 
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Fig. 2. The related vector and scalar location relationship 

between the field point and the source point coordination.   

 

Figure 2 depicts the geometric relationship between 

the vector and the scalar, which are involved in the 

formula; substituting ii ρRR   into equation (11), 

which will take the cross product out of the integral. 

Equation (11) can be written as: 
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The integral of impedance matrix element, which is 

related to the m-th and n-th edges, can be written as: 
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here, mn̂  is the outer normal on the patch of the m-th  

edge.
  

After using the one-point quadrature for the field 

integral about r, the matrix element Zmn can be written as: 
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The remaining source integrals about r  in the 

above equations can be calculated with the following 

nine-point integration method. 

 

C. Barycentric subdivision method for numerical 

integration 

We can apply the barycentric subdivision method 

(the nine-point quadrature) to the source integral in Eq. 

(6) and Eq. (16). Each edge of a triangle is equally 

partitioned into three parts to construct small triangles as 

shown in Fig. 3, and the small circle "  " in the figure 

represents the barycenter of the triangle element.  

 

c

kr
c

mr

 
 

Fig. 3. Nine-point subdivision of a triangle element, 

where the small circle "  " denotes the barycenter of the 

triangle element, "." denotes the barycenter of the sub-

triangle elements. 

 

Each triangle is divided into nine equal-sized sub-

triangles as shown in Fig. 3. The source integral of the 

patch can then be approximated by the nine sub-triangles 

with the same weights. Since these nine triangles have 

the same area, the integral can be written as: 
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By using similar process, the integral in MFIE can be 

written as: 
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where 𝐫′𝑘
𝑐  denotes the quadrature points shown as Fig. 3. 

The quadrature point of the field integral resides on the 

barycenter of the patch (triangle), so the quadrature point 

of the field integral will not coincide with the one of the 

source integral. Therefore, the value of the integrand will 

not become singular.  

 

III. NUMERICAL EXAMPLES 

A. Computation of radar cross section (RCS) 

Case 1: We consider the plane wave scattering of  

a PEC sphere with radius of 1m. We use the Mie series 

result as benchmark. The incident plane wave has 

frequency of 300MHz, φ inc=0°, θinc=90°, and vertical 

polarization. The surface current is computed using the 

nine-point numerical integration method. The bistatic 

RCS with VV polarization (vertical polarization excitation 

and vertical polarization reception) is computed with 

EFIE and MFIE respectively when the observation angle 

at φ=0° and θ∈ [0°, 180°]. In the computation, the 

current on the sphere is partitioned into 4527 unknowns.  

 

  
 (a)   (b) 
 

Fig. 4. The calculation on bistatic RCS: (a) bistatic RCS 

for PEC sphere solved by EFIE, and (b) bistatic RCS for 

PEC sphere solved by MFIE. 

 

From Fig. 4 (a) and Fig. 4 (b), we can see that the 

numerical results have a good agreement with the Mie 

series results [17, 18, 20]. We can also see that the 

proposed method works not only for the EFIE equation 

but also for the MFIE equation. 

Case 2: In order to further validate the efficiency of 

this method to other integral equation and structures, a 

dielectric sphere and a dielectric cube are computed with 

PMCHWT and FEM-BI equation, respectively.  
 

  
  (a) (b) 
 

Fig. 5. Bistatic RCS: (a) dielectric sphere solved by 

PMCHWT, and (b) dielectric cube solved by FEM-BI.     
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The dielectric sphere has r =2.5, radius = 1m, the 

number of unknowns after discretization is 6875. The 

dielectric cube has r =2.5, side length = 1m, the number 

of unknowns is 4440. The incident plane wave has the 

same parameters as Case 1. 

From Fig. 5 (a) and Fig. 5 (b), we can see that the 

numerical results agree well with the Mie series results.  

From the above two examples, we can see that this 

method can be applied to various integration equation and 

complex structures. 
 

B. Matrix setup time 

Using the parameters of Case 1, a comparison of 

matrix setup time between the nine-point numerical 

integration and the singularity extraction method is 

shown in Table 1.  
 

Table 1: Comparison of Matrix setup time 

Unknowns 

Matrix Setup Time (seconds) 

Nine-point Numerical 

Integration 

Singularity 

Extraction 

1197 10s 17s 

4527 2m20s 4m26s 

6993 5m45s 10m34s 

18297 46m30s 88m12s 

50886 367m20s 700m40s 

 

In Table 1, the previous four models are computed on 

a PC with Intel(R) Core(M) i5-4690K, CPU@3.5GHz/64, 

RAM 32G, and the last example is a server with Intel(R) 

Xeon(R) E7-8857v2@3.0GHz, 4 cores, RAM 1.5T.  

From Table 1, we can see that the barycentric 

subdivision method can save nearly half of the setup time 

compared with the singularity extraction method. 
 

IV. CONVERGENCE ANALYSIS  

A. Theory on the barycentric subdivision method 

In this section, we will study the convergence of 

numerical integration using the barycentric subdivision 

method. 
 

x

y

Singular point

Sub-barycentric 

point

 
                   (a)                                           (b) 
 

Fig. 6. Six sub-triangles around the singular point in a 

triangle element and vector in a sub-triangle. (a) The six 

small sub-triangles (the shaded area) around the singular 

point (barycenter of triangle), and (b) the vector for three 

vertices and quadrature point in a sub-triangle.  

The source integral becomes singular when its 

integration domain overlaps with the field integral. In this 

case, the source integrals over 6 small triangles around 

the barycenter "∘" in Fig. 6 (a) will have singularity at one 

of their corners, i.e. the barycenter"∘" of the triangle.  

We can analyze these singular integrals based on  

the Duffy transform. It transforms from the original 

barycenter coordinate system (ξ1,ξ2,ξ3) to a new 

coordinate (u,v), as shown Fig. 6 (b) below (here v1 is the 

vector of the singular point"∘"when the field point O is 

overlapped with v1): 
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here v1 is the vector of the singular point, ξ3=1-ξ1 –ξ2, 

then the singular integral for one sub-triangle can be 

transformed into: 
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where A denotes the area of one sub-triangle S. The 

integral on S is then converted to a 2-fold integral of u 

and v, respectively. Now we can define the function a(v): 

   

   

0 2 3 1

0 2 3 3 1

1a v k v v

k v

   

   

v v v

v v v v
.              (21) 

From Eq. (21), we can see a(v) is linear with the size of 

triangle, As the mesh of the target becomes denser, a(v) 

will be smaller, so the analytical expression ID of integral 

I for v is: 
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0
0

)(
1

0
aAkao

va

dv
Ak

vja

e

va
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 


, (22) 

where 𝑎(ζ ) is derived from the mean value theorem for 

definite integrals [19]. 

Since the Duffy transformation can eliminate the 

singularity when the field point overlaps with the singular 

point as shown in Fig. 6 (a), we can try to eliminate the 

singularity when the field point at the sub-barycentric 

point, and further compare these two integral value. The 

quadrature for the above integral on each sub-triangle 

samples the domain of integration at (ξ1,ξ2) =(1/3,1/3), 

namely (u,v)=(1/3,1/2) in the new coordinate, substituting 

the u=1/3, v=1/2 into Eq. (20), the numerical integration 

on the sub-barycentric point is: 

)2/1(/0 aAkIc  .                        (23) 

The numerical difference between 𝐼𝐷  (based on Duffy 

transform at the singular point) and 𝐼𝑐  (based on Duffy 

transform at the sub-barycentric point) is: 

 )2/1(/1)(/10 aaAkII cD   .            (24) 

This difference is only related to the area A. When 

the area A of triangle tends to zero, the numerical 

difference 𝐼𝐷 − 𝐼𝑐 will converge to zero as well. This can 

ensure that the error is only related to the mesh density, 
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and convergence of the integral has a good agreement 

with the traditional Duffy method. 

 

B. Convergence analysis based on numerical 

experiments  

To verify the convergence of the barycentric 

subdivision method, we compute the bistatic RCS for a 

PEC sphere with EFIE and MFIE, respectively.  

We compute the RCS with the nine-point method 

and traditional singularity extraction method (S-E) 

respectively. These two method are compared with Mie 

series results respectively. The results are shown in Fig. 

7. 
 

 
  (a)  (b) 

 

Fig. 7. Comparison of relative error in RCS. (a) EFIE and 

(b) MFIE. 

 

The relative error is defined as: 

)/-log(10 ie_ie__ mmcal RCSRCSRCSerror  ,    (25) 

and the mesh density is defined as: 


S

N
density mesh ,                     (26) 

where N denotes the numbers of unknowns, S denotes  

the surface area of the sphere, and   denotes the wave 

length of the incident wave. From Fig. 7, we can observe 

that the error decreases as the mesh density increases. 
 

C. Computation of integrals of 1/R 

To check the convergence, we also study the singular 

integration on a triangle as the below: 

dSdSRI
m ns s  



 ')/1( ,                    (27) 

where R denotes the distance between the source and 

field point.   

In Fig. 8, the size of the area zooms step by step, and 

the side length L declines by half every time. The value 

of integration for Eq. (27) is shown in Table 2. 

It can be seen from Table 2 that the results of the 

nine-point method agree well with those of the analytical 

method. Besides, the two methods diverge at the same 

time when the area of the triangle becomes too small due 

to the limited machine precision. In summary, this 

illustrates that our method is applicable to the cases 

where the mesh size is small enough. 

 

 
 

Fig. 8. The area of the triangle changes with L. 

 

Table 2: Comparison of integral value 

The Size of Area (L) 
The Value of Integral for 1/R 

The Nine-point Analytical 

1 4.218747139 5.132335663 

0.5 0.527344286 0.641542614 

0.25 6.59E-02 8.02E-02 

0.125 8.24E-03 1.00E-02 

0.125/2 1.03E-03 1.25E-03 

0.125/2/2 1.29E-04 1.57E-04 

0.125/2/2/2 1.61E-05 1.96E-05 

0.125/2/2/2/2 2.01E-06 2.45E-06 

0.125/2/2/2/2/2 2.51E-07 3.06E-07 

0.5/2/2/2/2/2/2/2/1000 2.17E-16 2.64E-16 

0.5/2/2/2/2/2/2/2/1000/2 NaN NaN 

 

 
 

Fig. 9. Convergence for 1/R  

 

The above integral is computed by both the  

nine-point integration and the analytical method [1], 

respectively. Figure 9 shows the values of I with respect 

to mesh density using the two methods. They agree well 

with each other.    

 

V. CONCLUSION 
In this study, we investigated the barycentric 

subdivision method. We studied the numerical 

convergence of this method for singular integration by 

both theoretical analysis and numerical examples. We 

observe that this method converges at the same level of 

accuracy as other method such as the singularity 

extraction. This method avoids the complex treatment of 

singular integrals and allows a uniform procedure for 

both singular and non-singular integrations in method of  

0 20 40 60 80
-30

-25

-20

-15

-10

-5

Mesh density

E
F

IE
 R

e
la

ti
v
e
 e

rr
o

r(
d

B
)

 

 
Nine-Point

S-E

0 20 40 60 80
-25

-20

-15

-10

-5

Mesh density

M
F

IE
 R

e
la

ti
v
e
 e

rr
o

r(
d

B
)

 

 
Nine-Point

S-E

10
-4

10
-2

10
0

10
-15

10
-10

10
-5

10
0

10
5

Area of triangle

In
te

g
ra

ti
o

n
 v

a
lu

e
 o

f 
1
/R

 

 
Nine-point

Analytical

XIANG, DANG, LI, YANG, XU: BARYCENTRIC SUBDIVISION METHOD FOR SINGULARITY INTEGRATION 255



 

 

moments. Numerical examples show that this method 

can reduce the matrix setup time by half. We hope this 

study could help us to further understand this method and 

extend its applications in solving 3D scattering problems 

using method of moments. 
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