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Abstract ─ A multiobjective optimization (MOO) 

technique for a dual-band circularly polarized antenna  

by using neural networks (NNs) is introduced in this 

paper. In particular, the optimum antenna dimensions are 

computed by modeling the problem as a multilayer feed-

forward neural network (FFNN), which is two-stage 

trained with I/O pairs. The FFNN is chosen because of 

its characteristic of accurate approximation and good 

generalization. The data for FFNN training is obtained 

by using HFSS EM simulator by varying different 

geometrical parameters of the antenna. A two strip-loaded 

circular aperture antenna is utilized to demonstrate the 

optimization technique. The target dual bands are 835–

865 MHz and 2.3–2.35 GHz. 

 

Index Terms ─ Circularly polarized antenna, feed-

forward neural networks, multiobjective optimization. 
 

I. INTRODUCTION 
Design of multiband single-fed circularly polarized 

antenna represents a complicated problem due to the 

requirements of obtaining matching properties combined 

with two equal orthogonal fields and phase shift of ±π/2. 

For a single band circular polarized printed antenna,  

these conditions can be obtained by using symmetric 

shape structure like square or circular loaded by diagonal 

perturbations. By controlling the area of these 

perturbations compared to the total are of the printed 

antenna, it would be possible to generate two equal 

orthogonal modes along the printed antenna with the 

required phase shift [1, 2]. The design of these antenna 

configurations can be formulated analytically by using 

cavity model [1]. However, for the case of multiband 

single-fed circularly polarized antenna the problem 

becomes more complicated and cannot be directly 

represented in a simple cavity model. On the other hand, 

numerical simulation tools can be used to simulate 

different configurations to obtain the corresponding 

properties for these configurations but these numerical 

tools cannot be used directly to design for specific 

properties. Thus, it is required to combine machining 

learning tools with numerical simulation tools to introduce 

appropriate design for such complicated problems, which 

cannot be formulated in simple analytical models [3–6].  

Solving multiobjective optimization problems 

(MOPs) with traditional optimization methods has been 

found to be difficult because these methods often require 

many complex computations and the common way in this 

case is to reduce the set of objectives into a single 

objective and handle it accordingly. On the other hand, 

artificial intelligence (AI) techniques have proved to be 

good alternatives so they are now widely utilized in 

solving MOPs. One of these techniques is Neural 

Networks (NNs). NNs [7] model biological neural 

systems. They have been applied to many real-world 

problems, as a data analysis tool to map nonlinear 

relationships between process inputs and outputs, 

especially in classification and pattern recognition. In 

addition, NNs have been applied to problems in 

optimization and linear programming. While NNs are 

developed from the field of AI and brain modeling, they 

can also be considered as function approximation tools, 

which learn the relationship between independent 

variables and dependent variables, much like regression 

or other more traditional approaches. The principal 

difference between NNs and statistical approaches is  

that NNs make no assumptions about the statistical 

distribution or properties of the data, and therefore NNs 

tend to be more useful in practical situations. NNs are  

also an inherently nonlinear approach giving them  

more accuracy when modeling complex data patterns. 

Moreover, when closed form solutions do not exist  

and trial-and-error methods are the only approaches to 

solving the problem (like the problem at hand). By 
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training an NN one can use it to predict solutions to the 

problem. These properties make NNs gaining a huge 

momentum in the field of RF and microwave modeling 

and design [8–14] mainly because of its generalization 

capability, nonlinear property, massive parallelism, 

adaptive learning capability, fast convergence rates, 

insensitivity to uncertainty, and VLSI implementations. 

Recently, NNs have been applied successfully to the  

field of RFID technology such as ranging [15], signal 

modeling [16], positioning [17], and sensing [18]. 

In [19], a dual-band circularly polarized RFID reader 

antenna is designed by using ramped convergence particle 

swarm optimization (RCPSO). This algorithm uses a 

multi-start approach to break down the optimization 

problem by considering only a subset of antenna 

dimensions at a time, hence overcoming the curse of 

dimensionality and premature convergence of classical 

PSO. However, this requires large execution time (about 

10 hours for PSO and ~50 hours for RCPSO). 

Motivated by the inherent advantages of NNs, this 

paper presents a feed-forward neural network (FFNN)-

based multiobjective optimization (MOO) approach to 

design a dual-band circularly polarized antenna. NNs 

typically adopt two steps: training and recalling. The 

network is first trained with known input–output pattern 

pairs; although a large training pattern set may be 

required for network training, it can be implemented 

separately. After training, it can be used directly to 

replace the complex system dynamics. In this paper, the 

FFNN is trained on data generated by the HFSS simulator 

by varying the antenna dimensions. There are two stages 

of training/recalling. 
        

II. FFNN ARCHITECTURE 
A NN consists of a set of processing units, called 

nodes or neurons, connected by weighted arcs, where the 

weights represent the strength of connections. The nodes 

are organized into layers [7]. Nodes in the input layer 

called input nodes, accept input from the outside world 

and nodes in the output layer, called output nodes, 

generate output to the outside world. Nodes in the input 

layer are used to distribute inputs only and do not serve 

any processing or computational function. Nodes in 

layers between the input layer and the output layer called 

hidden nodes, and these layers are called hidden layers.  

NNs can be of several kinds of architecture. They 

can contain one or more hidden layers of neurons  

and may have feedback connections or not. The NN 

architecture constructed for our purpose here is multilayer 

perceptron (MLP) network. The networks are of feed-

forward ones in which the signals always propagate from 

the input to the output layer without any feedback 

connections. In addition to the MLP, there are other  

NN structures [7] used for antennas, for example, radial 

basis function (RBF) networks and self-organizing map 

(SOM) networks [20]. A list of applications of NNs for 

antennas and arrays is given in [21], along with the  

type of network structure used and the advantage/ 

disadvantage of application.  

Figure 1 shows a FFNN of only two hidden layers. 

However, more hidden layers can be added. In each 

neuron (node), the scalar input z is transmitted through  

a connection that multiplies its strength by the scalar 

weight w, to form the product wz, again a scalar. This 

product may be added to a scalar bias b (much like a 

weight, except that it has a constant input of 1) to form 

the final argument of an activation function f. The most 

frequently used activation function is the sigmoid 

function. 

An NN is trained to represent an unknown mapping 

by employing a training set (a collection of paired input 

and desired output vectors observed from the unknown 

mapping). The purpose in training a NN is to determine 

the values of the elements in the weight matrix W so that 

the NN can closely represent the unknown mapping. The 

training of a NN is accomplished by the following steps: 

(1) Mapping input vectors from the training set by the 

current version of the NN to their computed output 

vectors. 

(2) Comparing the computed output vectors with their 

respective desired output vectors in the training set, 

and then. 

(3) Adjusting the values of the components of W so as to 

reduce any differences between the computed and 

desired output vectors.  

After a number of training iterations, the connectivity 

weights and node biases of the NN converges to a set  

of values that minimizes the differences between the 

computed and desired output vectors, and the NN 

organizes itself internally to construct a model to 

represent the unknown mapping from the input space to 

the output space. Thus, any new input vector presented 

to an appropriately trained NN yields an output vector 

similar to the one that would have been given by the 

actual mapping.  

In this kind of network, learning process is done by 

error back-propagation (BP) learning rule in which the 

weights between the connections are adjusted such that 

the mean square error (MSE) between the targets and the 

inputs of the training set is returned back through the 

layers of neural units and eventually minimized as the 

performance of the neural system is maximized. 

 

 
 
Fig. 1. The structure of FFNN 
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III. FFNN APPLICATION TO DESIGN A 

SINGLE-FED DUAL-BAND CIRCULARLY 

POLARIZED ANTENNA 
As an example for utilizing FFNN in antenna 

design, the design of a single-fed multiband circularly 

polarized antenna is presented in this section. The 

proposed antenna is designed for multiband RFID reader 

system operating at two frequency bands; 835–865 MHz 

and 2.31–2.35 GHz, specifically. The required reflection 

coefficient of the antenna at these bands should be less 

than –10 dB and the corresponding axial ratio should be 

less than 3dB. The initial geometry of the proposed 

antenna is shown in Fig. 2. It is composed of a circular 

aperture in the ground plane of a grounded dielectric 

slab. The thickness of the substrate is 𝑡 = 1.6 mm. The 

substrate is FR4 material with a dielectric constant 𝜀𝑟 =
4.6 and loss tangent tan 𝛿 = 0.02. The effective 

dielectric constant on the circular aperture can be 

approximated as 𝜀𝑟𝑒 ≈ (𝜀𝑟 + 1)/2. For this effective 

dielectric constant, the radius of a circular aperture 

which would be resonant at the center frequency of the 

lower band; 850 MHz, can be obtained approximately as 

𝑅 = 46 mm. This approximation is based on the 

assumption that the field distribution in this case is the 

dominant TE11 mode field distribution along a circular 

aperture of radius R [24]. This aperture is printed on a 

square substrate of length 𝐿 = 108 mm. Two arbitrary 

conducting strips are printed on the other side of the 

dielectric slab. One of these two conducting strips are 

used as a feeding strip to the circular aperture while the 

other strip is a parasitic one which is used to introduce 

the required perturbation to obtain circular polarization.  

It should be noted that, the position of the feeding 

strip is chosen to be near the center of the aperture to 

increase the coupling effect between the TE11 mode in 

the circular aperture and the feeding polygon. On the 

other hand, the parasitic strip is located near the edge of 

the circular aperture and nearly parallel to the feeding 

strip to introduce a small coupling with the excited TE11 

mode in the circular aperture. This small coupling 

represents the required perturbation to introduce the 

required circular polarization. Each strip is a polygon 

composed of four corners. For each polygon, the xy 

coordinates of three corners are variable while the fourth 

corner is fixed constant. In addition, the two corners of 

the polygon at the feeding edge of the substrate have a 

constant value of x which corresponds to the x position 

of this edge. Thus, the total number of variables in this 

case for the two strips is ten variables. These ten 

variables can be used introduce infinite configurations 

for these two strips while keeping their starting positions 

at the feeding edge. The limits of these variables are 

chosen such that the two strips would lie within the 

dimensions of the substrate as well as the two strips 

should not be intersecting. Assuming that the center of 

the circular aperture is located at 𝑥 = 0 and 𝑦 = 0, the 

starting xy coordinates of the two strips would be as 

presented in Table 1. 

 

Table 1: Initial values of the corners of the two strips 

Corner 

No. 

Strip#1 (Feeding 

Strip) 

Strip#2 (Parasitic 

Strip) 

 x (mm) y (mm) x (mm) y (mm) 

1 
54 

(Fixed) 

–18 

(Fixed) 

54 

(Fixed) 

49 

(Fixed) 

2 –32 –18 –35 42 

3 8 –11 –30 40 

4 
54 

(Fixed) 
–10 

54 

(Fixed) 
46 

 

 
 

Fig. 2. Initial geometry of the proposed circular aperture 

antenna with its feeding and parasitic strips. The center 

of the antenna is located at the origin. The corners of the 

feeding strip and the parasitic strip are numbered from 1 

to 4. The positions of the first corner for both the feeding 

and the parasitic strips are fixed and marked with red 

marker. The x-positions of the fourth corner for both the 

feeding and the parasitic strips are fixed while the y-

positions are variable. These points are marked with blue 

marker. The second and the third corners for both strips 

are variable for both x and y. The points are marked in 

green. The initial values for these corners are presented 

in Table 1. 

 

These variable parameters are presented as a 

variable vector D of ten elements which are 

[𝑥2,𝑦2, 𝑥3,𝑦3, 𝑦4,  𝑥2′,𝑦2′, 𝑥3′,𝑦3′, 𝑦4′] The initial values 

of these variable parameters according to Table 1 are: 

𝐃 = [−32, −18,8, −11, −10, −35,42, −30,40,46]𝑇.  

Figure 3 shows the results of this initial design  
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obtained by using HFSS. It can be noted that the 

resonance of this initial design is nearly around 750 MHz 

while the reflection coefficient of the antenna 2.35 GHz 

is only about –3dB. On the other hand, the axial ratio is 

greater than 8 dB in the two bands. 

 

 
  (a) 

 
 (b) 

 

Fig. 3. Simulation results for the proposed antenna with 

initial parameters of the two strips: (a) reflection 

coefficient of the antenna, and (b) axial ratio of the 

radiation pattern in the broadside direction. 

 

IV. THE FFNN-BASED MOO MODEL 

One of the applications of NNs is optimization, 

where the aim is to find the optimal values of parameters 

in an optimization problem [22]. In this paper, The 

FFNN-based MOO model is used in a reverse way 

(inverse modeling) in which design variables are derived 

from objectives [23], where the input layer of the FFNN 

represents the objectives and the output layer represents 

the parameters to be optimized. Figure 4 shows the 

general FFNN-based model for solving MOPs.  

Figure 5 shows the FFNN-based MOO model for 

the design of RFID reader antenna. Here, we have two 

objectives, the reflection coefficient (|S11|) and axial ratio 

(AR). Thus, the input objective vector is [|S11| | AR], 

where the vector |S11| represents the linear-scale (to be in 

the range [0,1] suitable for NN training) values of |S11| in 

the target two bands, while the vector AR contains the 

linear-scale values of AR in both bands (normalized by 

its norm to unify the input parameter space). The target 

two bands are 835–865 MHz and 2.31–2.35 GHz. The 

frequency step is taken as 0.01 GHz, so we have 9 values 

for both |S11| and AR (4 in lower band and 5 in the higher 

band). Therefore, the dimension of the input vector is 18 

with the input layer of the FFNN having 18 neurons.  

 

 
 

Fig. 4. The general FFNN-based MOO model. 

 

 
 

Fig. 5. The FFNN-based MOO model for the design of 

the proposed antenna. 

 

To design a symmetric FFNN it is preferred to 

reduce the number of variables dimensions of the 

antenna to be nine instead of ten. This can be obtained 

by fixing any one of these variables. Thus, in the present 

analysis, the y position of the third corner of the first strip 

is fixed at –11 mm. It should be noted that this is an 

arbitrary choice and other choices are also possible. 

Thus, the remaining variables to be optimized would be 

nine variables. The output from FFNN in this case is the 

vector 𝐃′ of the nine antenna variables. It should be 

noted that, each variable in the vector 𝐃′ is normalized 

by using its minimum and maximum values to be in the 

range [0,1] for FFNN training. In this way, the size of  

the output layer of the FFNN is 9 neurons. The initial 

absolute value of the vector D in this case is |𝐃| =
[32,18,8,10,35,42,30,40,46]𝑇. 

Thus, the size of any training pattern will be 27,  

18 inputs and 9 outputs. After many experimental 

simulation trials, it is found that three hidden layers with 

10, 15, and 20 neurons, provide the best accuracy. Based 

on the above analysis, the final FFNN model is 

18:10:15:20:9. The training patterns are extracted from 

the HFSS simulator by varying the nine dimensions of 

antenna along two stages of training/recalling. In either 

stage, 80% of total training patterns is randomly chosen  

for training and remaining 20% for validation.  
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The FFNN is trained using BP algorithm, which is 

implemented in C++. In the recalling, the trained FFNN 

is given the desired input vector, which contains the 

desired values of |S11| and AR over dual-band, to output 

the corresponding antenna dimensions. The recalling is 

also implemented by C++. 
 

V. RESULTS AND DISCUSSIONS 

A. Stage1 training/recalling 

In the first stage of FFNN training/recalling, only 

one dimension is varied between its minimum and 

maximum values with a certain step, while all other 

dimensions are kept constant at their default values. The 

vectors of minimum, maximum absolute values are 

|𝐃𝒎𝒊𝒏,𝒔𝒕𝒈𝟏| = [27,13,3,5,30,37,25,35,41]𝑇 and |𝐃𝒎𝒂𝒙,𝒔𝒕𝒈𝟏| 

= [37,23,13,10,40,47,35,45,51]𝑇, respectively, with ten 

steps from the minimum to the maximum value for each 

variable. In this way, we have a total of 99 training 

patterns. The final MSE is 0.000891 after 500,000 

iterations. The total training time is about 15 min. After 

the training, the FFNN is recalled and the output 

dimensions were |𝐃𝒔𝒕𝒈𝟏| = [29.58,31.53, 7.7,10,38,24.87, 

33.43,24.87,48.13]𝑇. Then, these output dimensions are 

simulated in HFSS and the simulations results are  

shown in Fig. 6. Compared to the antenna with default 

dimensions (before optimization) shown in Fig. 3, it  

can be noted that the performances of |S11| and AR have 

been improved in both bands after the first stage of 

optimization. However, |S11| has a better performance in 

lower band than in higher band, and vice versa for AR. 
 

B. Stage2 training/recalling 

In the second stage of FFNN training/recalling, the 

training data is generated by HFSS by simulating 100 

different sets of dimensions (100 training patterns). In 

order to exploit the results of stage1, the dimensions in 

this stage are randomly generated around the output 

dimensions from stage1 Dstg1 using normal distribution 

keeping them as means and using a constant variance of 

5 for all dimensions. In this case, The vectors of min and 

max dimensions are Dmin,stg2 = Dstg1 – 5 and Dmax,stg2 = 

Dstg1 + 5, where 5 is a vector with all elements are equal 

5. The final MSE is 0.000015 after 500,000 iterations. 

The total training time is about 20 min. After the training, 

the FFNN is recalled and the output dimensions were 

Dstg2 = Dfinal = [26.26, 37, 12.89, 14.92, 33, 23.41, 37.55, 

18.41, 48.89]. The corresponding final values of the 

corners of the two strips are presented in Table 2. The 

final configuration is simulated by using HFSS and the 

simulations results are shown in Fig. 7.  

Compared to stage1 in Fig. 6, it can be noted from 

Fig. 7 that |S11| and AR have overall better results in target 

bands with much improvement in UHF band for both of 

them. |S11| has still better performance in UHF band than 

in SHF, but for AR, the performances in both bands now 

become almost equal with a deeper notch in UHF band. 

In addition, it can be seen from Fig. 7 that after the 

second stage of optimization, |S11| and AR are beneath  

–10 dB and 3 dB, respectively, in both bands of interest, 

allowing the final optimized antenna to be considered as 

a universal RFID reader antenna.  
 

  
 (a) 

 
    (b) 

 
    (c) 
 

Fig. 6. The output from stage1 training/recalling: (a) 

geometry of the antenna, (b) reflection coefficient of the 

antenna, and (c) axial ratio. 

 

Table 2: Final values of the corners of the two strips 

Corner 

No. 

Strip#1 (Feeding 

Strip) 

Strip#2 (Parasitic 

Strip) 

 x (mm) y (mm) x (mm) y (mm) 

1 
54 

(Fixed) 

–18 

(Fixed) 

54 

(Fixed) 

49 

(Fixed) 

2 –26.26 –37 –33 23.41 

3 12.89 
–11 

(Fixed) 
–37.55 18.41 

4 
54 

(Fixed) 
–14.92 

54 

(Fixed) 
48.89 
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  (a) 

 
 (b) 

 
 (c) 

 

Fig. 7. The output (final) from stage2 training/recalling: 

(a) geometry of the antenna, (b) reflection coefficient of 

the antenna, and (c) axial ratio. Solid line by using HFSS 

and dashed line by using CST. 

 

To verify the obtained result, the same structure with 

its final dimensions is simulated by using CST. Figure 7 

shows a comparison between the results of the HFSS 

(solid line) and CST (dashed line) simulations. Good 

agreements between the results of the two simulation 

techniques are obtained for both the reflection coefficient 

and the axial ratio of the designed antenna structure with 

its final dimensions.     

 

VI. CONCLUSION 
A dual band circularly polarized antenna is 

presented in this paper. The proposed antenna is 

composed of a circular aperture on a grounded dielectric 

slab. This circular aperture is fed by a feeding strip and 

perturbed by another parasitic strip to introduce circular 

polarization. The shape and dimensions of these two 

strips are optimized by using a NN-based MOO model. 

Each strip has four corners. Each corner has two 

variables; x and y positions. Thus, the total number of 

variables is sixteen. To make the starting point of each 

strip fixed at the edge of the substrate, the starting 

corners for the two strips are fixed. Thus, four variable 

are assumed to be constant. In addition, the last corner at 

each strip is assumed to be located on the edge of the 

substrate. Thus, the x values for the last corners on the 

two strips are also constant. Thus, the remaining number 

of variables is ten.  The notable benefits of the proposed 

NN model are simplicity and accurate determination of 

the characteristic parameters of the antenna. The NN 

model is accurate enough to yield the parameters of the 

antenna thus eliminating the long time consuming process 

of determination various design parameters using costly 

software packages. A distinct advantage of neural model 

computation is that after proper training, a NN completely 

bypasses the repeated use of complex iterative processes 

for new cases presented to it. The total training time was 

just about 35 min. The optimized design is compact and 

exhibits less than –10 dB |S11| and 3 dB AR in both bands 

making it practically ideal dual-band circularly polarized 

RFID reader antenna. 

 

REFERENCES 
[1] J. R. James and P. S. Hall, Handbook of Microstrip 

Antennas. IET, 1989. 

[2] S. S. Gao, Q. Luo, and F. Zhu, Circularly Polarized 

Antennas. John Wiley & Sons, 2013. 

[3] C. Wang, J. Li, A. Zhang, W. T. Joines, and Q. H. 

Liu, “Dual-band capacitively loaded annular-ring 

slot antenna for dual-sense circular polarization,” 

Journal of Electromagnetic Waves and 

Applications, vol. 31, no. 9, pp. 867-878, 2017. 

[4] K. M. Mak, H. W. Lai, K. M. Luk, and C. H. Chan, 

“Circularly polarized patch antenna for future 5G 

mobile phones,” IEEE Access, vol. 2, pp. 1521-

1529, 2014. 

[5] H. Yang, Y. Fan, X. Liu, and M. M. Tentzeris, 

“Single-fed dual-band circularly polarized patch 

antenna with wide 3-dB axial ratio beamwidth  

for CNSS applications,” 2019 IEEE MTT-S 

International Wireless Symposium (IWS), pp. 1-3, 

2019. 

[6] K.-L. Lau, K.-M. Luk, and K.-F. Lee, “Design of a 

circularly-polarized vertical patch antenna,” IEEE 

Transactions on Antennas and Propagation, vol. 

54, no. 4, pp. 1332-1335, Apr. 2006. 

[7] S. Haykin, Neural Network: A Comprehensive 

Foundation. Upper Saddle River, NJ, USA: 

Prentice-Hall, 1999. 

SALLAM, ATTIYA, EL-LATIF: NEURAL-NETWORK-BASED MULTIOBJECTIVE OPTIMIZER 257



[8] Q. J. Zhang and K. C. Gupta, Neural Networks for 

RF and Microwave Design. Boston, MA: Artech 

House, 2000. 

[9] T. Sallam, A. B. Abdel-Rahman, M. Alghoniemy, 

and Z. Kawasaki, “A novel approach to the 

recovery of aperture distribution of phased arrays 

with single RF channel using neural networks,” 

2014 Asia-Pacific Microwave Conference, Sendai, 

Japan, pp. 879-881, 2014. 

[10] T. Sallam, A. B. Abdel-Rahman, M. Alghoniemy, 

Z. Kawasaki, and T. Ushio, “A Neural-network-

based beamformer for phased array weather radar,” 

IEEE Transactions on Geoscience and Remote 

Sensing, vol. 54, no. 9, pp. 5095-5104, Sept. 2016. 

[11] L. Liu, Z. Guan, G. Shen, P. Zhao, and G. Wang, 

“Parameters extraction for equivalent circuit  

model based on artificial intelligence,” 2019  

IEEE International Conference on Computational 

Electromagnetics (ICCEM), Shanghai, China, pp. 

1-3, 2019. 

[12] L. Yuan, X. Yang, C. Wang, and B. Wang, 

“Multibranch artificial neural network modeling 

for inverse estimation of antenna array directivity,” 

IEEE Transactions on Antennas and Propagation, 

vol. 68, no. 6, pp. 4417-4427, June 2020. 

[13] S. Rani and J. S. Sivia, “Design and development 

of virtual instrument for fault diagnosis in fractal 

antenna array,” Int. J. RF Microw. Comput. Aided 

Eng., vol. 30, no. 1, 2020. 

[14] S. Dutta, B. Basu, and F. A. Talukdar, “Cascaded 

neural network based small array synthesis with 

robustness to noise,” Int. J. RF Microw. Comput. 

Aided Eng., vol. 31, no. 1, 2021. 

[15] M. Agatonovic, E. Di Giampaolo, P. Tognolatti, 

and B. Milovanovic, “Artificial neural networks 

for ranging of passive UHF RFID tags,” 2013 11th 

International Conference on Telecommunications 

in Modern Satellite, Cable and Broadcasting 

Services (TELSIKS), Nis, pp. 505-508, 2013. 

[16] Z. Chen and C. Wang, “Modeling RFID signal 

distribution based on neural network combined 

with continuous ant colony optimization,” Neuro-

computing, vol. 123, pp. 354-361, 2014. 

[17] J. Wang, W. Wei, W. Wang, and R. Li, “RFID 

hybrid positioning method of phased array antenna 

based on neural network,” IEEE Access, vol. 6, pp. 

74953-74960, 2018. 

[18] S. Jeong, M. M. Tentzeris, and S. Kim, “Machine 

learning approach for wirelessly powered RFID-

based backscattering sensor system,” IEEE Journal 

of Radio Frequency Identification, vol. 4, no. 3, pp. 

186-194, Sept. 2020. 

[19] S. Kibria, M. T. Islam, and B. Yatim, “New 

compact dual-band circularly polarized universal 

RFID reader antenna using ramped convergence 

particle swarm optimization,” IEEE Transactions 

on Antennas and Propagation, vol. 62, no. 5, pp. 

2795-2801, May 2014. 

[20] C. G. Christodoulou and M. Georgiopoulos, 

Applications of Neural Networks in Electro-

magnetics. Artech House, Boston, 2001. 

[21] C. G. Christodoulou and A. Patnaik, “Neural 

networks for antennas,” In Modern Antenna 

Handbook, C. A. Balanis (Ed.), pp. 1625-1657, 

2008. 

[22] A. P. Engelbrecht, Computational Intelligence: An 

Introduction. John Wiley & Sons, 2007. 

[23] K. Kobayashi, M. Miki, and T. Hiroyasu, 

“Mechanism of multi-objective genetic algorithm 

for maintaining the solution diversity using neural 

network,” In Lecture Notes in Computer Science, 

vol. 4403, pp. 216-226, 2007. 

[24] C. A. Balanis, Antenna Theory: Analysis and 

Design. 3rd Ed., John Wiley & Sons. Inc, 2005.

 

ACES JOURNAL, Vol. 36, No. 3, March 2021258



 
 
    
   HistoryItem_V1
   AddNumbers
        
     Range: all odd numbered pages
     Font: Times-Roman (unembedded) 8.0 point
     Origin: top right
     Offset: horizontal 43.20 points, vertical 26.64 points
     Prefix text: ''
     Suffix text: ''
     Colour: Default (black)
     Add text every 0 pages
      

        
     D:20210414152548
      

        
     1
     1
     
     TR
     
     1
     1
     1
     0
     0
     229
     TR
     1
     0
     0
     435
     74
     0
     1
     R0
     8.0000
            
                
         Odd
         7
         AllDoc
         174
              

       CurrentAVDoc
          

     [Sys:ComputerName]
     43.2000
     26.6400
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0m
     Quite Imposing Plus 4
     1
      

        
     0
     134
     132
     852014b5-922e-4e51-8abc-c4d8b5bc26f2
     67
      

   1
  

    
   HistoryItem_V1
   AddNumbers
        
     Range: all even numbered pages
     Font: Times-Roman (unembedded) 8.0 point
     Origin: top left
     Offset: horizontal 43.20 points, vertical 26.64 points
     Prefix text: ''
     Suffix text: ''
     Colour: Default (black)
     Add text every 0 pages
      

        
     D:20210414152555
      

        
     1
     1
     
     TL
     
     1
     1
     1
     0
     0
     229
     TR
     1
     0
     0
     435
     74
    
     0
     1
     R0
     8.0000
            
                
         Even
         7
         AllDoc
         174
              

       CurrentAVDoc
          

     [Sys:ComputerName]
     43.2000
     26.6400
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0m
     Quite Imposing Plus 4
     1
      

        
     0
     134
     133
     63a3e0c5-87fa-41eb-96a0-819cbe29b96b
     67
      

   1
  

 HistoryList_V1
 qi2base





