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Abstract ─ An efficient Radar Cross Section (RCS) 

gradient evaluation method based on the adjoint method 

is presented. The Method of Moments is employed to 

solve the Combined Field Integral Equation (CFIE) and 

the corresponding derivatives computing routines are 

generated by the program transformation Automatic 

Differentiation (AD) technique. The differential code is 

developed using three kinds of AD mode: tangent mode, 

multidirectional tangent mode, and adjoint mode. The 

differential code in adjoint mode is modified and 

optimized by changing the “two-sweeps” architecture into 

the “inner-loop two-sweeps” architecture. Their efficiency 

and memory consumption are tested and the differential 

code using modified adjoint mode demonstrates the great 

advantages in both efficiency and memory consumption. 

A gradient-based shape optimization design method is 

established using the adjoint method and the mechanism 

of RCS reduction is studied. The results show that the 

sharp leading can avoid the specular back-scattering and 

the undulations of the surface could change the phases 

which result in a further RCS reduction. 

 

Index Terms ─ Adjoint method, automatic differentiation, 

method of moments, sensitivity, shape optimization. 
 

I. INTRODUCTION 
During the last decades, the shape optimization 

design method has been widely applied to the aircraft 

design. The scattering response of an object depends on 

its geometry and materials, as well as the incoming wave 

characteristics (frequency and polarization). In general, 

a large number of design variables are required for the 

shape optimization design due to the fact that the shape 

of the aircraft is complicated [1]. Using the gradient-based 

optimization algorithms to deal with this optimization 

problem is a better choice since they usually converge 

quickly to a local optimum, regardless of the number of 

design variables. These algorithms require the gradient 

of the objective function, therefore the design sensitivity 

analysis is a vital step in the gradient-based shape 

optimization. 

The adjoint method can obtain the sensitivities  

with respect to all design variables by solving the adjoint 

equation once. Due to this advantage, the adjoint method 

has been developed for Computational Electromagnetics 

(CEM) techniques, such as the Method of Moments 

(MoM) [2]-[5], the multilevel fast multipole algorithm 

(MLFMA) [6], the finite element method [7]-[8], the 

finite-difference time-domain (FDTD) method[9]-[10], 

and the transmission line method (TLM) [11]-[12]. Also, 

it’s has been applied to the multidisciplinary optimization 

design, e.g., the aero-stealth coupled optimization design 

[1],[13].  

The drawback of the adjoint method for the MoM is 

that the derivatives of the impedance matrix need to be 

differentiated which might be a complicated task. The 

derivatives of the impedance matrix can be computed 

analytically [14]-[16] or obtained by the finite difference 

method [2]. In [4], the Broyden update of the impedance 

matrix is used to estimate these derivatives. But in [17], 

the authors point out that in MoM discretization, the 

matrix elements can depend on the nodal coordinates of 

the mesh in a very complicated manner. With very few 

exceptions, straightforward analytical differentiation of 

the matrix elements may not be feasible. Moreover, it 

would require complete reprogramming of the existing 

codes, which is an insurmountable complication for most 

researchers and code developers.  

An alternative way is computing the derivatives 

with the help of the automatic differentiation (AD) 

technique [18]-[19]. Using the AD tools to develop code 

is much more efficient and time-saving, and is suitable 

for dealing with these error-prone tasks. Toivanen et al. 

[18] demonstrate how sensitivity analysis can be 

incorporated into an existing in-house MoM solver with 

a relatively small amount of labor by using the automatic 

differentiation technique. 

In this paper, an RCS gradient calculation approach 

based on the adjoint approach of Maxwell's integral 

equation is presented. The MoM solver is employed  

in the solution of the scattering problem. We adopt a 

parallel LU factorization driver routine of ScaLAPACK 

[20] to solve the Combined Field Integral Equation 

(CFIE). Both the current coefficient and the adjoint 
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coefficient would be obtained by factorizing the matrix 

once. The program transformation AD tool Tapenade 

[21] is applied to analyze the functions and subroutines 

of the MoM and generate the corresponding differential 

code. As for the derivatives of the impedance matrix 

computing routine, we develop the code in three different 

AD modes: tangent mode, multidirectional tangent 

mode, and adjoint mode. And then their accuracy, 

efficiency, and memory consumption are tested. After 

that, a gradient-based shape optimization design method 

is established by coupling the MoM, the adjoint method, 

the Free-Form Deformation approach (FFD)[22], and  

the Sequential Quadratic Programming algorithm (SQP) 

[23]. Finally, we apply this method to optimize an almond 

geometry and study the mechanism of RCS reduction. 

The main objective, and the novel nontrivial 

contribution, of this paper, is that we modify and optimize 

the adjoint AD code and make it more efficient and less 

consumed by changing the “two-sweeps” architecture 

into an “inner-loop two-sweeps” architecture. 

This paper is organized as follows. In Section II,  

the discrete adjoint equation of the integral form of  

the Maxwell equation based on the MoM is derived. In 

Section III, the derivative computing routines developed 

in three AD modes are presented, and the “inner-loop 

two-sweeps” architecture of the adjoint AD mode is 

discussed. Next, the flow chart of the gradient-based 

shape optimization design method and the numerical 

methods employed in the optimization framework are 

described in Section IV. After that, in Section V, the 

accuracy of the gradient is validated using the finite 

difference method. Besides, the CPU time and the 

memory consumption of three AD modes are tested.  

The benchmark geometry almond is optimized using the 

method described in this paper and the mechanism of 

RCS reduction is studied. Finally, the conclusions are 

summarized in Section VI. 
 

II. ADJOINT METHOD 
Consider a three-dimensional scattering problem 

where the Radar Cross Section (RCS) is defined by: 
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where Es and Ei are the scattered and incident electric 

field at the distance R. The scattered electric field is 

given by: 
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where  refers to the wave impedance and k means the 

wavenumber. And G means the Green’s function. Only 

the surface current J is unknown. The Rao–Wilton–

Glisson (RWG) [24] basis function is adopted to 

discretize the surface current and then it could be 

expanded into a sum of N weighted basis function as 

shown in Eq. (3): 
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where I is the current coefficient and  
n

f r  denotes the 

basis function. According to the Method of Moments, the 

solution of the CFIE with the Galerkin method leads to 

the solution of the linear system: 

 ZI V , (4) 

where Z is the impedance matrix, and V is the excitation 

vector. In this paper, the parallel LU factorization driver 

routine of ScaLAPACK[20] is applied to solve the linear 

system. When the parameters of the incident wave 

including frequency, direction, and polarization mode 

are given, the scattered electric field and RCS only 

depend on the target surface and the induced current. The 

derivative of the scattered electric field is given by: 
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where X means the nodal coordinates of the target mesh. 

This derivative is also called the surface sensitivity, 

which represents the sensitivity of the scattered electric 

field to changes in the surface geometry. It would be of 

particular use for retrofitting the device on an existing 

object geometry where a whole new design is not 

feasible. Assume that the residual of the matrix equation 

is equal to zero: 

 0  R ZI V . (6) 

The shape derivatives of the residual depend on the 

geometry surface and the surface current solution, that is: 
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It is intensely inefficient to calculate the term dI/dX 

directly since that would require a mass of the MoM 

evaluations. Therefore we rewrite Eq. (7) as: 
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Replacing the term dI/dX in Eq. (5) and we obtain: 
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And the adjoint variable vector ψ  is defined as: 

 

s

1

T


  

    I
ψ

E R

I
. (10) 

According to Eq. (6), the derivative of residual with 

respect to the surface current coefficient is just the 

impedance matrix: 
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Thus, the adjoint equation is written as: 
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We do not need to solve the adjoint equation 
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anymore since the matrix Z has been already factorized 

into upper and lower triangular matrices for the scattering 

problem. Finally, the surface sensitivity of RCS could be 

computed by: 

 

s s
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The Free-Form Deformation (FFD) approach [22] is 

adopted to parameterize the geometry and manipulate 

the mesh. It’s more efficient to change the shape through 

the FFD volume than to modify the surface mesh 

directly. The surface mesh of the object is embedded 

inside the FFD volume, and all changes of the surface 

mesh are performed on the outer boundary of the FFD 

volume. Any modification of the boundary of FFD 

volume can be applied to indirectly modify the 

embedded surface mesh. The displacements of the FFD 

control points are selected as the design variables x. And 

then the gradient required from the gradient-based 

optimization algorithm is easily obtained: 

 

d d d

d d d
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X
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. (14) 

The code can be developed with /d d X  (geometry 

nodal derivatives) or /d d x  (control point derivatives). 

If the surface sensitivity analysis is required, the code 

must be developed with /d d x . And then the gradient 

of the cost function is obtained by multiplying the 

surface sensitivity with /d dX x . When using the AD 

tools to differentiate the code in tangent mode, it’s 

suitable to develop the code with /d d x  directly:  
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When the code is differentiated in adjoint mode, we 

can develop the code with either /d d X  or /d d x . 

The differences between the tangent mode and the 

adjoint mode of the AD technique would be discussed in 

the next section. 

 

III. AUTOMATIC DIFFERENTIATION 

TECHNIQUE 
Automatic Differentiation technique is developed to 

differentiate computer programs exactly without large 

user intervention. It’s more efficient and time-saving  

to apply AD tools to obtain analytical derivatives of 

differentiable functions, in the case where these 

functions are provided in the form of a computer 

program. There are two principal ways to code the 

algorithm program, namely, operator overloading  

and program transformation. We choose the program 

transformation approach since it allows the tool to  

apply some global analysis on the program, such as the 

data-flow, to produce more efficient differentiated  

code. Tapenade [21] is an AD tool using the program 

transformation which, given a Fortran or C code that 

computes a function, creates a new code that computes  

its tangent or adjoint derivatives. 

There are two basic modes of operation for program 

differentiation: tangent mode and adjoint mode. The 

tangent mode propagates the sensitivity at the same  

time as the solution is being computed. The derivative 

Jacobian is computed column by column, as shown in 

Fig. 1. Tapenade also provides an advanced tangent 

mode, called the multidirectional tangent mode. This 

mode calculates the derivative Jacobian multicolumn  

by multicolumn. On the contrary, the adjoint mode 

calculates the Jacobian row by row so that it is extremely 

efficient to compute the gradient of a function with 

respect to a large number of design variables. 
 

 
 

Fig. 1. Elements of the Jacobian computable by tangent 

mode and adjoint mode. 

 

The crucial task of our work is the computation of 

residual derivative shown in Eq. (16): 
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where I  refers to the current coefficient obtained from 

the scattering problem. Both of the vectors X and R have 

a large dimension so that it’s extremely time-consuming 

to calculate the term / R X  no matter whether using  

the tangent mode or the adjoint mode. A feasible way  

to improve efficiency is computing the term / R x

directly instead of / R X  due to the fact that the 

number of design variables is much smaller than the 

number of coordinate points: 

 

d

d

   
  

   

R R X ZI V

x X x x x
. (17)  

The finite difference method is a popular way to 

compute derivatives Jacobian since it requires a small 

amount of code modification. However, the step size has 

a great influence on the accuracy of the finite difference 

method. Large step size causes truncation error whereas 

too small a step size may lead to cancellation error. Also, 

we find that the appropriate step size changes with  

the geometric parameterization method, object shape, 

electromagnetic frequency, and incidence angle. In this 

section, we discuss the application of AD to a specific 

in-house MoM solver. 

 

A. Parallel matrix filling algorithm 

Before applying the AD tool to differentiate the  
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code, we should introduce the parallel matrix filling 

algorithm used in this paper. The pseudo-code of the 

serial matrix filling algorithm [25] is given in Fig. 5, 

where NT denotes the number of triangles. First of all, the 

coordinates of the target surface are updated through the 

FFD approach according to the design variables. Next, 

the serial matrix filling algorithm loops over the field 

triangles and source triangles, and then performs the 

integral on each triangle pair, followed by the inner loops 

over the edges of the triangles. Some computational 

routines marked in gray show the route of information 

transfer from the design variables to the impedance 

matrix. The AD tool would analyze these routines and 

generate the corresponding derivative computational 

routines according to the chain rule. 

Figure 6 depicts the pseudo-code scheme of the 

parallel matrix filling algorithm [25]. The modifications 

and improvements of the parallel matrix filling algorithm 

are marked in gray. In the parallel matrix filling algorithm, 

only a portion of the matrix is placed on each process 

after the computation thus the memory required for each 

process is reduced. The integral routine “interactions(p, 

q, X)” (line 4 in Fig. 5), which compute the interactions 

between the triangle pair (p, q), is moved inside the 

innermost loop over the edge of a source patch (line  

15 in Fig. 6). This modification avoids the redundant 

computations that all the processes calculate all the 

integrals between a pair of the source and the field 

triangles. To further reduce the redundancy, some 

computations of the intermediate data needed in the 

integration, such as the triangle area and the normal 

vector, are picked out and moved out of the innermost 

loop (line 9 in Fig. 6). In Fig. 6, v denotes the intermediate 

data. The entire procedure of the parallel matrix filling 

algorithm is now described. 

The coordinates of the surface mesh are computed 

by the FFD approach, and then the code loops over all 

the field triangles, the source triangles, the edges on a 

certain field triangle, and the edges on a certain source 

triangle. In order to reduce the redundancy in the 

calculation of the integral, only the process that 

corresponds to the mth row and the nth column will 

calculate the integral over the surfaces of the triangle pair 

(line 7 to line 21 in Fig. 6). The corresponding processes 

that are about to calculate the mth row and the nth 

column of the matrix are picked up according to the  

two-dimensional block-cyclic decomposition [26] data 

distribution required by ScaLAPACK (line 7 and line 12 

in Fig. 6). The 4 steps involved in using ScaLapack are 

now described. 

Step 1. Create a Logical Process Grid. 

Assume that the MoM solver is running on 6 

processes with a 2 × 3 array of process grid layout shown 

in Fig. 2. The subscript of the symbol P represents the  

process number. 
 

 0 1 2 

0 P0 P1 P2 

1 P3 P4 P5 

 

Fig. 2. The 2 × 3 array of process grid layout. 

 

We could use the routine “Cblacs_gridinit” to set  

up and initialize a process grid and run the routine 

“Cblacs_gridinfo” to obtain the process grid information 

of the current process. 

Step 2. Distribute Matrices and Vectors on the 

Process Grid. 

In this significant step, the matrics and vectors  

are distributed to each process according to the two-

dimensional block-cyclic decomposition. The impedance 

matrix Z is partitioned into MB by NB blocks, and the 

recommended block sizes are 32 × 32 or 64 × 64. An 

illustration is shown in Fig. 3. The first 3 blocks in the 

top block row are mapped to the top row of the process 

grid in order, the next 3 blocks in the top row are also 

mapped to these same processes, and so on. Similarly, 

the second block row is mapped to the second grid row. 

When the 3rd row is reached, the mapping returns back 

to the first grid row. This mapping method leads to a two-

dimensional block-cyclic decomposition shown in Fig. 4. 

 

 
 
Fig. 3. An example of the block matrix construction. 

 

Each process holds a local matrix with several non-

contiguous portions of the global matrix. For instance, 

the process P1 marked in yellow holds blocks from block 

rows 1,3,5,7 and block columns 2 and 5, while the 

process P3 marked in green holds blocks from block 

rows 2, 4, 6 and block columns 1, 4, and 7. We could call 

the ScaLAPACK routine “descinit” to create a descriptor 

for this block matrix. After completing the matrix 

distribution, we can proceed to the next step. 

 

Z 11 Z 12 Z 13 Z 14 Z 15 Z 16 Z 17

Z 21 Z 22 Z 23 Z 24 Z 25 Z 26 Z 27

Z 31 Z 32 Z 33 Z 34 Z 35 Z 36 Z 37

Z 41 Z 42 Z 43 Z 44 Z 45 Z 46 Z 47

Z 51 Z 52 Z 53 Z 54 Z 55 Z 56 Z 57

Z 61 Z 62 Z 63 Z 64 Z 65 Z 66 Z 67

Z 71 Z 72 Z 73 Z 74 Z 75 Z 76 Z 77
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Fig. 4. An example of the two-dimensional block-cyclic 

decomposition. 

 

Step 3. Call the LU Factorization Routine. 

In this step, we call the ScaLAPACK routine 

“pzgesv” to solve the matrix equation. And then, the 

impedance matrix Z is replaced by the LU triangular 

matrix after the factorization, and the excitation vector  

V is replaced by the current coefficient vector. 

Step 4. Release the Process Grid.  

Two routines are used after finishing the calculation. 

A particular process grid is released with the routine 

“Cblacs_gridexit”, and after all the computations are 

finished, the routine “Cblacs_exit” should be called. 

 

B. Tangent AD 

In general, the dimension of residual is far larger 

than the number of design variables so that it’s advisable 

to code the program using tangent mode. Most of the 

CPU time is spent on computing the term / ZI x  since 

the impedance matrix is a large dimension dense matrix. 

The corresponding pseudo-code scheme of the derivatives 

matrix filling algorithm generated by Tapenade using 

tangent mode is shown in Fig. 7. Some additional 

routines added by Tapenade are marked in gray. It has an 

extra loop that loops over the design variables. In the  

ith cycle, the derivatives of all dependent variables with 

respect to the ith design variable are calculated. The 

variable with suffix “_d” represents the derivative of the 

corresponding variable with respect to the ith design 

variable and is calculated by the corresponding tangent 

routines which are suffixed with “_d”. These routines  

are usually executed before the corresponding regular 

routines. Of particular note that it is unnecessary to 

compute the coordinates of triangles (line 4 in Fig. 7)  

in order to reduce the redundancy. We list it here just  

for the sake of program integrity. The vector x_d has  

the same dimension as the design variables and the ith 

element is set to 1 while the others are set to 0. The vector 

X_d means dX/dxi and the matrix Z_d refers to 
i

/ x Z . 

 

C. Multidirectional tangent AD 

Although the derivatives calculation accuracy of 

tangent AD is higher than that of the finite difference 

method, there is a shortcoming that reduces its 

efficiency. As can be seen from Fig. 7, there are masses 

of redundant calculations at each outermost loop, such as 

the computations of intermediate data v. It should be 

noted that the subroutines, “temporary(p, q, X)” and 

“interactions(p, q, X, v)”, actually contain plenty of 

calculations and intermediate variables. Hence, it is 

unrealistic to store all of the intermediate variables in 

memory. One way to improve efficiency is by using the 

multidirectional tangent mode provided by Tapenade. 

The pseudo-code of the parallel derivative matrix filling 

algorithm using multidirectional tangent mode is shown 

in Fig. 8. Some improvements are explained as follows. 

The integer variable Nout means the number of outer 

loops and is given by: 

 
ceiling( / ), [1, ]out DV col col DVN N n n N  , (18) 

where ncol indicates how many columns (see Fig. 1) are 

calculated in one AD multidirectional tangent calculation. 

The function “ceiling(x)” returns the least integer greater 

than or equal to x. In the AD multidirectional tangent 

mode, it loops over the Nout instead of the number of 

design variables NDV. The larger ncol we set, the less 

redundant calculations it requires. If ncol equates to the 

NDV, the Jacobian / ZI x  would be obtained by looping 

once. If ncol is set to 1, it would be the same as the 

ordinary tangent mode. Upon most occasions, the ncol 

might not be a factor of NDV so that we define a new 

parameter ndv which depicts the actual number of columns 

calculated for one particular run. This parameter is 

calculated by: 

 

, if

( 1) , if

col col DV

dv

DV col col DV

n i n N
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The code has to compute the starting index is and 

ending index ie at the beginning of each outermost cycle 

(line 2 in Fig. 8). These two indexes indicate that from 

the isth to the ieth columns of the Jacobian / ZI x  

would be computed in this loop. These indexes are 

calculated through Eq. (20): 

 

( 1) 1cols

e col

i

i

i
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
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. (20) 

And then we could set some elements of x_dv to 1 (line 

3 in Fig. 8) according to the starting and ending indexes. 

Matrix x_dv is an NDV×ndv matrix described in (21): 
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Z 11 Z 14 Z 17 Z 12 Z 15 Z 13 Z 16

Z 31 Z 34 Z 37 Z 32 Z 35 Z 33 Z 36

Z 51 Z 54 Z 57 Z 52 Z 55 Z 53 Z 56

Z 71 Z 74 Z 77 Z 72 Z 75 Z 73 Z 76

Z 21 Z 24 Z 27 Z 22 Z 25 Z 23 Z 26

Z 41 Z 44 Z 47 Z 42 Z 45 Z 43 Z 46

Z 61 Z 64 Z 67 Z 62 Z 65 Z 63 Z 66

0

0 1 2

1
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The multidirectional variables with the suffix “_dv” (in 

Fig. 8) can be seen as a collection of the multiple 

corresponding variables with the suffix “_d” (in Fig. 7). 

For instance, 

 
     1

, , ,s s ei i i   v_dv v_d v_d v_d . (22) 

The element  siv_d  is equal to the v_d computed in the 

isth loop in Fig. 7. The data storage form of these 

variables depends on the user. Similarly,  

 
     1

, , ,s s ei i i   X_dv X_d X_d X_d , (23) 

 
     1

, , ,s s ei i i   Z_dv Z_d Z_d Z_d . (24) 

In every outermost cycle of the AD multidirectional 

tangent mode, the matrix Z_dv needs to be filled and 

stored, whose memory requirement is ndv times larger 

than the impedance matrix. Unfortunately, we can’t 

avoid storing the whole matrix Z_dv before the matrix-

vector product due to the fact that the matrix is filled by 

looping triangle-to-triangle, rather than edge-to-edge. In 

brief, the multidirectional tangent mode is faster than  

the tangent mode by setting a large value of ncol, but it 

requires more memory space. 

 

D. Adjoint AD 

Both the tangent mode and multidirectional tangent 

mode are dependent on the number of design variables. 

They are inefficient if there are hundreds or thousands of 

design variables. On the contrary, the adjoint mode is 

independent of the number of design variables. However, 

it’s impractical to compute / ZI x  directly using the 

adjoint mode. The Jacobian matrix / ZI x  has a large 

number of rows but the adjoint mode could only obtain a 

single row for one particular run. In order to deal with this 

problem, we rewrite the sensitivity of RCS Eq. (13) as: 

 

Ts

s s

T
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d dd d

d dd d
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ψ ψ

E ZI V

E X E XX E X
. (25) 

Instead of computing / ZI X  alone, we compute 

the term    T

s/ /d d    E ZI Xψ  together. Thus, we 

define a new function: 

 s

T( , )
d

F
d


X

E
ψZ ZI . (26) 

The surface current coefficient is a constant vector, 

and the adjoint field does not depend directly on the 

design variables. Although the term 
s/d d E  depends 

on X actually, we assume that it has been computed and 

is regarded as a constant as well. Thus, the major 

calculation of this function is the matrix filling. Take the 

partial derivatives of F and we obtain: 

 s

TF d

d

 


 

ZI

X E
ψ

X
, (27) 

 s

TF d

d




Z E
ψ I . (28) 

And then the routine that computing this function F(Z,X) 

is analyzed by Tapenade using the adjoint mode. The 

mesh coordinates X are set as the inputs while F is set  

as the outputs when differentiating the code using 

Tapenade. As shown in Fig. 9, the pseudo-code depicts 

the procedure of derivatives evaluation and the vector 

/F X  would be obtained for a single adjoint AD run. 

The last term of Eq. (25) is also computed in the same way. 

The Tapenade adopts the store-all strategy [21]  

to differentiate the code when using the adjoint mode.  

In this strategy, the intermediate values are saved just 

before a statement, which leads to a “two-sweeps” 

architecture for the control-flow reversal. As shown in 

Fig. 9, these two sweeps are separated by a dotted line. 

The first sweep is called the forward sweep and is 

basically a copy of matrix filling (shown in Fig. 7), 

augmented with a recording of the control. This recorded 

control would be used by the second sweep, called the 

backward sweep, to orchestrate control-flow reversal. 

The intermediate data (v1 and v2) that would be used by 

the backward sweep to evaluate the elements of the 

derivatives Jacobian is also recorded. The natural way to 

record is to use a stack that grows during the forward 

sweep and shrinks during the backward sweep. Of 

particular note that the subroutine “interactions’(p, q, X, 

v1)” (line 19 in Fig. 9) is the simplification of the original 

integral subroutine “interactions(p, q, X, v1)” (line 15 in 

Fig. 6). The simplified subroutine only calculates the 

intermediate data used for the integral on the triangle, not 

the matrix elements. 

The Tapenade uses the PUSH and POP primitives 

for stack manipulations and applies the global data- 

flow analysis To-Be-Recorded (TBR) [21] to reduce 

significantly the number of intermediate values that need 

to be stored on that tape. In Fig. 9, the variables with 

suffix “_b” represent the derivatives of the F with respect 

to the corresponding variables. For instance, X_b means

/F X . The corresponding backward sweep subroutines 

are suffixed by “_b”. The PUSH/POP subroutines 

provided by Tapenade are used to record the 

intermediate values whereas the PUSHCONTROL and 

POPCONTROL subroutines are called for the control-

flow recording. These PUSH and POP primitives are 

marked in gray in Fig. 9. The vector /F X  could be 

obtained by running these two sweeps once which shows 

the great merit of the adjoint mode. However, there is 

still a serious problem that affects its application. As we 

mentioned above, the forward sweep is basically a copy 

of the matrix filling augmented with the data recording. 

Assume that the number of unknowns is N, the regular 

matrix filling routine only needs to store an N×N 

complex matrix in total. But for the forward sweep, if 

computing each element of Jacobian requires to store n 

intermediate values, it will push at least n×N×N data into 

the stack. The memory cost is unacceptable even though 

it would not compute and store the elements of the  
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impedance matrix.  

In order to address this problem, we propose an 

“inner-loop two-sweeps” architecture for the adjoint 

mode. Note that the computation of each element of the 

impedance matrix or Jacobian is independent. Therefore 

the backward sweep routine could be executed straight 

after the corresponding forward sweep is done in an inner 

cycle. In other words, we could change the “two-sweeps”  

architecture into the “inner-loop two-sweeps” architecture. 

The modified adjoint AD pseudo-code using the “inner-

loop two-sweeps” architecture is depicted in Fig. 10. These 

modifications can only be done by hand. The manual 

programming work depends on the architecture of the 

existing codes. If the framework of the existing codes is 

clear and modularized, the complete reprogramming 

work could be done within a couple of days. 

 

1. X = FFD(x) ! compute the coordinates of triangles 
2. Do p = 1, NT ! loop over the field (testing) triangles 
3.   Do q = 1, NT ! loop over the source triangles 
4.     dZ = interactions(p, q, X) ! calculate integral on the triangle pair (p, q) 
5.     Do ii = 1, 3 ! loop over edges of the field triangle 
6.       mm = edge_num(p, ii) ! compute the global index of the iith edge of the pth field triangle 
7.       If (mm .NE. 0) then ! the mmth edge is a valid common edge 
8.         Do jj = 1, 3 ! loop over edges of the source triangle 
9.           nn = edge_num(q, jj) ! compute the global index of the jjth edge of the qth source triangle 
10.           If (nn .NE. 0) then ! the nnth edge is a valid common edge 
11.             Z(mm, nn) += dZ(mm, nn) ! add into the impedance matrix 
12.           Endif  
13.         Enddo ! end loop over edges of the source triangle 
14.       Endif  
15.     Enddo ! end loop over edges of the field triangle 
16.   Enddo ! end loop over the source triangles 
17. Enddo ! end loop over the field (testing) triangles 

 
Fig. 5. The serial matrix filling algorithm. 

 
1. X = FFD(x) ! compute the coordinates of triangles 
2. Do p = 1, NT ! loop over the field (testing) triangles 
3.   Do q = 1, NT ! loop over the source triangles 
4.     flag = 0 ! initialize the flag of whether do integration 
5.     Do ii = 1, 3 ! loop over edges of the field triangle 
6.       m = edge_num(p, ii) ! compute the global index of the iith edge of the pth field triangle 
7.       If (m .NE. 0 .and. m is on this process) then ! the mth edge is valid and on this process 
8.         mm = local_index(m) ! get the local index of the global index m 
9.         v = temporary(p, q, X) ! compute the intermediate data needed in the integration 
10.         Do jj = 1, 3 ! loop over edges of the source triangle 
11.           n = edge_num(q, jj) ! compute the global index of the jjth edge of the qth source triangle 
12.           If (n .NE. 0 .and. n is on this process) then ! the nth edge is valid and on this process 
13.             nn = local_index(n) ! get the local index of the global index n 
14.             If (flag == 0) then  
15.               dZ = interactions(p, q, X, v) ! calculate integral on the triangle pair (p, q) 
16.               flag = 1 ! set flag that the integration has been done 
17.             Endif  
18.             Z(mm, nn) += dZ(mm, nn) ! add into the impedance matrix 
19.           Endif  
20.         Enddo ! end loop over edges of the source triangle 
21.       Endif  
22.     Enddo ! end loop over edges of the field triangle 
23.   Enddo ! end loop over the source triangles 
24. Enddo ! end loop over the field (testing) triangles 

 
Fig. 6. The parallel matrix filling algorithm. 
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1. Do i = 1, NDV ! loop over the design variables 
2.   x_d = [0,…,0,1,0,…,0]

T 
! set the ith element to 1 and the others to 0 

3.   X_d = FFD_d(x, x_d) ! compute dX/dxi 
4.   X = FFD(x) ! compute the coordinates of triangles 
5.   Do p = 1, NT ! loop over the field (testing) triangles 
6.     Do q = 1, NT ! loop over the source triangles 
7.       flag = 0 ! initialize the flag of whether do integration 
8.       Do ii = 1,3 ! loop over edges of the field triangle 
9.         m = edge_num(p, ii) ! compute the global index of the iith edge of the pth field triangle 
10.         If (m .NE.0 .and. m is on this process) then ! the mth edge is valid and on this process 
11.           mm = local_index(m) ! get the local index of the global index m 
12.           v_d = temporary_d(p, q, X, X_d) ! compute the derivatives of the intermediate data 

13.           v = temporary(p, q, X) ! compute the intermediate data needed in the integration 
14.           Do jj = 1, 3 ! loop over edges of the source triangle 
15.             n = edge_num(q, jj) ! compute the global index of the jjth edge of the qth source triangle 
16.             If (n .NE. 0 .and. n is on this process) then ! the nth edge is valid and on this process 
17.               nn = local_index(n) ! get the local index of the global index n 
18.               If (flag == 0) then  

19.                 dZ_d = interactions_d(p,q,X, X_d, v, v_d) ! calculate the derivatives matrix elements 

20.                 flag = 1 ! set flag that the integration has been done 
21.               Endif  
22.               Z_d(mm, nn) += dZ_d(mm, nn) ! add into the derivatives matrix 
23.             Endif  
24.           Enddo ! end loop over edges of the source triangle 
25.         Endif  
26.       Enddo ! end loop over edges of the field triangle 
27.     Enddo ! end loop over the source triangles 
28.   Enddo ! end loop over the field (testing) triangles 

29.   ZI_d(:, i) = multiplications(Z_d, I) !compute
i/ x ZI and release the memory of Z_d 

30. Enddo !end loop over design variables 

 

Fig. 7. The parallel derivative matrix filling algorithm using the tangent mode. 

 

1. Do i = 1, Nout ! loop over the outermost loops 
2.   compute_index(i, is, ie, ndv) ! compute the starting and ending indexes 

3.   x_dv = set_ones(is, ie)
 

! set some elements to 1 and others to 0 

4.   X_dv = FFD_dv(x, x_dv, ndv) ! compute the derivatives of the coordinates 
5.   X = FFD(x) ! compute the coordinates of triangles 
6.   Do p = 1, NT ! loop over the field (testing) triangles 
7.     Do q = 1, NT ! loop over the source triangles 
8.       flag = 0 ! initialize the flag of whether do integration 
9.       Do ii = 1, 3 ! loop over edges of the field triangle 
10.         m = edge_num(p, ii) ! compute the global index of the iith edge of the pth field triangle 
11.         If (m .NE. 0 .and. m is on this process) then ! the mth edge is valid and on this process 
12.           mm = local_index(m) ! get the local index of the global index m 
13.           v_dv  = temporary_dv(p, q, X, X_dv, ndv) ! compute the derivatives of the intermediate data 

14.           v = temporary(p, q, X) ! compute the intermediate data needed in the integration 
15.           Do jj = 1, 3 ! loop over edges of the source triangle 
16.             n = edge_num(q, jj) ! compute the global index of the jjth edge of the qth source triangle 
17.             If (n .NE. 0 .and. n is on this process) then ! the nth edge is valid and on this process 
18.               nn = local_index(n) ! get the local index of the global index n 
19.               If (flag == 0) then  
20.                 dZ_dv =interactions_dv(p, q, X, X_dv, v, v_dv, ndv) ! calculate the derivatives matrix elements 

21.                 flag = 1 ! set flag that the integration has been done 
22.               Endif  
23.               Z_dv(mm, nn,:) += dZ_dv(mm, nn,:) ! add into the derivatives matrix 
24.             Endif  
25.           Enddo ! end loop over edges of the source triangle 
26.         Endif  
27.       Enddo ! end loop over edges of the field triangle 
28.     Enddo ! end loop over the source triangles 
29.   Enddo ! end loop over the field (testing) triangles 

30.   ZI_d(:, (i-1) × ndv + 1: i × ndv) = Multiplications(Z_dv, I) ! matrix multiplications and release memory 

31. Enddo ! end loop over design variables 

 

Fig. 8. The parallel derivative matrix filling algorithm using the multidirectional tangent mode. 
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1. X = FFD(x) ! compute the coordinates of triangles 

2. Do p = 1, NT ! loop over the field (testing) triangles 
3.   Do q = 1, NT ! loop over the source triangles 
4.     flag = 0 ! initialize the flag of whether do integration 
5.     Do ii = 1, 3 ! loop over edges of the field triangle 
6.       m = edge_num(p, ii) ! compute the global index of the iith edge of the pth field triangle 
7.       If (m .NE.0 .and. m is on this process) then ! the mth edge is valid and on this process 
8.         PUSH(mm) ! push data into the stack 
9.         mm = local_index(m) ! get the local index of the global index m 
10.         PUSH(v1) ! push data into the stack 

11.         v1 = temporary(p, q, X) ! compute the intermediate data 
12.         Do jj = 1, 3 ! loop over edges of the source triangle 
13.           n = edge_num(q, jj) ! compute the global index of the jjth edge of the qth source triangle 
14.           If (n .NE. 0 .and. n is on this process) then ! the nth edge is valid and on this process 
15.             PUSH(nn) ! push data into the stack 
16.             nn = local_index(n) ! get the local index of the global index n 
17.             If (flag == 0) then  
18.               PUSH(v1, v2) ! push data into the stack 

19.               v2 = interactions’(p, q, X, v1) ! calculate the intermediate data  

20.               flag = 1 ! set flag that the integration has been done 
21.               PUSHCONTROL(1) ! push control parameter into the stack 
22.             Else  
23.               PUSHCONTROL(0) ! push control parameter into the stack 
24.             Endif  
25.             PUSHCONTROL(1) ! push control parameter into the stack 
26.           Else  
27.             PUSHCONTROL(0) ! push control parameter into the stack 
28.           Endif  
29.         Enddo ! end loop over edges of the source triangle 
30.         PUSHCONTROL(1) ! push control parameter into the stack 
31.       Else   
32.         PUSHCONTROL(0) ! push control parameter into the stack 
33.       Endif  
34.     Enddo ! end loop over edges of the field triangle 
35.   Enddo ! end loop over the source triangles 
36. Enddo ! end loop over the field (testing) triangles 

37. Z_b = /F Z  ! set the input derivatives 

38. Do p = NT,1,-1 ! loop over the field (testing) triangles 
39.   Do q = NT,1,-1 ! loop over the source triangles 
40.     Do ii=3,1,-1 ! loop over edges of the field triangle 
41.       POPCONTROL(branch) ! pop the control parameter from stack 
42.       If (branch) then  
43.         Do jj=3,1,-1 ! loop over edges of the source triangle 
44.           POPCONTROL(branch) ! pop the control parameter from stack 
45.           If (branch) then  
46.             dZ_b(mm, nn) += Z_b(mm, nn) ! set the derivatives matrix elements 
47.             POPCONTROL(branch) ! pop the control parameter from stack 
48.             If (branch) then  
49.               POP(v1, v2) ! pop the data from stack 

50.               interactions_b(p, q, X, X_b, v1, v1_b, v2, v2_b, dZ_b) ! calculate the derivatives of the intermediate data 
51.             Endif  
52.             POP(nn) ! pop the data from the stack 
53.           Endif  
54.         Enddo ! end loop over edges of the source triangle 
55.         POP(v1) ! pop the data from stack 

56.         temporary_b(p, q, X, X_b, v1, v1_b) ! calculate the derivatives /F X  

57.         POP(mm) ! pop the data from the stack 
58.       Endif  
59.     Enddo ! end loop over edges of the field triangle 
60.   Enddo ! end loop over the source triangles 
61. Enddo ! end loop over the field (testing) triangles 
62. x_b = FFD_b(x, X, X_b) ! compute /F x  

 

Fig. 9. The parallel derivative matrix filling algorithm generated by the Tapenade using adjoint mode. 
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1. Z_b = /F Z  ! set the input derivatives 

2. X = FFD(x) ! compute the coordinates of triangles 
3. Do p = 1, NT ! loop over the field (testing) triangles 
4.   Do q = 1, NT ! loop over the source triangles 
5.     flag = 0 ! initialize the flag of whether do integration 
6.     Do ii = 1, 3 ! loop over edges of the field triangle 
7.       m = edge_num(p, ii) ! compute the global index of the iith edge of the pth field triangle 
8.       If (m .NE.0 .and. m is on this process) then ! the mth edge is valid and on this process 
9.         mm = local_index(m) ! get the local index of the global index m 
10.         PUSH(v1’) ! push data into the stack 

11.         v1’ = temporary(p, q, X) ! compute the intermediate data 
12.         Do jj = 1, 3 ! loop over edges of the source triangle 
13.           n = edge_num(q, jj) ! compute the global index of the jjth edge of the qth source triangle 
14.           If (n .NE. 0 .and. n is on this process) then ! the nth edge is valid and on this process 
15.             nn = local_index(n) ! get the local index of the global index n 
16.             If (flag == 0) then  
17.               PUSH(v1’, v2’) ! push data into the stack 

18.               v2’ = interactions’(p, q, X, v1’) ! calculate the intermediate data 

19.               flag = 1 ! set flag that the integration has been done 
20.               PUSHCONTROL(1) ! push control parameter into the stack 
21.             Else  
22.               PUSHCONTROL(0) ! push control parameter into the stack 
23.             Endif  

24.             dZ_b(mm, nn) += Z_b(mm, nn) ! set the derivatives matrix elements 
25.             POPCONTROL(branch) ! pop the control parameter from stack 
26.             If (branch) then  
27.               POP(v1’, v2’) ! pop the data from the stack 

28.               interactions_b(p, q, X, X_b, v1’, v1_b’, v2’, v2_b’, dZ_b) ! calculate the derivatives of the intermediate data 

29.             Endif  
30.           Endif  
31.         Enddo ! end loop over edges of the source triangle 
32.         POP(v1’) ! pop the data from the stack 

33.         temporary_b(p, q, X, X_b, v1’, v1_b’) ! calculate the derivatives /F X  

34.       Endif  
35.     Enddo ! end loop over edges of the field triangle 
36.   Enddo ! end loop over the source triangles 
37. Enddo ! end loop over the field (testing) triangles 
38. x_b = FFD_b(x, X, X_b) ! compute /F x  

 

Fig. 10. The parallel derivative matrix filling algorithm using the “inner-loop two-sweeps” architecture. 
 

As for the “two-sweeps” architecture, the forward 

sweep loop over the field triangles, the source triangles, 

the edges on a certain field triangle, and the edges on a 

certain source triangle in order to compute and store the 

intermediate data (v1 and v2). This intermediate data is used 

for the backward subroutine (such as “interactions_b” 

and “temporary_b”) to calculate the derivatives. The 

intermediate data will change in each loop, therefore all 

of the intermediate data needs to be pushed into the stack 

(lines 10 and 18 in Fig. 9) before starting the backward 

sweep. The intermediate data will be popped out of the 

stack when it is needed for the backward subroutines 

(lines 49 and 55 in Fig. 9). 

As for the “inner-loop two-sweeps” architecture,  

all of the backward sweep routines are moved into the 

loops of the forward sweep. The backward subroutine 

“interactions_b” is in the same loop as the subroutine 

“interactions’ ”, the intermediate data calculated by the 

subroutine “interactions’ ” can be sent into the backward 

subroutine “interactions_b” directly. Similarly, the 

backward subroutine “temporary_b” is in the same  

loop as the subroutine “temporary”. The memory 

consumption is much lower than before since it is hardly 

inevitable to record plenty of intermediate data values 

and control parameters. Even though there are still some 

small amounts of data values (v1’ and v2’) that need to be 

stored, they would be pulled out of the stack before the 

end of the current loop. 
 

IV. OPTIMIZATION FRAMEWORK 
The flow chart of the gradient-based shape 

optimization design method is presented in Fig. 11. The 

numerical methods applied in the optimization process 

consist of the geometric parameterization, the MoM 

solver, the adjoint-based gradient evaluations, and the 

SQP algorithm. The operational process and relationships 

among the methods mentioned above are described 

below. 

First of all, the mesh of the baseline geometry is 

parameterized through the FFD approach. And then the 

parameterize method updates the mesh and transfers it to 

the MoM solver. After solving the scattering problem, 

the gradient could be obtained through the adjoint 

method. Next, the RCS, gradient, and some geometrical 
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parameters (e.g., thickness) are sent to the optimizer  

to search the optimized direction and step. The SQP 

algorithm will generate new design variables and start 

the next iteration process until the convergence tolerance 

reaches the required accuracy. Of particular note is that 

the gradient calculation is not required at every iteration, 

it is determined by the SQP algorithm. In this paper,  

the implementation of the SQP algorithm is SNOPT 

[27], which is useful for solving large-scale constrained 

problems with smooth objective functions and constraints. 

SNOPT is a sparse nonlinear optimizer that uses a 

smooth augmented Lagrangian merit function while 

making explicit provision for infeasibility in the original 

problem and in the quadratic programming subproblems. 

The Hessian of the Lagrangian is approximated through 

a limited-memory quasi-Newton method, and a reduced-

Hessian algorithm is used for solving the quadratic 

programming subproblems [27]. 
 

 
 

Fig. 11. The flow chart of the gradient-based shape 

optimization design method. 

 

V. NUMERICAL EXAMPLES 
In this section, we present some numerical 

examples. Firstly, we verify the accuracy of the gradient 

computed by the adjoint method. Then we study the CPU 

time and memory consumption of adjoint AD compared 

to the tangent AD and multidirectional tangent AD. 

Finally, we apply the presented method to a shape 

optimization problem. 

 

A. Verification 

To gain confidence in the effectiveness of the 

gradient for use in the optimization design, the adjoint 

method is compared with the traditional forward finite 

difference method. The metallic almond [28] model is 

applied for the electromagnetic analysis. The frequency 

of the incident wave is 7 GHz and the polarization mode 

is horizontal polarization. Figure 12 shows the mesh, the 

FFD control frame, and the incident direction. Each  

edge length of the triangle facet is less than the 1/10 

wavelength and the amount of unknowns is 12618. The 

almond model is parameterized by the FFD approach 

with 56 control points in total. The displacements at the 

z-direction of the FFD control points are selected as the 

design variables. 

The gradients computed by the adjoint method and 

the finite difference method are shown in Fig. 13. Notice 

that several step sizes are tested to find the appropriate 

step size before using the finite difference method to 

compute the gradient. The gradients obtained by the adjoint 

method are in good agreement with those computed  

by the finite difference method. The absolute error and 

relative error between these two results are shown in Fig. 

14. The relative error is given by ref ref/r F F F     , 

where / dd ,n nxF   n = 1,2,…,56. The values 

calculated by the finite difference method are selected as 

the reference values. From this figure, it can be seen that 

both the absolute error and relative error are less than  

10-2. The gradient computed by the adjoint method  

has acceptable accuracy for the gradient-based shape 

optimization design. 
 

 
 

Fig. 12. The mesh of almond and the FFD control frame. 
 

 
 

Fig. 13. Comparison of the gradients. 
 

 
 

Fig. 14. Absolute error and relative error. 
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B. Computation time and memory consumption 

In this section, the comparisons of efficiency and 

consumption between (multidirectional) tangent AD and 

adjoint AD are studied. These simulations are run on  

a cluster with 28 CPU cores. The total CPU time and  

the memory consumption are tested through a different 

number of design variables and the results are shown in 

Fig. 15 and Fig. 16. The total CPU time is the sum of  

the CPU time of all cores. Notice that solving a regular 

scattering problem is about 1.28 hours total CPU time 

and requires 3.08 GB memory space.  

As for the adjoint AD using “inner-loop two-sweeps” 

architecture, it requires minimal time and memory space, 

which are a little bit large than the requirements of 

solving a regular scattering problem. The total CPU  

time and the memory consumption are consistent when 

increasing the number of design variables.  

The tangent AD (red broken line) requires maximum 

running time but less memory consumption. The total 

CPU time grows linearly with the number of design 

variables while the memory consumption keeps stable.  

The multidirectional tangent AD is tested using 

different ncol values (16 in blue dotted line and 32 in 

green dash-dot line). The larger ncol we set, the less CPU 

time it spends. But the multidirectional tangent with 

larger ncol requires more memory space, especially when 

dealing with the problem with a large number of design 

variables. 
 

 
 

Fig. 15. Total CPU time consumption. 
 

 
 

Fig. 16. Memory consumption. 

In order to show the evidence for the advantages of 

our proposed method, we perform a comparison between 

our code and the commercial software HFSS-IE (HFSS 

Integral Equation) [29]. The cube model shown in Fig. 

17 is used for the electromagnetic analysis. 
 

 
 

Fig. 17. Cube model and incident wave. 

 

The side length of the cube is 1 meter, and the 

frequency of the incident wave is 500MHz. The length, 

width, and height of this cube are selected as the design 

variables. Thus, there are 3 design variables in total. 

Firstly, we compute the gradients of RCS using our  

code in adjoint AD mode. The unknowns of the matrix 

equation is 8118 and the total CPU time and the memory 

consumption are listed in Table 1. And then, we do the 

same simulation using the HFSS-IE. The Adaptive Cross 

Approximation (ACA) [29] technique provided by the 

HFSS-IE is applied to solve the integral equation, and 

the maximum residual error is set to 0.004. The HFSS-

IE employs the central finite difference approximation to 

calculate the RCS derivatives with respect to the design 

variables. The maximum number of iterations is set to 6 

and the approximate error in master is set to 0.001 when 

running the sensitivity analysis. Both the electromagnetic 

simulations are running on a workstation with 16 CPU 

cores. 

These comparison results are listed in Table 1. It has 

been found that the total CPU time required by the 

proposed method is less than that required by the HFSS-

IE, while the memory consumption of the proposed 

method is only a little higher than that of the HFSS-IE.  

 

Table 1: Comparison of the total CPU time and the 

memory consumption 

 
Total CPU 

Time 

Memory 

Consumption 

Proposed method 48.5 min 2010 MB 

HFSS-IE 451.7 min 1720 MB 

 
In short, the adjoint AD shows great advantages  

in both efficiency and memory consumption, and the 

tangent AD is inefficient whereas the multidirectional 

tangent AD requires large memory consumption. 
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C. Application to the shape optimization 

We study the shape optimization of the almond  

and the requirements for a low observable shape. The 

optimization problem is described in Eq. (29): 
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, (29) 

where t denotes the thickness at a certain point of 

optimized shape whereas t0 is the initial thickness. The 

thickness constraints are imposed at points on the surface 

of the object to avoid unrealistic designs. As shown in 

Fig. 18, there are 130 segments inside the almond and 

their length represents the local thickness. They should 

not less than 10% of the initial shape to prevent the 

thickness from being so thin. The objective function is 

the RCS and the design variables are the displacements 

at the z-direction of the FFD control points. The frequency 

of the incident wave is 7GHz and the polarization mode 

is vertical polarization. 
 

 
 

Fig. 18. Thickness constraints. 

 

The optimizer arrives after 4 iterations, and 11 

evaluations of RCS, to a local optimum * = -61.629 

dBsm (decibel square meter, 2dBsm 10log( )
m

  ). Figure 

19 shows the convergence history of the objective 

function. We refine the mesh of the optimized shape 

since large deformation would lead to distorted mesh 

elements. The final RCS of the optimized shape after 

mesh refinement is -53.194 dBsm. Figure 20 presents  

the profiles (Coordinate Y=0m) of the almond and 

optimized shape. The optimized shape has undulations 

and a sharp leading edge. The sharp leading edge could 

change the specular scattering into the edge diffraction 

and lead to a large RCS reduction. Figure 21 shows the 

distribution of the surface current density and the 

optimized shape has a lower current magnitude around 

the leading edge when compared to the almond. As for 

the instantaneous magnitude of the surface current, it’s a 

periodic distribution from the leading edge to the end. 

The interval is approximately equal to a wavelength. 

In order to study the RCS reduction mechanism of 

the undulations, we divide the model shape into several 

parts according to the length of a quarter wavelength. As 

shown in Fig. 22, two parts (part5 and part9) are picked 

out to study their scattering field contribution. These two 

parts are located on either side of the maximum thickness 

and are one wavelength apart. The scattering electric 

field contribution of each part is computed by integrating 

the surface current on this part individually. Figure 23 

shows the instantaneous scattering electric field along 

the reflection direction (negative direction of x-axis) 

from the origin of the coordinate system and Fig. 24 

depicts the phase of the scattering electric field. 

 

 
 

Fig. 19. The convergence history of the objective function. 

 

 
 

Fig. 20. Comparison of the profiles. 

 

 
  (a) Magnitude 

 
  (b) Instantaneous magnitude 

 

Fig. 21. Comparison of the surface current density. 

 

As for the almond, the scattering electric fields 

generated by these two parts are in the same phase. The 
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total amplitude increases after the superimposition of 

these two scattering electric fields. 

On the contrary, the undulations of the optimized 

shape change the phase of the scattering electric fields. 

The phase difference between them is approximately  

180 degrees which leads to a cancellation of the total 

amplitude. As for the other parts, the undulations would 

enlarge the phase difference of each pair and weaken the 

superimposed effect. 
 

 
 

Fig. 22. Schematic of the part division. 
 

 
        (a) Almond 

 
        (b) Opt 

 

Fig. 23. Scattering electric field from each part. 
 

 
        (a) Almond 

 
        (b) Opt 

 
Fig. 24. The phase of the instantaneous scattering electric 

field. 

 

VI. CONCLUSION 

In this work, the MoM is applied to solve the CFIE 

and evaluate the RCS of the object. The adjoint equation 

based on MoM is derived to compute the gradient of RCS 

efficiently. The LU factorization routine of ScaLAPACK 

is called to solve the large scale complex dense matrix 

equation so that the adjoint equation no longer needs to 

be solved. 

The most difficult task for the gradient evaluation is 

the computation of the derivatives of the impedance 

matrix. The program transformation AD tool Tapenade 

is applied to generate the derivatives computation 

routines. We develop the code in three AD modes and 

test their efficiency and memory consumption. One of 

the bright spots of our work is that the subroutine which 

computes the derivatives of impedance matrix using 

adjoint AD mode is optimized by changing the “two-

sweeps” architecture into the “inner-loop two- sweeps” 

architecture. This modification makes it far faster than 

the codes generated by tangent and multidirectional 

tangent modes. In addition, the memory consumption of 

this architecture is friendly. 

The gradient calculated through the adjoint method 

is compared with those computed by the finite difference 

method. The results show that the accuracy is satisfactory. 

Both of the absolute errors and relative errors are in an 

acceptable region. The accuracy of the gradient meets 

the requirement of gradient-based shape optimization. 

A gradient-based shape optimization design method 

is developed by coupling the MoM, the adjoint method, 

the FFD approach, and the SQP algorithm. The almond 

geometry is optimized through this design method and 

the SQP reaches a local minimum within 10 iterations. 

The optimized shape has undulations and sharp leading 

edges. Further studies show that the sharp leading edge 

could reduce the surface current magnitude and avoid  

the specular back-scattering, resulting in a large RCS 

reduction. The undulations on the upper surface and 

lower surface could change the phases which leads to a 

further RCS reduction. 
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