

Radar Cross Section Reduction and Shape Optimization using Adjoint

Method and Automatic Differentiation

Ming Li, Junqiang Bai, and Feng Qu

School of Aeronautics

Northwestern Polytechnical University, Xi’an, 710072, China

2014200130@mail.nwpu.edu.cn, junqiang@nwpu.edu.cn, qufeng@nwpu.edu.cn

Abstract ─ An efficient Radar Cross Section (RCS)

gradient evaluation method based on the adjoint method

is presented. The Method of Moments is employed to

solve the Combined Field Integral Equation (CFIE) and

the corresponding derivatives computing routines are

generated by the program transformation Automatic

Differentiation (AD) technique. The differential code is

developed using three kinds of AD mode: tangent mode,

multidirectional tangent mode, and adjoint mode. The

differential code in adjoint mode is modified and

optimized by changing the “two-sweeps” architecture into

the “inner-loop two-sweeps” architecture. Their efficiency

and memory consumption are tested and the differential

code using modified adjoint mode demonstrates the great

advantages in both efficiency and memory consumption.

A gradient-based shape optimization design method is

established using the adjoint method and the mechanism

of RCS reduction is studied. The results show that the

sharp leading can avoid the specular back-scattering and

the undulations of the surface could change the phases

which result in a further RCS reduction.

Index Terms ─ Adjoint method, automatic differentiation,

method of moments, sensitivity, shape optimization.

I. INTRODUCTION
During the last decades, the shape optimization

design method has been widely applied to the aircraft

design. The scattering response of an object depends on

its geometry and materials, as well as the incoming wave

characteristics (frequency and polarization). In general,

a large number of design variables are required for the

shape optimization design due to the fact that the shape

of the aircraft is complicated [1]. Using the gradient-based

optimization algorithms to deal with this optimization

problem is a better choice since they usually converge

quickly to a local optimum, regardless of the number of

design variables. These algorithms require the gradient

of the objective function, therefore the design sensitivity

analysis is a vital step in the gradient-based shape

optimization.

The adjoint method can obtain the sensitivities

with respect to all design variables by solving the adjoint

equation once. Due to this advantage, the adjoint method

has been developed for Computational Electromagnetics

(CEM) techniques, such as the Method of Moments

(MoM) [2]-[5], the multilevel fast multipole algorithm

(MLFMA) [6], the finite element method [7]-[8], the

finite-difference time-domain (FDTD) method[9]-[10],

and the transmission line method (TLM) [11]-[12]. Also,

it’s has been applied to the multidisciplinary optimization

design, e.g., the aero-stealth coupled optimization design

[1],[13].

The drawback of the adjoint method for the MoM is

that the derivatives of the impedance matrix need to be

differentiated which might be a complicated task. The

derivatives of the impedance matrix can be computed

analytically [14]-[16] or obtained by the finite difference

method [2]. In [4], the Broyden update of the impedance

matrix is used to estimate these derivatives. But in [17],

the authors point out that in MoM discretization, the

matrix elements can depend on the nodal coordinates of

the mesh in a very complicated manner. With very few

exceptions, straightforward analytical differentiation of

the matrix elements may not be feasible. Moreover, it

would require complete reprogramming of the existing

codes, which is an insurmountable complication for most

researchers and code developers.

An alternative way is computing the derivatives

with the help of the automatic differentiation (AD)

technique [18]-[19]. Using the AD tools to develop code

is much more efficient and time-saving, and is suitable

for dealing with these error-prone tasks. Toivanen et al.

[18] demonstrate how sensitivity analysis can be

incorporated into an existing in-house MoM solver with

a relatively small amount of labor by using the automatic

differentiation technique.

In this paper, an RCS gradient calculation approach

based on the adjoint approach of Maxwell's integral

equation is presented. The MoM solver is employed

in the solution of the scattering problem. We adopt a

parallel LU factorization driver routine of ScaLAPACK

[20] to solve the Combined Field Integral Equation

(CFIE). Both the current coefficient and the adjoint

ACES JOURNAL, Vol. 36, No. 3, March 2021

Submitted On: October 28, 2020
Accepted On: February 1, 2021 1054-4887 © ACES

https://doi.org/10.47037/2020.ACES.J.360312

320

coefficient would be obtained by factorizing the matrix

once. The program transformation AD tool Tapenade

[21] is applied to analyze the functions and subroutines

of the MoM and generate the corresponding differential

code. As for the derivatives of the impedance matrix

computing routine, we develop the code in three different

AD modes: tangent mode, multidirectional tangent

mode, and adjoint mode. And then their accuracy,

efficiency, and memory consumption are tested. After

that, a gradient-based shape optimization design method

is established by coupling the MoM, the adjoint method,

the Free-Form Deformation approach (FFD)[22], and

the Sequential Quadratic Programming algorithm (SQP)

[23]. Finally, we apply this method to optimize an almond

geometry and study the mechanism of RCS reduction.

The main objective, and the novel nontrivial

contribution, of this paper, is that we modify and optimize

the adjoint AD code and make it more efficient and less

consumed by changing the “two-sweeps” architecture

into an “inner-loop two-sweeps” architecture.

This paper is organized as follows. In Section II,

the discrete adjoint equation of the integral form of

the Maxwell equation based on the MoM is derived. In

Section III, the derivative computing routines developed

in three AD modes are presented, and the “inner-loop

two-sweeps” architecture of the adjoint AD mode is

discussed. Next, the flow chart of the gradient-based

shape optimization design method and the numerical

methods employed in the optimization framework are

described in Section IV. After that, in Section V, the

accuracy of the gradient is validated using the finite

difference method. Besides, the CPU time and the

memory consumption of three AD modes are tested.

The benchmark geometry almond is optimized using the

method described in this paper and the mechanism of

RCS reduction is studied. Finally, the conclusions are

summarized in Section VI.

II. ADJOINT METHOD
Consider a three-dimensional scattering problem

where the Radar Cross Section (RCS) is defined by:

2

s2

2

i

4π lim
R

R



E

E
, (1)

where Es and Ei are the scattered and incident electric

field at the distance R. The scattered electric field is

given by:

s 2

1
j

S
k G G dS

k


 
     

 
E J J , (2)

where refers to the wave impedance and k means the

wavenumber. And G means the Green’s function. Only

the surface current J is unknown. The Rao–Wilton–

Glisson (RWG) [24] basis function is adopted to

discretize the surface current and then it could be

expanded into a sum of N weighted basis function as

shown in Eq. (3):

 

1

N

n n

n

I


J f r , (3)

where I is the current coefficient and  
n

f r denotes the

basis function. According to the Method of Moments, the

solution of the CFIE with the Galerkin method leads to

the solution of the linear system:

 ZI V , (4)

where Z is the impedance matrix, and V is the excitation

vector. In this paper, the parallel LU factorization driver

routine of ScaLAPACK[20] is applied to solve the linear

system. When the parameters of the incident wave

including frequency, direction, and polarization mode

are given, the scattered electric field and RCS only

depend on the target surface and the induced current. The

derivative of the scattered electric field is given by:

s s sd d

d d

 
 
 

E E E I

X X I X
, (5)

where X means the nodal coordinates of the target mesh.

This derivative is also called the surface sensitivity,

which represents the sensitivity of the scattered electric

field to changes in the surface geometry. It would be of

particular use for retrofitting the device on an existing

object geometry where a whole new design is not

feasible. Assume that the residual of the matrix equation

is equal to zero:

 0  R ZI V . (6)

The shape derivatives of the residual depend on the

geometry surface and the surface current solution, that is:

0

d

d

 
 

 

R I

IX X

R
. (7)

It is intensely inefficient to calculate the term dI/dX

directly since that would require a mass of the MoM

evaluations. Therefore we rewrite Eq. (7) as:

1
d

d


  

     

R

IX

I R

X
. (8)

Replacing the term dI/dX in Eq. (5) and we obtain:

s s s

1
d

d


    

       

E E E R R

X X I I X
. (9)

And the adjoint variable vector ψ is defined as:

s

1

T


  

    I
ψ

E R

I
. (10)

According to Eq. (6), the derivative of residual with

respect to the surface current coefficient is just the

impedance matrix:

()  
 

 

R ZI V
Z

I I
. (11)

Thus, the adjoint equation is written as:

s

T

T  
   

ψ
I

E
Z . (12)

We do not need to solve the adjoint equation

LI, BAI, QU: RADAR CROSS SECTION REDUCTION AND SHAPE OPTIMIZATION 321

anymore since the matrix Z has been already factorized

into upper and lower triangular matrices for the scattering

problem. Finally, the surface sensitivity of RCS could be

computed by:

s s

s s

T()
dd d d

d d d d

    
  

 

E E R

X E X E X X
ψ . (13)

The Free-Form Deformation (FFD) approach [22] is

adopted to parameterize the geometry and manipulate

the mesh. It’s more efficient to change the shape through

the FFD volume than to modify the surface mesh

directly. The surface mesh of the object is embedded

inside the FFD volume, and all changes of the surface

mesh are performed on the outer boundary of the FFD

volume. Any modification of the boundary of FFD

volume can be applied to indirectly modify the

embedded surface mesh. The displacements of the FFD

control points are selected as the design variables x. And

then the gradient required from the gradient-based

optimization algorithm is easily obtained:

d d d

d d d

 


X

x X x
. (14)

The code can be developed with /d d X (geometry

nodal derivatives) or /d d x (control point derivatives).

If the surface sensitivity analysis is required, the code

must be developed with /d d x . And then the gradient

of the cost function is obtained by multiplying the

surface sensitivity with /d dX x . When using the AD

tools to differentiate the code in tangent mode, it’s

suitable to develop the code with /d d x directly:

Ts

s

()
d d

d d

   
 

 

E
ψ

R

x E x x
. (15)

When the code is differentiated in adjoint mode, we

can develop the code with either /d d X or /d d x .

The differences between the tangent mode and the

adjoint mode of the AD technique would be discussed in

the next section.

III. AUTOMATIC DIFFERENTIATION

TECHNIQUE
Automatic Differentiation technique is developed to

differentiate computer programs exactly without large

user intervention. It’s more efficient and time-saving

to apply AD tools to obtain analytical derivatives of

differentiable functions, in the case where these

functions are provided in the form of a computer

program. There are two principal ways to code the

algorithm program, namely, operator overloading

and program transformation. We choose the program

transformation approach since it allows the tool to

apply some global analysis on the program, such as the

data-flow, to produce more efficient differentiated

code. Tapenade [21] is an AD tool using the program

transformation which, given a Fortran or C code that

computes a function, creates a new code that computes

its tangent or adjoint derivatives.

There are two basic modes of operation for program

differentiation: tangent mode and adjoint mode. The

tangent mode propagates the sensitivity at the same

time as the solution is being computed. The derivative

Jacobian is computed column by column, as shown in

Fig. 1. Tapenade also provides an advanced tangent

mode, called the multidirectional tangent mode. This

mode calculates the derivative Jacobian multicolumn

by multicolumn. On the contrary, the adjoint mode

calculates the Jacobian row by row so that it is extremely

efficient to compute the gradient of a function with

respect to a large number of design variables.

Fig. 1. Elements of the Jacobian computable by tangent

mode and adjoint mode.

The crucial task of our work is the computation of

residual derivative shown in Eq. (16):

  
 

  

R ZI V

X X X
, (16)

where I refers to the current coefficient obtained from

the scattering problem. Both of the vectors X and R have

a large dimension so that it’s extremely time-consuming

to calculate the term / R X no matter whether using

the tangent mode or the adjoint mode. A feasible way

to improve efficiency is computing the term / R x

directly instead of / R X due to the fact that the

number of design variables is much smaller than the

number of coordinate points:

d

d

   
  

   

R R X ZI V

x X x x x
. (17)

The finite difference method is a popular way to

compute derivatives Jacobian since it requires a small

amount of code modification. However, the step size has

a great influence on the accuracy of the finite difference

method. Large step size causes truncation error whereas

too small a step size may lead to cancellation error. Also,

we find that the appropriate step size changes with

the geometric parameterization method, object shape,

electromagnetic frequency, and incidence angle. In this

section, we discuss the application of AD to a specific

in-house MoM solver.

A. Parallel matrix filling algorithm

Before applying the AD tool to differentiate the

ACES JOURNAL, Vol. 36, No. 3, March 2021322

code, we should introduce the parallel matrix filling

algorithm used in this paper. The pseudo-code of the

serial matrix filling algorithm [25] is given in Fig. 5,

where NT denotes the number of triangles. First of all, the

coordinates of the target surface are updated through the

FFD approach according to the design variables. Next,

the serial matrix filling algorithm loops over the field

triangles and source triangles, and then performs the

integral on each triangle pair, followed by the inner loops

over the edges of the triangles. Some computational

routines marked in gray show the route of information

transfer from the design variables to the impedance

matrix. The AD tool would analyze these routines and

generate the corresponding derivative computational

routines according to the chain rule.

Figure 6 depicts the pseudo-code scheme of the

parallel matrix filling algorithm [25]. The modifications

and improvements of the parallel matrix filling algorithm

are marked in gray. In the parallel matrix filling algorithm,

only a portion of the matrix is placed on each process

after the computation thus the memory required for each

process is reduced. The integral routine “interactions(p,

q, X)” (line 4 in Fig. 5), which compute the interactions

between the triangle pair (p, q), is moved inside the

innermost loop over the edge of a source patch (line

15 in Fig. 6). This modification avoids the redundant

computations that all the processes calculate all the

integrals between a pair of the source and the field

triangles. To further reduce the redundancy, some

computations of the intermediate data needed in the

integration, such as the triangle area and the normal

vector, are picked out and moved out of the innermost

loop (line 9 in Fig. 6). In Fig. 6, v denotes the intermediate

data. The entire procedure of the parallel matrix filling

algorithm is now described.

The coordinates of the surface mesh are computed

by the FFD approach, and then the code loops over all

the field triangles, the source triangles, the edges on a

certain field triangle, and the edges on a certain source

triangle. In order to reduce the redundancy in the

calculation of the integral, only the process that

corresponds to the mth row and the nth column will

calculate the integral over the surfaces of the triangle pair

(line 7 to line 21 in Fig. 6). The corresponding processes

that are about to calculate the mth row and the nth

column of the matrix are picked up according to the

two-dimensional block-cyclic decomposition [26] data

distribution required by ScaLAPACK (line 7 and line 12

in Fig. 6). The 4 steps involved in using ScaLapack are

now described.

Step 1. Create a Logical Process Grid.

Assume that the MoM solver is running on 6

processes with a 2 × 3 array of process grid layout shown

in Fig. 2. The subscript of the symbol P represents the

process number.

 0 1 2

0 P0 P1 P2

1 P3 P4 P5

Fig. 2. The 2 × 3 array of process grid layout.

We could use the routine “Cblacs_gridinit” to set

up and initialize a process grid and run the routine

“Cblacs_gridinfo” to obtain the process grid information

of the current process.

Step 2. Distribute Matrices and Vectors on the

Process Grid.

In this significant step, the matrics and vectors

are distributed to each process according to the two-

dimensional block-cyclic decomposition. The impedance

matrix Z is partitioned into MB by NB blocks, and the

recommended block sizes are 32 × 32 or 64 × 64. An

illustration is shown in Fig. 3. The first 3 blocks in the

top block row are mapped to the top row of the process

grid in order, the next 3 blocks in the top row are also

mapped to these same processes, and so on. Similarly,

the second block row is mapped to the second grid row.

When the 3rd row is reached, the mapping returns back

to the first grid row. This mapping method leads to a two-

dimensional block-cyclic decomposition shown in Fig. 4.

Fig. 3. An example of the block matrix construction.

Each process holds a local matrix with several non-

contiguous portions of the global matrix. For instance,

the process P1 marked in yellow holds blocks from block

rows 1,3,5,7 and block columns 2 and 5, while the

process P3 marked in green holds blocks from block

rows 2, 4, 6 and block columns 1, 4, and 7. We could call

the ScaLAPACK routine “descinit” to create a descriptor

for this block matrix. After completing the matrix

distribution, we can proceed to the next step.

Z 11 Z 12 Z 13 Z 14 Z 15 Z 16 Z 17

Z 21 Z 22 Z 23 Z 24 Z 25 Z 26 Z 27

Z 31 Z 32 Z 33 Z 34 Z 35 Z 36 Z 37

Z 41 Z 42 Z 43 Z 44 Z 45 Z 46 Z 47

Z 51 Z 52 Z 53 Z 54 Z 55 Z 56 Z 57

Z 61 Z 62 Z 63 Z 64 Z 65 Z 66 Z 67

Z 71 Z 72 Z 73 Z 74 Z 75 Z 76 Z 77

LI, BAI, QU: RADAR CROSS SECTION REDUCTION AND SHAPE OPTIMIZATION 323

Fig. 4. An example of the two-dimensional block-cyclic

decomposition.

Step 3. Call the LU Factorization Routine.

In this step, we call the ScaLAPACK routine

“pzgesv” to solve the matrix equation. And then, the

impedance matrix Z is replaced by the LU triangular

matrix after the factorization, and the excitation vector

V is replaced by the current coefficient vector.

Step 4. Release the Process Grid.

Two routines are used after finishing the calculation.

A particular process grid is released with the routine

“Cblacs_gridexit”, and after all the computations are

finished, the routine “Cblacs_exit” should be called.

B. Tangent AD

In general, the dimension of residual is far larger

than the number of design variables so that it’s advisable

to code the program using tangent mode. Most of the

CPU time is spent on computing the term / ZI x since

the impedance matrix is a large dimension dense matrix.

The corresponding pseudo-code scheme of the derivatives

matrix filling algorithm generated by Tapenade using

tangent mode is shown in Fig. 7. Some additional

routines added by Tapenade are marked in gray. It has an

extra loop that loops over the design variables. In the

ith cycle, the derivatives of all dependent variables with

respect to the ith design variable are calculated. The

variable with suffix “_d” represents the derivative of the

corresponding variable with respect to the ith design

variable and is calculated by the corresponding tangent

routines which are suffixed with “_d”. These routines

are usually executed before the corresponding regular

routines. Of particular note that it is unnecessary to

compute the coordinates of triangles (line 4 in Fig. 7)

in order to reduce the redundancy. We list it here just

for the sake of program integrity. The vector x_d has

the same dimension as the design variables and the ith

element is set to 1 while the others are set to 0. The vector

X_d means dX/dxi and the matrix Z_d refers to
i

/ x Z .

C. Multidirectional tangent AD

Although the derivatives calculation accuracy of

tangent AD is higher than that of the finite difference

method, there is a shortcoming that reduces its

efficiency. As can be seen from Fig. 7, there are masses

of redundant calculations at each outermost loop, such as

the computations of intermediate data v. It should be

noted that the subroutines, “temporary(p, q, X)” and

“interactions(p, q, X, v)”, actually contain plenty of

calculations and intermediate variables. Hence, it is

unrealistic to store all of the intermediate variables in

memory. One way to improve efficiency is by using the

multidirectional tangent mode provided by Tapenade.

The pseudo-code of the parallel derivative matrix filling

algorithm using multidirectional tangent mode is shown

in Fig. 8. Some improvements are explained as follows.

The integer variable Nout means the number of outer

loops and is given by:

ceiling(/), [1,]out DV col col DVN N n n N  , (18)

where ncol indicates how many columns (see Fig. 1) are

calculated in one AD multidirectional tangent calculation.

The function “ceiling(x)” returns the least integer greater

than or equal to x. In the AD multidirectional tangent

mode, it loops over the Nout instead of the number of

design variables NDV. The larger ncol we set, the less

redundant calculations it requires. If ncol equates to the

NDV, the Jacobian / ZI x would be obtained by looping

once. If ncol is set to 1, it would be the same as the

ordinary tangent mode. Upon most occasions, the ncol

might not be a factor of NDV so that we define a new

parameter ndv which depicts the actual number of columns

calculated for one particular run. This parameter is

calculated by:

, if

(1) , if

col col DV

dv

DV col col DV

n i n N
n

N i n i n N

 
 

    
. (19)

The code has to compute the starting index is and

ending index ie at the beginning of each outermost cycle

(line 2 in Fig. 8). These two indexes indicate that from

the isth to the ieth columns of the Jacobian / ZI x

would be computed in this loop. These indexes are

calculated through Eq. (20):

(1) 1cols

e col

i

i

i

i n

n  


 
. (20)

And then we could set some elements of x_dv to 1 (line

3 in Fig. 8) according to the starting and ending indexes.

Matrix x_dv is an NDV×ndv matrix described in (21):

0 0 0

1 0 0

0 1 0

1

0 0 1

0 0 0

dvn

s

e

DV

i

i

N

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 


 
 
 
 
 
 













x_dv . (21)

Z 11 Z 14 Z 17 Z 12 Z 15 Z 13 Z 16

Z 31 Z 34 Z 37 Z 32 Z 35 Z 33 Z 36

Z 51 Z 54 Z 57 Z 52 Z 55 Z 53 Z 56

Z 71 Z 74 Z 77 Z 72 Z 75 Z 73 Z 76

Z 21 Z 24 Z 27 Z 22 Z 25 Z 23 Z 26

Z 41 Z 44 Z 47 Z 42 Z 45 Z 43 Z 46

Z 61 Z 64 Z 67 Z 62 Z 65 Z 63 Z 66

0

0 1 2

1

ACES JOURNAL, Vol. 36, No. 3, March 2021324

The multidirectional variables with the suffix “_dv” (in

Fig. 8) can be seen as a collection of the multiple

corresponding variables with the suffix “_d” (in Fig. 7).

For instance,

     1

, , ,s s ei i i   v_dv v_d v_d v_d . (22)

The element  siv_d is equal to the v_d computed in the

isth loop in Fig. 7. The data storage form of these

variables depends on the user. Similarly,

     1

, , ,s s ei i i   X_dv X_d X_d X_d , (23)

     1

, , ,s s ei i i   Z_dv Z_d Z_d Z_d . (24)

In every outermost cycle of the AD multidirectional

tangent mode, the matrix Z_dv needs to be filled and

stored, whose memory requirement is ndv times larger

than the impedance matrix. Unfortunately, we can’t

avoid storing the whole matrix Z_dv before the matrix-

vector product due to the fact that the matrix is filled by

looping triangle-to-triangle, rather than edge-to-edge. In

brief, the multidirectional tangent mode is faster than

the tangent mode by setting a large value of ncol, but it

requires more memory space.

D. Adjoint AD

Both the tangent mode and multidirectional tangent

mode are dependent on the number of design variables.

They are inefficient if there are hundreds or thousands of

design variables. On the contrary, the adjoint mode is

independent of the number of design variables. However,

it’s impractical to compute / ZI x directly using the

adjoint mode. The Jacobian matrix / ZI x has a large

number of rows but the adjoint mode could only obtain a

single row for one particular run. In order to deal with this

problem, we rewrite the sensitivity of RCS Eq. (13) as:

Ts

s s

T

s

d dd d

d dd d

      
   

   
ψ ψ

E ZI V

E X E XX E X
. (25)

Instead of computing / ZI X alone, we compute

the term    T

s/ /d d    E ZI Xψ together. Thus, we

define a new function:

 s

T(,)
d

F
d


X

E
ψZ ZI . (26)

The surface current coefficient is a constant vector,

and the adjoint field does not depend directly on the

design variables. Although the term
s/d d E depends

on X actually, we assume that it has been computed and

is regarded as a constant as well. Thus, the major

calculation of this function is the matrix filling. Take the

partial derivatives of F and we obtain:

 s

TF d

d

 


 

ZI

X E
ψ

X
, (27)

 s

TF d

d




Z E
ψ I . (28)

And then the routine that computing this function F(Z,X)

is analyzed by Tapenade using the adjoint mode. The

mesh coordinates X are set as the inputs while F is set

as the outputs when differentiating the code using

Tapenade. As shown in Fig. 9, the pseudo-code depicts

the procedure of derivatives evaluation and the vector

/F X would be obtained for a single adjoint AD run.

The last term of Eq. (25) is also computed in the same way.

The Tapenade adopts the store-all strategy [21]

to differentiate the code when using the adjoint mode.

In this strategy, the intermediate values are saved just

before a statement, which leads to a “two-sweeps”

architecture for the control-flow reversal. As shown in

Fig. 9, these two sweeps are separated by a dotted line.

The first sweep is called the forward sweep and is

basically a copy of matrix filling (shown in Fig. 7),

augmented with a recording of the control. This recorded

control would be used by the second sweep, called the

backward sweep, to orchestrate control-flow reversal.

The intermediate data (v1 and v2) that would be used by

the backward sweep to evaluate the elements of the

derivatives Jacobian is also recorded. The natural way to

record is to use a stack that grows during the forward

sweep and shrinks during the backward sweep. Of

particular note that the subroutine “interactions’(p, q, X,

v1)” (line 19 in Fig. 9) is the simplification of the original

integral subroutine “interactions(p, q, X, v1)” (line 15 in

Fig. 6). The simplified subroutine only calculates the

intermediate data used for the integral on the triangle, not

the matrix elements.

The Tapenade uses the PUSH and POP primitives

for stack manipulations and applies the global data-

flow analysis To-Be-Recorded (TBR) [21] to reduce

significantly the number of intermediate values that need

to be stored on that tape. In Fig. 9, the variables with

suffix “_b” represent the derivatives of the F with respect

to the corresponding variables. For instance, X_b means

/F X . The corresponding backward sweep subroutines

are suffixed by “_b”. The PUSH/POP subroutines

provided by Tapenade are used to record the

intermediate values whereas the PUSHCONTROL and

POPCONTROL subroutines are called for the control-

flow recording. These PUSH and POP primitives are

marked in gray in Fig. 9. The vector /F X could be

obtained by running these two sweeps once which shows

the great merit of the adjoint mode. However, there is

still a serious problem that affects its application. As we

mentioned above, the forward sweep is basically a copy

of the matrix filling augmented with the data recording.

Assume that the number of unknowns is N, the regular

matrix filling routine only needs to store an N×N

complex matrix in total. But for the forward sweep, if

computing each element of Jacobian requires to store n

intermediate values, it will push at least n×N×N data into

the stack. The memory cost is unacceptable even though

it would not compute and store the elements of the

LI, BAI, QU: RADAR CROSS SECTION REDUCTION AND SHAPE OPTIMIZATION 325

impedance matrix.

In order to address this problem, we propose an

“inner-loop two-sweeps” architecture for the adjoint

mode. Note that the computation of each element of the

impedance matrix or Jacobian is independent. Therefore

the backward sweep routine could be executed straight

after the corresponding forward sweep is done in an inner

cycle. In other words, we could change the “two-sweeps”

architecture into the “inner-loop two-sweeps” architecture.

The modified adjoint AD pseudo-code using the “inner-

loop two-sweeps” architecture is depicted in Fig. 10. These

modifications can only be done by hand. The manual

programming work depends on the architecture of the

existing codes. If the framework of the existing codes is

clear and modularized, the complete reprogramming

work could be done within a couple of days.

1. X = FFD(x) ! compute the coordinates of triangles
2. Do p = 1, NT ! loop over the field (testing) triangles
3. Do q = 1, NT ! loop over the source triangles
4. dZ = interactions(p, q, X) ! calculate integral on the triangle pair (p, q)
5. Do ii = 1, 3 ! loop over edges of the field triangle
6. mm = edge_num(p, ii) ! compute the global index of the iith edge of the pth field triangle
7. If (mm .NE. 0) then ! the mmth edge is a valid common edge
8. Do jj = 1, 3 ! loop over edges of the source triangle
9. nn = edge_num(q, jj) ! compute the global index of the jjth edge of the qth source triangle
10. If (nn .NE. 0) then ! the nnth edge is a valid common edge
11. Z(mm, nn) += dZ(mm, nn) ! add into the impedance matrix
12. Endif
13. Enddo ! end loop over edges of the source triangle
14. Endif
15. Enddo ! end loop over edges of the field triangle
16. Enddo ! end loop over the source triangles
17. Enddo ! end loop over the field (testing) triangles

Fig. 5. The serial matrix filling algorithm.

1. X = FFD(x) ! compute the coordinates of triangles
2. Do p = 1, NT ! loop over the field (testing) triangles
3. Do q = 1, NT ! loop over the source triangles
4. flag = 0 ! initialize the flag of whether do integration
5. Do ii = 1, 3 ! loop over edges of the field triangle
6. m = edge_num(p, ii) ! compute the global index of the iith edge of the pth field triangle
7. If (m .NE. 0 .and. m is on this process) then ! the mth edge is valid and on this process
8. mm = local_index(m) ! get the local index of the global index m
9. v = temporary(p, q, X) ! compute the intermediate data needed in the integration
10. Do jj = 1, 3 ! loop over edges of the source triangle
11. n = edge_num(q, jj) ! compute the global index of the jjth edge of the qth source triangle
12. If (n .NE. 0 .and. n is on this process) then ! the nth edge is valid and on this process
13. nn = local_index(n) ! get the local index of the global index n
14. If (flag == 0) then
15. dZ = interactions(p, q, X, v) ! calculate integral on the triangle pair (p, q)
16. flag = 1 ! set flag that the integration has been done
17. Endif
18. Z(mm, nn) += dZ(mm, nn) ! add into the impedance matrix
19. Endif
20. Enddo ! end loop over edges of the source triangle
21. Endif
22. Enddo ! end loop over edges of the field triangle
23. Enddo ! end loop over the source triangles
24. Enddo ! end loop over the field (testing) triangles

Fig. 6. The parallel matrix filling algorithm.

ACES JOURNAL, Vol. 36, No. 3, March 2021326

1. Do i = 1, NDV ! loop over the design variables
2. x_d = [0,…,0,1,0,…,0]

T
! set the ith element to 1 and the others to 0

3. X_d = FFD_d(x, x_d) ! compute dX/dxi
4. X = FFD(x) ! compute the coordinates of triangles
5. Do p = 1, NT ! loop over the field (testing) triangles
6. Do q = 1, NT ! loop over the source triangles
7. flag = 0 ! initialize the flag of whether do integration
8. Do ii = 1,3 ! loop over edges of the field triangle
9. m = edge_num(p, ii) ! compute the global index of the iith edge of the pth field triangle
10. If (m .NE.0 .and. m is on this process) then ! the mth edge is valid and on this process
11. mm = local_index(m) ! get the local index of the global index m
12. v_d = temporary_d(p, q, X, X_d) ! compute the derivatives of the intermediate data

13. v = temporary(p, q, X) ! compute the intermediate data needed in the integration
14. Do jj = 1, 3 ! loop over edges of the source triangle
15. n = edge_num(q, jj) ! compute the global index of the jjth edge of the qth source triangle
16. If (n .NE. 0 .and. n is on this process) then ! the nth edge is valid and on this process
17. nn = local_index(n) ! get the local index of the global index n
18. If (flag == 0) then

19. dZ_d = interactions_d(p,q,X, X_d, v, v_d) ! calculate the derivatives matrix elements

20. flag = 1 ! set flag that the integration has been done
21. Endif
22. Z_d(mm, nn) += dZ_d(mm, nn) ! add into the derivatives matrix
23. Endif
24. Enddo ! end loop over edges of the source triangle
25. Endif
26. Enddo ! end loop over edges of the field triangle
27. Enddo ! end loop over the source triangles
28. Enddo ! end loop over the field (testing) triangles

29. ZI_d(:, i) = multiplications(Z_d, I) !compute
i/ x ZI and release the memory of Z_d

30. Enddo !end loop over design variables

Fig. 7. The parallel derivative matrix filling algorithm using the tangent mode.

1. Do i = 1, Nout ! loop over the outermost loops
2. compute_index(i, is, ie, ndv) ! compute the starting and ending indexes

3. x_dv = set_ones(is, ie)

! set some elements to 1 and others to 0

4. X_dv = FFD_dv(x, x_dv, ndv) ! compute the derivatives of the coordinates
5. X = FFD(x) ! compute the coordinates of triangles
6. Do p = 1, NT ! loop over the field (testing) triangles
7. Do q = 1, NT ! loop over the source triangles
8. flag = 0 ! initialize the flag of whether do integration
9. Do ii = 1, 3 ! loop over edges of the field triangle
10. m = edge_num(p, ii) ! compute the global index of the iith edge of the pth field triangle
11. If (m .NE. 0 .and. m is on this process) then ! the mth edge is valid and on this process
12. mm = local_index(m) ! get the local index of the global index m
13. v_dv = temporary_dv(p, q, X, X_dv, ndv) ! compute the derivatives of the intermediate data

14. v = temporary(p, q, X) ! compute the intermediate data needed in the integration
15. Do jj = 1, 3 ! loop over edges of the source triangle
16. n = edge_num(q, jj) ! compute the global index of the jjth edge of the qth source triangle
17. If (n .NE. 0 .and. n is on this process) then ! the nth edge is valid and on this process
18. nn = local_index(n) ! get the local index of the global index n
19. If (flag == 0) then
20. dZ_dv =interactions_dv(p, q, X, X_dv, v, v_dv, ndv) ! calculate the derivatives matrix elements

21. flag = 1 ! set flag that the integration has been done
22. Endif
23. Z_dv(mm, nn,:) += dZ_dv(mm, nn,:) ! add into the derivatives matrix
24. Endif
25. Enddo ! end loop over edges of the source triangle
26. Endif
27. Enddo ! end loop over edges of the field triangle
28. Enddo ! end loop over the source triangles
29. Enddo ! end loop over the field (testing) triangles

30. ZI_d(:, (i-1) × ndv + 1: i × ndv) = Multiplications(Z_dv, I) ! matrix multiplications and release memory

31. Enddo ! end loop over design variables

Fig. 8. The parallel derivative matrix filling algorithm using the multidirectional tangent mode.

LI, BAI, QU: RADAR CROSS SECTION REDUCTION AND SHAPE OPTIMIZATION 327

1. X = FFD(x) ! compute the coordinates of triangles

2. Do p = 1, NT ! loop over the field (testing) triangles
3. Do q = 1, NT ! loop over the source triangles
4. flag = 0 ! initialize the flag of whether do integration
5. Do ii = 1, 3 ! loop over edges of the field triangle
6. m = edge_num(p, ii) ! compute the global index of the iith edge of the pth field triangle
7. If (m .NE.0 .and. m is on this process) then ! the mth edge is valid and on this process
8. PUSH(mm) ! push data into the stack
9. mm = local_index(m) ! get the local index of the global index m
10. PUSH(v1) ! push data into the stack

11. v1 = temporary(p, q, X) ! compute the intermediate data
12. Do jj = 1, 3 ! loop over edges of the source triangle
13. n = edge_num(q, jj) ! compute the global index of the jjth edge of the qth source triangle
14. If (n .NE. 0 .and. n is on this process) then ! the nth edge is valid and on this process
15. PUSH(nn) ! push data into the stack
16. nn = local_index(n) ! get the local index of the global index n
17. If (flag == 0) then
18. PUSH(v1, v2) ! push data into the stack

19. v2 = interactions’(p, q, X, v1) ! calculate the intermediate data

20. flag = 1 ! set flag that the integration has been done
21. PUSHCONTROL(1) ! push control parameter into the stack
22. Else
23. PUSHCONTROL(0) ! push control parameter into the stack
24. Endif
25. PUSHCONTROL(1) ! push control parameter into the stack
26. Else
27. PUSHCONTROL(0) ! push control parameter into the stack
28. Endif
29. Enddo ! end loop over edges of the source triangle
30. PUSHCONTROL(1) ! push control parameter into the stack
31. Else
32. PUSHCONTROL(0) ! push control parameter into the stack
33. Endif
34. Enddo ! end loop over edges of the field triangle
35. Enddo ! end loop over the source triangles
36. Enddo ! end loop over the field (testing) triangles

37. Z_b = /F Z ! set the input derivatives

38. Do p = NT,1,-1 ! loop over the field (testing) triangles
39. Do q = NT,1,-1 ! loop over the source triangles
40. Do ii=3,1,-1 ! loop over edges of the field triangle
41. POPCONTROL(branch) ! pop the control parameter from stack
42. If (branch) then
43. Do jj=3,1,-1 ! loop over edges of the source triangle
44. POPCONTROL(branch) ! pop the control parameter from stack
45. If (branch) then
46. dZ_b(mm, nn) += Z_b(mm, nn) ! set the derivatives matrix elements
47. POPCONTROL(branch) ! pop the control parameter from stack
48. If (branch) then
49. POP(v1, v2) ! pop the data from stack

50. interactions_b(p, q, X, X_b, v1, v1_b, v2, v2_b, dZ_b) ! calculate the derivatives of the intermediate data
51. Endif
52. POP(nn) ! pop the data from the stack
53. Endif
54. Enddo ! end loop over edges of the source triangle
55. POP(v1) ! pop the data from stack

56. temporary_b(p, q, X, X_b, v1, v1_b) ! calculate the derivatives /F X

57. POP(mm) ! pop the data from the stack
58. Endif
59. Enddo ! end loop over edges of the field triangle
60. Enddo ! end loop over the source triangles
61. Enddo ! end loop over the field (testing) triangles
62. x_b = FFD_b(x, X, X_b) ! compute /F x

Fig. 9. The parallel derivative matrix filling algorithm generated by the Tapenade using adjoint mode.

ACES JOURNAL, Vol. 36, No. 3, March 2021328

1. Z_b = /F Z ! set the input derivatives

2. X = FFD(x) ! compute the coordinates of triangles
3. Do p = 1, NT ! loop over the field (testing) triangles
4. Do q = 1, NT ! loop over the source triangles
5. flag = 0 ! initialize the flag of whether do integration
6. Do ii = 1, 3 ! loop over edges of the field triangle
7. m = edge_num(p, ii) ! compute the global index of the iith edge of the pth field triangle
8. If (m .NE.0 .and. m is on this process) then ! the mth edge is valid and on this process
9. mm = local_index(m) ! get the local index of the global index m
10. PUSH(v1’) ! push data into the stack

11. v1’ = temporary(p, q, X) ! compute the intermediate data
12. Do jj = 1, 3 ! loop over edges of the source triangle
13. n = edge_num(q, jj) ! compute the global index of the jjth edge of the qth source triangle
14. If (n .NE. 0 .and. n is on this process) then ! the nth edge is valid and on this process
15. nn = local_index(n) ! get the local index of the global index n
16. If (flag == 0) then
17. PUSH(v1’, v2’) ! push data into the stack

18. v2’ = interactions’(p, q, X, v1’) ! calculate the intermediate data

19. flag = 1 ! set flag that the integration has been done
20. PUSHCONTROL(1) ! push control parameter into the stack
21. Else
22. PUSHCONTROL(0) ! push control parameter into the stack
23. Endif

24. dZ_b(mm, nn) += Z_b(mm, nn) ! set the derivatives matrix elements
25. POPCONTROL(branch) ! pop the control parameter from stack
26. If (branch) then
27. POP(v1’, v2’) ! pop the data from the stack

28. interactions_b(p, q, X, X_b, v1’, v1_b’, v2’, v2_b’, dZ_b) ! calculate the derivatives of the intermediate data

29. Endif
30. Endif
31. Enddo ! end loop over edges of the source triangle
32. POP(v1’) ! pop the data from the stack

33. temporary_b(p, q, X, X_b, v1’, v1_b’) ! calculate the derivatives /F X

34. Endif
35. Enddo ! end loop over edges of the field triangle
36. Enddo ! end loop over the source triangles
37. Enddo ! end loop over the field (testing) triangles
38. x_b = FFD_b(x, X, X_b) ! compute /F x

Fig. 10. The parallel derivative matrix filling algorithm using the “inner-loop two-sweeps” architecture.

As for the “two-sweeps” architecture, the forward

sweep loop over the field triangles, the source triangles,

the edges on a certain field triangle, and the edges on a

certain source triangle in order to compute and store the

intermediate data (v1 and v2). This intermediate data is used

for the backward subroutine (such as “interactions_b”

and “temporary_b”) to calculate the derivatives. The

intermediate data will change in each loop, therefore all

of the intermediate data needs to be pushed into the stack

(lines 10 and 18 in Fig. 9) before starting the backward

sweep. The intermediate data will be popped out of the

stack when it is needed for the backward subroutines

(lines 49 and 55 in Fig. 9).

As for the “inner-loop two-sweeps” architecture,

all of the backward sweep routines are moved into the

loops of the forward sweep. The backward subroutine

“interactions_b” is in the same loop as the subroutine

“interactions’ ”, the intermediate data calculated by the

subroutine “interactions’ ” can be sent into the backward

subroutine “interactions_b” directly. Similarly, the

backward subroutine “temporary_b” is in the same

loop as the subroutine “temporary”. The memory

consumption is much lower than before since it is hardly

inevitable to record plenty of intermediate data values

and control parameters. Even though there are still some

small amounts of data values (v1’ and v2’) that need to be

stored, they would be pulled out of the stack before the

end of the current loop.

IV. OPTIMIZATION FRAMEWORK
The flow chart of the gradient-based shape

optimization design method is presented in Fig. 11. The

numerical methods applied in the optimization process

consist of the geometric parameterization, the MoM

solver, the adjoint-based gradient evaluations, and the

SQP algorithm. The operational process and relationships

among the methods mentioned above are described

below.

First of all, the mesh of the baseline geometry is

parameterized through the FFD approach. And then the

parameterize method updates the mesh and transfers it to

the MoM solver. After solving the scattering problem,

the gradient could be obtained through the adjoint

method. Next, the RCS, gradient, and some geometrical

LI, BAI, QU: RADAR CROSS SECTION REDUCTION AND SHAPE OPTIMIZATION 329

parameters (e.g., thickness) are sent to the optimizer

to search the optimized direction and step. The SQP

algorithm will generate new design variables and start

the next iteration process until the convergence tolerance

reaches the required accuracy. Of particular note is that

the gradient calculation is not required at every iteration,

it is determined by the SQP algorithm. In this paper,

the implementation of the SQP algorithm is SNOPT

[27], which is useful for solving large-scale constrained

problems with smooth objective functions and constraints.

SNOPT is a sparse nonlinear optimizer that uses a

smooth augmented Lagrangian merit function while

making explicit provision for infeasibility in the original

problem and in the quadratic programming subproblems.

The Hessian of the Lagrangian is approximated through

a limited-memory quasi-Newton method, and a reduced-

Hessian algorithm is used for solving the quadratic

programming subproblems [27].

Fig. 11. The flow chart of the gradient-based shape

optimization design method.

V. NUMERICAL EXAMPLES
In this section, we present some numerical

examples. Firstly, we verify the accuracy of the gradient

computed by the adjoint method. Then we study the CPU

time and memory consumption of adjoint AD compared

to the tangent AD and multidirectional tangent AD.

Finally, we apply the presented method to a shape

optimization problem.

A. Verification

To gain confidence in the effectiveness of the

gradient for use in the optimization design, the adjoint

method is compared with the traditional forward finite

difference method. The metallic almond [28] model is

applied for the electromagnetic analysis. The frequency

of the incident wave is 7 GHz and the polarization mode

is horizontal polarization. Figure 12 shows the mesh, the

FFD control frame, and the incident direction. Each

edge length of the triangle facet is less than the 1/10

wavelength and the amount of unknowns is 12618. The

almond model is parameterized by the FFD approach

with 56 control points in total. The displacements at the

z-direction of the FFD control points are selected as the

design variables.

The gradients computed by the adjoint method and

the finite difference method are shown in Fig. 13. Notice

that several step sizes are tested to find the appropriate

step size before using the finite difference method to

compute the gradient. The gradients obtained by the adjoint

method are in good agreement with those computed

by the finite difference method. The absolute error and

relative error between these two results are shown in Fig.

14. The relative error is given by ref ref/r F F F     ,

where / dd ,n nxF   n = 1,2,…,56. The values

calculated by the finite difference method are selected as

the reference values. From this figure, it can be seen that

both the absolute error and relative error are less than

10-2. The gradient computed by the adjoint method

has acceptable accuracy for the gradient-based shape

optimization design.

Fig. 12. The mesh of almond and the FFD control frame.

Fig. 13. Comparison of the gradients.

Fig. 14. Absolute error and relative error.

Design Variable

G
ra

d
ie

n
t

(d
B

sm
/m

)

0 10 20 30 40 50 60
-30

-20

-10

0

10

20

30
Adjoint Method

Finite Differnece

Design Variable

E
rr

o
r

0 10 20 30 40 50 60
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

Absolute error

Relative error

ACES JOURNAL, Vol. 36, No. 3, March 2021330

B. Computation time and memory consumption

In this section, the comparisons of efficiency and

consumption between (multidirectional) tangent AD and

adjoint AD are studied. These simulations are run on

a cluster with 28 CPU cores. The total CPU time and

the memory consumption are tested through a different

number of design variables and the results are shown in

Fig. 15 and Fig. 16. The total CPU time is the sum of

the CPU time of all cores. Notice that solving a regular

scattering problem is about 1.28 hours total CPU time

and requires 3.08 GB memory space.

As for the adjoint AD using “inner-loop two-sweeps”

architecture, it requires minimal time and memory space,

which are a little bit large than the requirements of

solving a regular scattering problem. The total CPU

time and the memory consumption are consistent when

increasing the number of design variables.

The tangent AD (red broken line) requires maximum

running time but less memory consumption. The total

CPU time grows linearly with the number of design

variables while the memory consumption keeps stable.

The multidirectional tangent AD is tested using

different ncol values (16 in blue dotted line and 32 in

green dash-dot line). The larger ncol we set, the less CPU

time it spends. But the multidirectional tangent with

larger ncol requires more memory space, especially when

dealing with the problem with a large number of design

variables.

Fig. 15. Total CPU time consumption.

Fig. 16. Memory consumption.

In order to show the evidence for the advantages of

our proposed method, we perform a comparison between

our code and the commercial software HFSS-IE (HFSS

Integral Equation) [29]. The cube model shown in Fig.

17 is used for the electromagnetic analysis.

Fig. 17. Cube model and incident wave.

The side length of the cube is 1 meter, and the

frequency of the incident wave is 500MHz. The length,

width, and height of this cube are selected as the design

variables. Thus, there are 3 design variables in total.

Firstly, we compute the gradients of RCS using our

code in adjoint AD mode. The unknowns of the matrix

equation is 8118 and the total CPU time and the memory

consumption are listed in Table 1. And then, we do the

same simulation using the HFSS-IE. The Adaptive Cross

Approximation (ACA) [29] technique provided by the

HFSS-IE is applied to solve the integral equation, and

the maximum residual error is set to 0.004. The HFSS-

IE employs the central finite difference approximation to

calculate the RCS derivatives with respect to the design

variables. The maximum number of iterations is set to 6

and the approximate error in master is set to 0.001 when

running the sensitivity analysis. Both the electromagnetic

simulations are running on a workstation with 16 CPU

cores.

These comparison results are listed in Table 1. It has

been found that the total CPU time required by the

proposed method is less than that required by the HFSS-

IE, while the memory consumption of the proposed

method is only a little higher than that of the HFSS-IE.

Table 1: Comparison of the total CPU time and the

memory consumption

Total CPU

Time

Memory

Consumption

Proposed method 48.5 min 2010 MB

HFSS-IE 451.7 min 1720 MB

In short, the adjoint AD shows great advantages

in both efficiency and memory consumption, and the

tangent AD is inefficient whereas the multidirectional

tangent AD requires large memory consumption.

LI, BAI, QU: RADAR CROSS SECTION REDUCTION AND SHAPE OPTIMIZATION 331

C. Application to the shape optimization

We study the shape optimization of the almond

and the requirements for a low observable shape. The

optimization problem is described in Eq. (29):

 
     

 

0

T

1 2 56

min :

s.t. : 0.1 , 1, 2,...,130

, ,...,

n n
t t n

x x x



 

 

x

x

x

, (29)

where t denotes the thickness at a certain point of

optimized shape whereas t0 is the initial thickness. The

thickness constraints are imposed at points on the surface

of the object to avoid unrealistic designs. As shown in

Fig. 18, there are 130 segments inside the almond and

their length represents the local thickness. They should

not less than 10% of the initial shape to prevent the

thickness from being so thin. The objective function is

the RCS and the design variables are the displacements

at the z-direction of the FFD control points. The frequency

of the incident wave is 7GHz and the polarization mode

is vertical polarization.

Fig. 18. Thickness constraints.

The optimizer arrives after 4 iterations, and 11

evaluations of RCS, to a local optimum * = -61.629

dBsm (decibel square meter, 2dBsm 10log()
m

 ). Figure

19 shows the convergence history of the objective

function. We refine the mesh of the optimized shape

since large deformation would lead to distorted mesh

elements. The final RCS of the optimized shape after

mesh refinement is -53.194 dBsm. Figure 20 presents

the profiles (Coordinate Y=0m) of the almond and

optimized shape. The optimized shape has undulations

and a sharp leading edge. The sharp leading edge could

change the specular scattering into the edge diffraction

and lead to a large RCS reduction. Figure 21 shows the

distribution of the surface current density and the

optimized shape has a lower current magnitude around

the leading edge when compared to the almond. As for

the instantaneous magnitude of the surface current, it’s a

periodic distribution from the leading edge to the end.

The interval is approximately equal to a wavelength.

In order to study the RCS reduction mechanism of

the undulations, we divide the model shape into several

parts according to the length of a quarter wavelength. As

shown in Fig. 22, two parts (part5 and part9) are picked

out to study their scattering field contribution. These two

parts are located on either side of the maximum thickness

and are one wavelength apart. The scattering electric

field contribution of each part is computed by integrating

the surface current on this part individually. Figure 23

shows the instantaneous scattering electric field along

the reflection direction (negative direction of x-axis)

from the origin of the coordinate system and Fig. 24

depicts the phase of the scattering electric field.

Fig. 19. The convergence history of the objective function.

Fig. 20. Comparison of the profiles.

 (a) Magnitude

 (b) Instantaneous magnitude

Fig. 21. Comparison of the surface current density.

As for the almond, the scattering electric fields

generated by these two parts are in the same phase. The

Iteration

R
a

d
a

r
C

ro
ss

S
ec

ti
o

n
(d

B
sm

)

0 1 2 3 4 5
-80

-70

-60

-50

-40

-30

CoordinateX(m)

C
o
o
rd

in
a
te

Z
(m

)

-0.1 -0.05 0 0.05 0.1 0.15
-0.04

-0.02

0

0.02

0.04
Almond

Opt

CoordinateY = 0 m

ACES JOURNAL, Vol. 36, No. 3, March 2021332

total amplitude increases after the superimposition of

these two scattering electric fields.

On the contrary, the undulations of the optimized

shape change the phase of the scattering electric fields.

The phase difference between them is approximately

180 degrees which leads to a cancellation of the total

amplitude. As for the other parts, the undulations would

enlarge the phase difference of each pair and weaken the

superimposed effect.

Fig. 22. Schematic of the part division.

 (a) Almond

 (b) Opt

Fig. 23. Scattering electric field from each part.

 (a) Almond

 (b) Opt

Fig. 24. The phase of the instantaneous scattering electric

field.

VI. CONCLUSION

In this work, the MoM is applied to solve the CFIE

and evaluate the RCS of the object. The adjoint equation

based on MoM is derived to compute the gradient of RCS

efficiently. The LU factorization routine of ScaLAPACK

is called to solve the large scale complex dense matrix

equation so that the adjoint equation no longer needs to

be solved.

The most difficult task for the gradient evaluation is

the computation of the derivatives of the impedance

matrix. The program transformation AD tool Tapenade

is applied to generate the derivatives computation

routines. We develop the code in three AD modes and

test their efficiency and memory consumption. One of

the bright spots of our work is that the subroutine which

computes the derivatives of impedance matrix using

adjoint AD mode is optimized by changing the “two-

sweeps” architecture into the “inner-loop two- sweeps”

architecture. This modification makes it far faster than

the codes generated by tangent and multidirectional

tangent modes. In addition, the memory consumption of

this architecture is friendly.

The gradient calculated through the adjoint method

is compared with those computed by the finite difference

method. The results show that the accuracy is satisfactory.

Both of the absolute errors and relative errors are in an

acceptable region. The accuracy of the gradient meets

the requirement of gradient-based shape optimization.

A gradient-based shape optimization design method

is developed by coupling the MoM, the adjoint method,

the FFD approach, and the SQP algorithm. The almond

geometry is optimized through this design method and

the SQP reaches a local minimum within 10 iterations.

The optimized shape has undulations and sharp leading

edges. Further studies show that the sharp leading edge

could reduce the surface current magnitude and avoid

the specular back-scattering, resulting in a large RCS

reduction. The undulations on the upper surface and

lower surface could change the phases which leads to a

further RCS reduction.

LI, BAI, QU: RADAR CROSS SECTION REDUCTION AND SHAPE OPTIMIZATION 333

REFERENCES
[1] M. Li, J. Bai, L. Li, X. Meng, Q. Liu, and B. Chen,

“A gradient-based aero-stealth optimization design

method for flying wing aircraft,” Aerosp. Sci.

Technol., vol. 92, pp. 156-169, June 2019.

[2] N. Georgieva, S. Glavic, M. Bakr, and J. Bandler,

“Feasible adjoint sensitivity technique for EM

design optimization,” IEEE Trans. Microw. Theory

Techn., vol. 50, no. 12, pp. 2751-2758, Dec. 2002.

[3] A. Bondeson, Y. Yang, and P. Weinerfelt,

“Optimization of radar cross section by a gradient

method,” IEEE Trans. Magn., vol. 40, pp. 1260-

1263, Mar. 2004.

[4] N. K. Nikolova, R. Safian, E. A. Soliman, M. H.

Bakr, and J. W. Bandler, “Accelerated gradient

based optimization using adjoint sensitivities,”

IEEE Trans. Antennas Propag., vol. 52, pp. 2147-

2157, Aug. 2004.

[5] Y. Zhang, R. K. Nikolova, and R. H. Bakr, “Input

impedance sensitivity analysis of patch antenna with

discrete perturbations on method-of-moment grids,”

Applied Computational Electromagnetics Society

Journal, vol. 10, no. 25, pp. 867-876. Oct. 2010.

[6] J. Kataja, S. J. Rvenp, J. I. Toivanen, R. M. Kinen,

and P. Y. Oijala, “Shape sensitivity analysis and

gradient-based optimization of large structures

using MLFMA,” IEEE Trans. Antennas Propag.,

vol. 62, Nov. 2014.

[7] X. Zhang, J. C. I. Newman, W. Lin, and W. K.

Anderson, “Time-dependent adjoint formulation for

metamaterial optimization using Petrov-Galerkin

methods,” Applied Computational Electromagnetics

Society Journal, vol. 32, no. 2, pp. 236-239. Feb.

2018.

[8] H. Igarashi and K. Watanabe, “Complex adjoint

variable method for finite-element analysis of eddy

current problems,” IEEE Trans. Magn., vol. 46, no.

8, pp. 2739-2742, Aug. 2010.

[9] M. M. T. Maghrabi, M. H. Bakr, S. Kumar, A. Z.

Elsherbeni, and V. Demir, “FDTD-based adjoint

sensitivity analysis of high-frequency nonlinear

structures,” IEEE Trans. Antennas Propag., vol.

68, pp. 4727-4737, June 2020.

[10] Y. Song, N. K. Nikolova, and M. H. Bakr, “Efficient

time-domain sensitivity analysis using coarse grids,”

Applied Computational Electromagnetics Society

Journal, vol. 23, no. 1, pp. 5-15, Mar. 2008.

[11] S. M. Ali, N. K. Nikolova, and M. H. Bakr, “Semi-

analytical approach to sensitivity analysis of lossy

inhomogeneous structures,” Applied Computational

Electromagnetics Society Journal, vol. 22, no. 2,

pp. 219-227, July 2007.

[12] L. S. Kalantari and M. H. Bakr, “Optical cloak

design exploiting efficient anisotropic adjoint sens-

itivity analysis,” Applied Computational Electro-

magnetics Society Journal, vol. 32, no. 5, pp. 449-

454, May 2017.

[13] L. Zhou, J. Huang, Z. Gao, and W. Zhang, “Three-

dimensional aerodynamic/stealth optimization based

on adjoint sensitivity analysis for scattering problem,”

AIAA Journal, pp. 1-14, Mar. 2020.

[14] J. Kataja and J. I. Toivanen, “On shape

differentiation of discretized electric field integral

equation,” Eng. Anal. Bound. Elem., vol. 37, pp.

1197-1203, May 2013.

[15] M. S. Dadash, N. K. Nikolova, and J. W. Bandler,

“Analytical adjoint sensitivity formula for the

scattering parameters of metallic structures,” IEEE

Trans. Microw. Theory Tech., vol. 60, pp. 2713-

2722, Sep. 2012.

[16] J. Kataja, A. G. Polimeridis, J. R. Mosig, and

P. Yla-Oijala, “Analytical shape derivatives of

the MFIE system matrix discretized with RWG

functions,” IEEE Trans. Antennas Propag., vol.

61, pp. 985-988, Feb. 2013.

[17] N. K. Nikolova, J. W. Bandler, and M. H. Bakr,

“Adjoint techniques for sensitivity analysis in high-

frequency structure CAD,” IEEE Trans. Microw.

Theory Tech, vol. 52, pp. 403-419, Jan. 2004.

[18] J. I. Toivanen, R. A. E. Mäkinen, S. Järvenpää,

P. Ylä-Oijala, and J. Rahola, “Electromagnetic

sensitivity analysis and shape optimization using

method of moments and automatic differentiation,”

IEEE Trans. Antennas Propag., vol. 57, pp. 168-

175, Jan. 2009.

[19] V. Fischer, L. Gerbaud, and F. Wurtz, “Using

automatic code differentiation for optimization,”

IEEE Trans. Magn., vol. 41, pp. 1812-1815, May

2005.

[20] J. Dongarra and L. S. Blackford, “ScaLAPACK

tutorial,” in Proceedings of the Third International

Workshop on Applied Parallel Computing,

Industrial Computation and Optimization, 1997.

[21] L. Hascoet and V. Pascual, “The tapenade automatic

differentiation tool: principles, model, and specif-

ication,” ACM Transactions on Mathematical

Software, vol. 39, pp. 1-43, Apr. 2013.

[22] T. W. Sederberg and S. R. Parry, “Free-form

deformation of solid geometric models,” in ACM

SIGGRAPH Computer Graphics, pp. 151-160, Aug.

1986.

[23] A. Barclay, “SQP methods for large-scale optimiz-

ation,” Dissertation Abstracts International, vol.

60-06, Section B, p. 2730, Chair: Philip Gill, 1999.

[24] S. Rao, D. Wilton, and A. Glisson, “Electromagnetic

scattering by surfaces of arbitrary shape,” IEEE

Trans. Antennas Propag., vol. 30, pp. 409-418, May

1982.

[25] Y. Zhang, T. K. Sarkar, D. D. Oro, H. Moon, and

R. Geijn, “A parallel mom code using RWG basis

functions and ScaLAPACK-based in-core and out-

of-core solvers,” in Parallel Solution of Integral

ACES JOURNAL, Vol. 36, No. 3, March 2021334

Equation-Based EM Problems in the Frequency

Domain: John Wiley & Sons, pp. 81-84, 2009.

[26] V. Eijkhout, J. Langou, and J. Dongarra, “Parallel

Linear Algebra Software,” Netlib Repository at

UTK and ORNL, 2006.

[27] P. E. Fill, W. Murray, and M. A. Saunders, “SNOPT:

An SQP algorithm for large-scale constrained

optimization,” SIAM Journal on Optimization, vol.

12, no. 4, pp. 979-1006, Apr. 2002.

[28] A. C. Woo, H. Wang, M. J. Schuh, and M. L.

Sanders, “Benchmark radar targets for the validation

of computational electromagnetics programs,” IEEE

Antennas Propag. Mag., vol. 35, pp. 84-89, Feb.

1993.

[29] HFSS help manual (ANSYS ED).

Ming Li was born in Liuzhou,

Guangxi, China, in 1992. He received

the B.S. degree in Aircraft Design

and Engineering from Beijing

Institute of Technology, Beijing,

in 2014, and the M.S. degree in

Aircraft Design from Northwestern

Polytechnical University, Xi’an, in

2017, where he is currently pursuing the Ph.D. degree in

Aircraft Design with the School of Aeronautics.

His current research interests include computational

electromagnetics, aerodynamics, and multidisciplinary

optimization design of flight vehicles.

Junqiang Bai was born in Xinxiang,

Hernan, China, in 1971. He received

the B.S. in Aerodynamics from the

National University of Defense

Technology, Changsha, in 1991,

the M.S. degree in Aerodynamics

from Northwestern Polytechnical

University, Xi’an, in 1994, and the

Ph.D. degree in Aircraft Design from Northwestern

Polytechnical University, Xi’an, in 1999.

From 1999 to 2004, he was an Associate Professor

with the Department of Aircraft Design Engineering,

Northwestern Polytechnical University, Xi’an. He was a

Visiting Scholar with the Institute of Aerodynamic and

Flow Technology, German Aerospace Center (DLR),

Braunschweig, Germany, in 2006. Since 2004, he has

been a Professor with the Department of Aircraft Design

Engineering, Northwestern Polytechnical University,

Xi’an. Since 2017, he has been a Deputy Dean with the

Unmanned System Research Institute, Northwestern

Polytechnical University, Xi’an, China. He has authored

or co-authored over 100 papers and he holds or has

applied for 5 Chinese patents. His current research

interests include the conceptual design of aircraft, the

aircraft aerodynamic shape design, and the aircraft

multidisciplinary optimization.

Feng Qu was born in Pizhou,

Jiangsu, China, in 1988. He received

the B.Eng. degree in Mathematics

and Applied Mathematics from China

University of Petroleum, Beijing, in

2010, and the Ph.D. degree in Fluid

Mechanics from Beihang University,

Beijing, in 2015.

From 2015 to 2017, he was an Engineer with the

Institute of Manned Space System Engineering, China.

Since 2018, he has been an Associate Professor with the

Northwestern Polytechnical University, Xi’an, and he

is currently a Director of fluid mechanics in National

Natural Science Foundation of China. His current

research interests involve the flux schemes for all speeds,

the high-order schemes, and the turbulence modeling. He

is authoring a structured CFD software which is capable

of simulating configures of all speeds in both laminar

flow and turbulent flow.

LI, BAI, QU: RADAR CROSS SECTION REDUCTION AND SHAPE OPTIMIZATION 335

 HistoryItem_V1
 AddNumbers

 Range: all odd numbered pages
 Font: Times-Roman (unembedded) 8.0 point
 Origin: top right
 Offset: horizontal 43.20 points, vertical 26.64 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20210414152548

 1
 1

 TR

 1
 1
 1
 0
 0
 229
 TR
 1
 0
 0
 435
 74
 0
 1
 R0
 8.0000

 Odd
 7
 AllDoc
 174

 CurrentAVDoc

 [Sys:ComputerName]
 43.2000
 26.6400

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0m
 Quite Imposing Plus 4
 1

 0
 134
 132
 852014b5-922e-4e51-8abc-c4d8b5bc26f2
 67

 1

 HistoryItem_V1
 AddNumbers

 Range: all even numbered pages
 Font: Times-Roman (unembedded) 8.0 point
 Origin: top left
 Offset: horizontal 43.20 points, vertical 26.64 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20210414152555

 1
 1

 TL

 1
 1
 1
 0
 0
 229
 TR
 1
 0
 0
 435
 74

 0
 1
 R0
 8.0000

 Even
 7
 AllDoc
 174

 CurrentAVDoc

 [Sys:ComputerName]
 43.2000
 26.6400

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0m
 Quite Imposing Plus 4
 1

 0
 134
 133
 63a3e0c5-87fa-41eb-96a0-819cbe29b96b
 67

 1

 HistoryList_V1
 qi2base

