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Abstract ─ This work presents the effect of material 

properties on three infrared nano antennas that are 

rectangular, bowtie, and elliptical-shaped designed to 

collect a maximum field in the gap between the two 

dipole arms over a frequency band of 28-29THz. The 

dipole shapes are comprised of conducting dipoles 

printed on a dielectric substrate. The bowtie is designed 

to be curved with an exponential shape, and itis found 

to collect a higher value of the electric field in the gap 

than do the other two shapes. The above antennas are 

investigated with different materials for the dipoles and 

the substrate to study the effect of material variation 

on the electric field collected in the dipole gap. Three 

different types of conducting materials, namely, gold, 

chromium, and titanium are used. It is found that the 

collected gap field intensity is directly proportional to the 

conductivity of the dipole material. The effect of three 

different types of substrates; quartz (GaAs), silicon, and 

SiO2 on the collected gap field is also investigated. 

Index Terms ─ Electric field, energy harvesting, infrared, 

nano-antenna. 

I. INTRODUCTION
Solar energy has recently been viewed as one of 

the most accessible sources of renewable energy [1], and 

it can be harvested by using antennas that operate at 

infrared or visible frequency bands [2]. Several infrared 

antennas with different geometrical shapes have been 

investigated in the literature including rectangular [3, 4]; 

circular [4] spiral; bowtie [5, 6, 7, and 8]; dipole [9, 10, 

and 11]; elliptical [12]; and Vivaldi [13].  

Optical antennas are currently being used for 

various medical applications such as breast cancer 

treatment [14]. To treat cancer, optical antennas are 

placed in contact with the malignant breast. The antenna 

is excited by a near infrared plane wave. The intense 

field in the antenna gap resulting from the excitation 

causes arises in the distribution of local temperature, 

which helps destroy the cancerous cells. Additionally, 

these antennas are also used as biological sensors [15].  

The infrared rectenna (antenna+rectifier) is 

comprised of a receiving antenna, designed for infrared 

frequencies, together with a rectifying diode, which 

converts the infrared waves into electric power. Optical 

and infrared rectennas are superior to the photovoltaic 

cells, whose conversion efficiencies are limited [7]. The 

rectennas use the natural energy of the sun (lights), and 

in contrast to the photovoltaic cells, their conversion 

efficiency can reach up to 100% [7]. Generally, the 

rectenna needs to be designed such that it harvests 

the maximum amount of energy from the impinging 

electromagnetic wave. In addition, good impedance 

match between the rectifier and the antenna is required 

[7] to achieve a maximum power transfer. Nano-

antennas should be optimized to realize the maximum

field intensity for the specific operating frequency.

Finally, the electromagnetic study and numerical

simulations of the nano-antennas designed with real and

special materials, dimensions, and substrate thickness is

actually a challenge. The simulation of nano-antennas

with thin substrate layers such as nanometers and

without substrate is already have been performed to

obtain the maximum field intensity at an operating

frequency. The objective of this paper is twofold; the

first one is to study the effect of the conducting material

of the nano-antennas based on the structures presented

in [21], in order to collect maximum energy at the

resonance frequency of 28.3 THz. The second is to study

the effect of the substrate material on maximizing the

electric field intensity across the antenna gap. Analysis

of the obtained simulated results shows that the using of
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the high conductor material, Gold, leads as to have the 

highest gap electric field intensity for any structure. The 

choice of the Quartz as a substrate for these nano-

antennas allow a better collection for the electric field in 

comparison with the most used substrate material; 

Silicon (Si) and Silicon oxide (SiO2). 

This paper is organized as follows: Section II 

describes the geometries of three proposed antennas in 

detail, using the Drude model to describe the conductors’ 

properties in terahertz frequency band. Following this, 

Section III presents the simulation results and discussions. 

 

II. ANTENNAS DESIGN 
The proposed IR nano-antennas were designed for 

harvesting of solar energy over the frequency range of 

28-29 THz. The three different antenna shapes presented 

in [21] are optimized to realize a maximum level of       

the electric field intensity at 28.3 THz. The antennas      

are printed on a dielectric substrate and placed on a 

conducting ground plane. The ground plane has a 

thickness of 0.2μm which may improve the antenna 

coupling of the substrate.  

Each of the three shapes are investigated to 

determine the effect of choosing the dipole shape as well 

as its material properties on the level of energy that is 

possible to collect in the gap. 
 

 
 

Fig. 1. The structure of the proposed dipole optical 

antenna: (a) rectangular, (b) bowtie, and (c) elliptical. 
 

First, we start to study a simple rectangular dipole di 

to its advantages related to its small dimension, low   

cost, light weight and its manufacturing feasibility. The 

proposed rectangular dipole antenna is shown in Fig. 1 

(a). We note that each rectangular arm has a length 

Ld=1.8µm, width of Wd=0.15µm, separation gap of Gd= 

Wmin=0.05µm and conductor thickness of 0.08µm. The 

dimension of the substrate is Ls1=3.8µm and Ws1=1.2 µm. 

Next, we studied a modified bowtie antenna. 

Usually the bowtie antenna consists of two triangularly 

shaped arms. However, here the two arms of the bowtie 

are designed to have a curved exponential shape, 

represented by (1), where V is the curvature coefficient, 

Wmax and Wmin are the maximum and the minimum 

widths of the tapered arm respectively, and B is given   

by (2). Figure 1 (b) shows the proposed curved bowtie 

nano-antenna. The conductor thickness is 0.1μm and its 

gap size is 0.05 μm. The geometrical parameters of this 

structure are Ws2=4 μm, Ls2=7μm, Wb=2.52μm, Lb=2.5μm, 

Wmin=Gb=0.05μm, Wmax=5.05µm, and V=0.8μm: 

 g(x) = B(eVx − e−Vx) +
Wmin

2
 , (1) 

 B =
Wmax−Wmin

2(eVWb
2

 − e−V)
 . (2) 

The third proposed shape is an elliptical dipole, 

whose conductor thickness is 0.1µm. As shown in Fig. 1 

(c) the dimensions of the structure for the elliptical 

dipole are Ls3=17µm, Ws3=4 µm, We=1.6µm, Le=8µm 

and the gap width is Ge=0.05 µm.  

All three dipoles were printed on a substrate that has 

an area of 3.8×0.2μm2 and thickness of 100µm. 

While the metal is considered as a perfect electric 

conductor at lower frequencies, e.g., RF. This is not the 

case at infrared frequencies in which it is plasmonic in 

nature [16] and is typically represented by the Drude 

model to describe the transport properties of electrons in 

materials [17]. The complex permittivity εc is given by: 

 εc = ε1 + iε2. (3) 

The Drude model of  εc is represented via the 

expression: 

 εc = ε∞ −
ωp1

2

ω2−iΓω
+

ωp2
2

ω0
2−ω2+iγω

 . (4) 

In (4), where ω0=
2𝜋𝑐

𝜆0
, and 𝜀∞ is the contribution of 

the bound electron to the permittivity,  𝛾 denotes the 

damping frequency, 𝜔𝑝 is the plasma frequency, 𝜔 

represents the angular frequency and 𝜔0 corresponds to 

the angular frequency. It is shown in [17] that expression 

in (4) agrees well with the experimentally measured 

dielectric properties of metal. Figures 2 (a) and (b)    

show that the variation of real and imaginary parts of 

permittivity for different metals, such as gold, copper, 

silver, chromium and titanium, still have good 

conductivity and low losses at the frequency range of 1 

to 30 THz. It can be seen that the electrical permittivity 

varies from one metal to another and it decreases as the 

frequency is increased.  
 

 
   (a) 
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 (b) 

 

Fig. 2. The variation of the real and imaginary parts of 

relative permittivity for various metals. 

 

Table 1: Real and imaginary part of relative permittivity 

at 28.3 THz 
Conductor 𝛆𝟏 𝛆𝟐 
Gold (Au)   
Copper (Cu)   
Silver (Ag)   
Chromium (Cr)   
Titanium (Ti)   

 

The three antennas mentioned above, are simulated 

by using the Computer Simulation Technology (CST) 

[18] program package, where the metal properties of the 

gold are calculated by using the Drude model and are 

inserted in the CST Microwave Studio. The imaginary 

part of the permittivity is associated with the ohmic 

losses, which should be as low as possible. Alternatively, 

we can maintain the ohmic losses to be low by choosing 

a metal that has a significant real negative part. Table 1 

lists the real and imaginary parts of the relative complex 

permittivity for five conductors of gold, copper, silver, 

chromium, and titanium.  

 

III. RESULTS AND DISCUSSIONS 

A. Effect of the conductor 

Gold, silver, aluminum and copper are the three 

widely used materials in optical applications [19]. Gold 

and copper have almost the same dielectric and 

conduction properties with similar responses to Drude   

at less than 2.1 eV, and the beginning of inter-band 

transitions occurring around 2.3 eV (530-550 nm). These 

two types of materials generally have a good conductivity 

in the infrared region, whereas Titanium has a low 

conductivity compared to other metals previously studied. 

In the terahertz frequency band, the conductivity of the 

metal is complex, given by: 

 σ = σ1 + iσ2, (5) 

where σ1and σ2 can be calculated by using the following 

equations: 

 σ1 = ε0ε2ω, (6) 

 σ2 = ε0(ε1 − 1)𝜔. (7) 

The conductivity of different metals is calculated at 

different frequencies by using the above expressions. 

Figures 3 (a) and (b) show the variations of the 

conductivities of different metals vs frequency. It is 

obvious that the conductivity of the metals reduces as we 

increase the frequency. Also, the real and imaginary 

values of the conductivity for gold are higher than those 

of other metals because gold is characterized by its high 

absorption of radiation at terahertz frequencies [7]. Silver 

and copper have conductivity values that are near – but 

less than – that of gold. This can be noticed in Table 2.  

Since the conductivity of titanium is the least among 

the selected metals, we can anticipate that the titanium 

antennas will collect less electric field than would the 

others. This can be seen from Figs. 4 (a), (b) and (c), 

which present the results for the three different dipole 

shapes.  

The gold is chosen for the rectangular, curved 

bowtie and elliptical dipole shaped antennas which 

realize field strengths of 350.75, 429.858, and 330.01 

V/m, respectively, at 28.35 THz. This choice is based   

on the results obtained from the simulation of these 

antennas and are shown in Fig. 3. A set of conductors are 

used for each dipole, instead of a single conductor for 

each arm. By combining gold with chromium, gold with 

titanium, and chromium with titanium. Figures 4 (d), (e), 

and (f) show the effect of the conductors on the collected 

electric field in the gap for the three different dipole 

shapes. It can be seen that the structures with the gold 

collect the higher electric field than the other structures. 
 

   
 (a) 
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 (b) 

 
Fig. 3. Variation of metal conductivity versus frequency 

band [0...50THz]. 

 
Table 2: Real and imaginary part of conductivity at 28.3 

THz [20] 

Conductor 

Type 
𝜎1 (S/m) 𝜎2 (S/m) 

Gold(Au) × 107 × 107

Copper (Cu) × 107 × 107

Silver (Ag) × 107 × 107

Chromium (Cr) × 107 × 107

Titanium (Ti) × 107 × 107

 

 
 (a) 

 
 (b) 

 
 (c) 

 
 (d)  
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 (e) 

 
 (f) 
 

Fig. 4. The effect of metal type on electric field variation 

versus frequency for (a,d): rectangular, (b,e): curvature 

bowtie, and (c,f): elliptical antenna. 
 

B. Effect of the substrate 

The choice of the dielectric material plays an 

important role in the design of antennas. The best 

strategy is obviously to choose a substrate that has a low 

loss. At infrared, the type of the substrate plays a very 

important role where we attempt to improve the electric 

field amplitude in the gap of the antenna structure. We 

have investigated three different substrates to see which 

one has the best performance. The three substrates are: 

Quartz (GaAs, εr = 3.75, silicon (Si, εr = 11.68, and 

silicon oxide (SiO2, εr = 4.71 at 28.3 THz). Figures 5 

(a) and (b) show variations of the real and imaginary 

parts of relative permittivity for the three different 

substrate materials versus frequency range of 28-29 THz. 

These three different substrates are used to evaluate    

their effect on the electric field captured in the gaps of 

the dipoles. The results are presented in Fig. 6, where   

we observe that the nano-antenna with quartz substrate 

achieved the highest gap electric field. The maximum 

field value obtained for the rectangular dipole antenna 

with the quartz substrate is at 353.743 V/m at 28.3 THz; 

for the bowtie dipole antenna, the maximum value is 

429.858 V/m at 28.37 THz; and for the elliptical dipole 

antenna, the maximum value of electric field reaches 

327.202 V/m at 28.35 THz. It should be noted that the 

substrate permittivity affects both the maximum value   

of the captured gap field and the resonance frequency. 

Additionally, we note, from Figs. 6 (a, b, c), that the 

quartz substrate allows for capturing a higher level of the 

field in the entire band. 

 

 
   (a) 

 
   (b) 

 

Fig. 5. Real and imaginary part of relative permittivity of 

studied substrates [20]. 
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  (a) 

 
  (b) 

 
  (c) 

 

Fig. 6. Effect of substrate type and thickness on electric 

field distribution for the different structures. 
 

We now compare the three different shapes of the 

studied dipole antennas. It is evident that the curved 

bowtie antenna has the highest value of the captured  

field at 28.3 THz, as compared to the dipole designs   

with elliptical and the rectangular shapes (See Fig. 7). 

Moreover, Table 3 summarizes the maximum field 

values realized by antennas with different metal types.   

It is evident that gold-based antennas provide the 

maximum electric field for rectangular, elliptical, and 

bowtie dipole shapes at 28.30, 28.32 and 28.33 THz, 

respectively. 
 

 
 

Fig. 7. Variation of electric field versus frequency for the 

optimum case of different dipole antenna shapes. 
 

Table 3: EMax at resonance frequencies for different 

conductor type 

Dipole 

Shape 

Type of 

Metal 

Resonant 

Frequency (THz) 

EMax 

(V/m) 

Rectangular 

Au  

Cr  

Ti  

(Au,Cr)  

Bowtie 

Au  

Cr  

Ti  

(Au,Cr)  

Elliptical 

Au  

Cr  

Ti  

(Au,Cr)  

 

IV. CONCLUSION 
In this paper, a set of Ultra-Wideband optical nano-

antennas operating in the infrared region were proposed 

and optimized to collect the maximum energy. A 

combination of three different dipole shapes, three 

different metals and three types of substrates were 

investigated. It was shown that using goldas a conductor 

achieved the highest gap electric field intensity for any 
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dipole/substrate combination, and so did quartz for any 

dipole/conductor combination.This is due to gold having 

the highest conductivity and quartz having the lowest 

loss. We propose a future similar investigative study 

where a metal-insulator-metal (MIM) diode with a thin 

insulator layer of Al2O3 inserted in the antenna gap. 
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