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Abstract – The generalized finite difference method
(GFDM) is a meshless method that has become popu-
lar in recent years. The basic theory underlying GFDM
is to expand the point cluster function value at the center
node by Taylor’s formula and then obtain the best lin-
ear combinations of these function values to represent
the derivative at the central node by the least square fit-
ting technique. Subsequently, the minimized weighted
error between the approximated value and the accurate
value is obtained. This paper establishes the general
steps for solving waveguide eigenvalue problems with
GFDM. Excellent performance is shown by comparing
the proposed method and other common solutions. The
robustness of the proposed method is verified by calcu-
lating the cutoff wavenumbers of typical waveguides and
the eccentric circular waveguide in different modes.

Index Terms – Cutoff wavenumber, generalized finite
difference method, meshless method, waveguide eigen-
value problem.

I. INTRODUCTION
The waveguide eigenvalue problem can be described

as the electromagnetic wave propagation problem in
closed or open structures under different boundary
shapes and conditions. For regular-shaped waveguides,
analytical expressions can be obtained by the variable
separation method, and the cutoff wavelength of the main
mode of the ridge waveguide can be obtained by the
transverse resonance method [1]. However, most waveg-
uides with complex cross-sectional geometries must be
solved numerically. The finite difference method (FDM)
is one of the common methods to solve waveguide prob-
lems. Thereby, the basic idea is to approximate the
derivative of the target node with the difference quotient
of function values. The compact two-dimensional (2D)
frequency-domain finite difference method (FDFD) is

derived from Maxwell’s curl equations and uses compact
2D Yee cells to mesh the waveguide cross section [2].
This method only involves four transverse field compo-
nents, which can greatly reduce the CPU time compared
to the 3D finite-difference time-domain method (FDTD)
[3]. The finite element method (FEM) transforms the
eigen-problem into an equivalent variational equation,
constructs the divisional basis functions on the grid ele-
ments of the waveguide cross section, and uses the Ritz
method or Galerkin method to construct the algebraic
finite element equation [4]. When dealing with complex
structures or discontinuous boundaries, these grid-based
methods suffer from the problem of complex meshing
and low accuracy. The radial basis function (RBF) inter-
polation method is a meshless method, and its main idea
is to use basis functions to approximate the function to
be sought over the entire simulation domain [5]. By
requiring that the approximate value and actual value
are strictly equal, a matrix equation with weight coeffi-
cients as variables is constructed, and the derivative at the
center node is transformed into a linear combination of
the function values of the surrounding nodes. Recently,
RBF and the variational principle have been combined
to analyze the propagation characteristics of inhomoge-
neous waveguides, which further expands the application
of this method [6]. Although meshless methods have
been successfully applied to many scientific and engi-
neering fields, their employment in the field of computa-
tional electromagnetics is still relatively slow [7].

The generalized finite difference method (GFDM)
is a relatively new domain-style meshless method that
uses the weighted sum of surrounding function values to
represent the derivative at center node. Benito gave the
basic concepts of the GFDM, including node distribu-
tion, local approximation, and the construction of point
clusters [8–10]. The influence of factors such as the size
of the point cluster, the shape of the point cluster, and
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the selection of the weight function on the accuracy of
the GFDM is also analyzed [11]. Kamyabi proposed
an improved version of the GFDM, which makes it no
longer dependent on the least square method and can
handle the Neumann boundary conditions in a sophis-
ticated way [12]. At present, the GFDM has been effec-
tively applied in many fields. For example, Li and Fan
applied this method to solve the shallow water wave
equation [13], Gu solved the inverse heat source prob-
lem [14], and Zhang analyzed the sloshing phenomenon
[15]. In the field of electromagnetism, Chen verified the
effectiveness of the GFDM in calculating static electro-
magnetic field problems and analyzing 3D transient elec-
tromagnetic problems [16]. The results show that the
GFDM is more accurate and faster than the FEM.

In our previous work [17], GFDM was effectively
used to analyze the propagation characteristics of the
waveguide. However, when solving the TE mode prob-
lem, it relied on the second set of node distribution
schemes, that is, an additional layer of discrete points
needs to be arranged outside the boundary. In this paper,
the general steps to solve eigenvalue problem of waveg-
uides are given based on the meshless features of GFDM,
and the calculation result of an eccentric circular waveg-
uide is added. This paper also proposes a new ver-
sion of GFDM, which can directly use Neumann bound-
ary conditions for the calculation of derivatives. The
improved GFDM compares the Taylor expansion of adja-
cent nodes with the expression of the governing equa-
tion to construct the matrix equation. Consequently, the
solution process is more convenient and faster than the
traditional GFDM. In addition, we compare the GFDM
against other common methods to demonstrate the
unique merits of this method in solving the waveguide
problem.

II. FORMULATION OF GFDM
A. Basic theory of GFDM

Without loss of generality, consider solving the
second-order partial differential equation

λ10
∂ϕ

∂x
+λ01

∂ϕ

∂y
+λ20

∂ 2ϕ

∂x2 +λ02
∂ 2ϕ

∂y2 +λ11
∂ 2ϕ

∂x∂y
= f (x,y). (1)

In order to obtain the generalized finite difference
equivalence of eqn (1), the computational node X = [x,y]
of the function ϕ(X) is arranged inside and on the bound-
ary of the simulation domain. The distribution of the dis-
crete nodes may or may not be uniform.

The GFDM puts forward the concept of point clus-
ters, which amounts to finding m nearest adjacent nodes
around the center node X0 according to the shortest dis-
tance criterion. The set of m+1 nodes including the cen-
ter node is referred to as the point cluster of X0 (as shown

Fig. 1. Schematic diagram of GFDM. Irrespectively of
the position of the central node, being an interior or a
boundary node, 12 suitably- chosen adjacent nodes con-
stitute a point cluster.

in Figure 1) and its shape is determined by the distribu-
tion of adjacent nodes. Assume that ϕ0 and ϕi repre-
sent the function values at the center node and adjacent
nodes, respectively. In order to establish the relationship
between the differential at X0 and its point cluster, ϕi is
expanded at ϕ0 by Taylor’s series expansion formula and
truncated at the second derivate,

ϕi = ϕ0 +hi
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(2)
where hi=xi−x0 and ki=yi−y0, respectively, represent
the vertical and horizontal distances between Xi and X0.

The error between the expanded and actual values,
the residual function, can be expressed as

B(ϕ) =
m

∑
i=1

[(
ϕ0−ϕi +hi

(
∂ϕ

∂x

)
0

+ ki

(
∂ϕ

∂y

)
0

+
h2

i
2

(
∂ 2ϕ

∂x2

)
0
+

k2
i

2

(
∂ 2ϕ

∂y2

)
0

+hiki

(
∂ 2ϕ

∂x∂y

)
0

)
ω(Xi)

]2

, (3)

where ω(Xi) is the error weighting function. The expres-
sion of weighting function is not unique, but they all have
a common feature, that is, the closer they are to center
node, the greater the weight given, and the greater the
contribution to the final calculation result. In this paper,
the expression of ω(Xi) is defined as

ω(Xi) = 1−6
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where di represents the distance from Xi to X0, and dmax
is the maximum value among all di. The coefficient in
ω(Xi) adds up to 0, which changes the function range
from 0 to 1. In addition, the function ω(Xi) is monoton-
ically decreasing and has a pole when di/dmax equals 0
or 1, which makes the function smooth. This construc-
tion also implies that ω(Xi) decreases rapidly when di
increases, which explicitly gives the weight distribution
of each point in the cluster.

For brevity, define

Dϕ=

[
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Then the residual function B(ϕ) in eqn (3) can be
expressed in the form of the matrix as

B(ϕ) =
(
PDϕ +ΦΦΦ0−ΦΦΦ

)T W
(
PDϕ +ΦΦΦ0−ΦΦΦ

)
, (8)

where ΦΦΦ = [ϕ1, . . . ,ϕm]
T and ΦΦΦ0=[ϕ0, . . . ,ϕ0]

T are the
vectors of function values sampled at Xi and X0, respec-
tively. Furthermore, W= diag(ω2

1 , . . . ,ω
2
m) is a diagonal

matrix.
The residual function can be regarded as a cost func-

tion in an optimization algorithm with the elements in
Dϕ as independent variables. The optimal solution is
obtained by minimizing the norm B(ϕ)

∂B
∂
{

Dϕ

} = 0, (9)

resulting in the linear equation
ADϕ = b, (10)

with A=PT WP and b=PT W(ΦΦΦ−ΦΦΦ0). The matrix A
is symmetric, and, thus, the Cholesky decomposition
method can be used to solve eqn (10). The expression
of A indicates that at least five adjacent nodes should be
found to construct the difference scheme; otherwise, the
matrix A is not invertible because its rank must satisfy
the condition: rank(A) = min{rank(P) , rank(W)}.

By solving eqn (10), Dϕ can be expressed as
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(11)
Eqn (11) shows that all second-order derivatives at cen-
ter node X0 can be represented by a linear combination
of function values at the nodes in point cluster. Each
row element of the coefficient matrix in front of the vec-

Fig. 2. Schematic diagram of improved version of
GFDM. Only five adjacent nodes around the central node
need to be found to construct a point cluster.

tor [ϕ0,ϕ1, . . . ,ϕ0]
Tcorresponds to the difference result of

each element in Dϕ .

B. Improved version of GFDM
From the above difference scheme, it can be seen

that at least five adjacent nodes need to be found to repre-
sent the derivative at center node, which provides an idea
for the improved version of GFDM. The second deriva-
tive of ϕ(X) with respect to each variable of x and y at
the node X0 is approximated as linear combinations of
the neighbor nodes

Lϕ (X0) =
5

∑
i=0

ciϕi, (12)

where L represents the derivative operator of the gov-
erning equation that ϕ satisfies, and ci, i= 0, . . . ,5 are
weight coefficients to be determined. First, expand
these five nodes according to eqn (2) and then group
similar terms. According to the coefficient in front of
the similar term and the corresponding coefficient in L
are strictly equal, the following matrix equation can be
obtained:

1 1 1 1 1 1
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0 k1 k2 k3 k4 k5
0 h2
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0 k2

1/2 k2
2/2 k2

3/2 k2
4/2 k2

5/2
0 h1k1 h2k2 h3k3 h4k4 h5k5




c0
c1
c2
c3
c4
c5

=


b0
b1
b2
b3
b4
b5

 ,
(13)

where b0 is the coefficient in front of ϕ0, bi, i= 1, . . . ,5
are the coefficients in front of each element in Dϕ .
The value of bi is determined by the governing equa-
tion. For example, when solving eqn (1), bi is the
corresponding value in the set {0,λ10,λ01,λ20,λ02,λ11}.
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The weight coefficient ci can be obtained by solving the
matrix equation Ac = b given by eqn (13).

When constructing a cluster of nodes around the
boundary, several nodes on the boundary are also
included. Assume that X5 is the boundary node
and ϕ (X5) satisfies the Neumann boundary condition.
Express the derivative at X0 as

Lϕ (X0) =
4

∑
i=0

ciϕi + c5r
(

∂ϕ

∂n

)
5
. (14)

Here, r is the average distance between adjacent nodes
and the center nodes. The purpose of adding this item
is to ensure that all coefficients are in the same order of
magnitude. Expand the last term in eqn (14) according
to Taylor’s series formula(
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where nx and ny correspond to the axial component of
the unit normal vector at node X5, respectively.

For each adjacent node, if it is located on the bound-
ary, expand according to eqn (15); otherwise, it is
expanded by eqn (2). Grouping terms of similar kind,
the following matrix equation can be obtained:
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(16)
The matrix A in eqn (13) or eqn (16) must be auto-

matically scaled by “1”, “r”, and “r2” because of the
appearance of the first and second derivatives. Vector
b has to make the same change to ensure the equation is
correct. In addition, taking r as a normalized factor can
effectively avoid the singularity of matrix due to uneven
distribution of adjacent points.

C. General steps for analyzing waveguides
When electromagnetic waves propagate in a uni-

form metal waveguide with the axis along the z-direction,
the governing equations and boundary conditions that the
electromagnetic field satisfies are

Lϕ + k2
cϕ = 0 (17)

LBϕ = 0, (18)
where ϕ is the electromagnetic field component, kc is
the cutoff wavenumber, L=∇2

t is the transverse Lapla-
cian operator, and LB is the boundary operator. When
propagating TM wave, ϕ=Ez, LB refers to the Dirichlet

boundary Ez= 0. When propagating TE wave, ϕ=Hz, LB
refers to the Neumann boundary ∂Hz/∂n= 0.

As the generalized finite difference scheme given by
eqn (11), GFDM simultaneously gives the numerical dis-
crete results of all derivatives of ϕ (X) at a certain node;
so the coefficient matrix obtained by GFDM should be
combined according to the governing equation. The dif-
ference result of the internal node is multiplied by the
vector [0,0,1,1,0] because it satisfies the Laplace equa-
tion. For nodes on the boundary, when solving the TM
wave problem, the differential processing is not required
because the boundary value ϕ= 0 is known, and when
solving the TE wave problem, the result should be multi-
plied by the vector [nx, ny,0,0,0] because the Neumann
boundary condition is satisfied.

First, we arrange NI discrete points inside the cross
section and NB discrete points on the boundary, with N =
NI +NB. According to the difference scheme for solving
the waveguide problem given above, the internal node
repeats this process NI times to obtain the matrix A, and
eqn (17) can be written as[

AI AB
][ ϕϕϕI

ϕϕϕB

]
=−k2

cϕϕϕI, (19)

where ϕϕϕ I=[ϕ1, . . . ,ϕNI ]
T and ϕϕϕB=[ϕNI+1, . . . ,ϕN ]

T. For
nodes on the boundary, when Neumann BCs have to be
satisfied, matrix B can be obtained similarly[

BI BB
][ ϕϕϕI

ϕϕϕB

]
= 0. (20)

Combining eqn (19) and (20), the eigenvalue equation
describing the waveguide problem can be discretized and
written in the matrix form[

AI −AB
(
B−1

B BI
) ]

ϕϕϕ I =−k2
cϕϕϕ I . (21)

The Dirichlet boundary condition can be directly sub-
stituted into the matrix because ϕϕϕB=0 means that the
weight coefficients of the boundary nodes in the general-
ized finite difference schema can be ignored, that is, the
matrix AB can be omitted.

When using the improved version of GFDM to
solve the waveguide problem, the value of vector b is
[0,0,0,1,1,0]. Compared with traditional GFDM, the
coefficient matrix can be constructed more conveniently
by eqn (13) and (16). Especially when solving the TE
wave problem, the boundary node avoids additional dif-
ferencing because the Neumann boundary can be directly
used as shown in eqn (14).

III. NUMERICAL RESULTS
To validate the GFDM in analyzing the waveguide

eigenvalue problems, we analyzed the dispersion charac-
teristics of TE modes and TM modes in different waveg-
uides. The size of the point cluster in GFDM is set to
be 10. The GFDM solution is compared with the FDM,
FDFD, and RBF solutions, and the reasons for the differ-
ences in the result are also given.



XU, BAO: GENERALIZED FINITE DIFFERENCE METHOD FOR SOLVING WAVEGUIDE EIGENVALUE PROBLEMS 270

Fig. 3. Error comparison of GFDM solution, FDM solu-
tion, and improved GFDM solution for cutoff wavenum-
bers of the TM wave and TE wave in the rectangular
waveguide. The “improved GFDM (TM)” line and the
“FDM (TM)” line coincide.

First, we consider a rectangular waveguide with
a size of 20 mm×10 mm and divide the calculation
domain uniformly at intervals of 1 mm. Figure 3 shows
the error comparison of GFDM solution, FDM solution,
and improved GFDM solution for cutoff wavenumbers
of the TM wave and TE wave in the rectangular waveg-
uide. When solving TM wave problems, the improved
GFDM solution is equal to the FDM solution because the
equally spaced and uniform distribution of the sampling
points leads to the same weight coefficient obtained by
eqn (13) as the FDM. When solving TE wave problems,
the improved GFDM and GFDM have obvious advan-
tages over FDM by virtue of the handing of Neumann
boundary conditions. This is because FDM needs an
extra layer of grid outside the boundary in order to deal
with the Neumann BCs, and the value of these grids is
equal to the function value of the nodes symmetrical to it
in the boundary. This means that the nodes on the bound-
ary must also be differentiated according to the govern-
ing equation, and this process produces additional errors.
In addition, FDM needs to modify the difference formula
to satisfy the boundary conditions, while the solution
process of GFDM is more versatile.

Figure 4 shows the dispersion characteristics of
TE10, TE01, and TM11 modes in rectangular waveguide
by using GFDM and FDFD, respectively. The improved
GFDM is not included in Figure 4 because it is almost
equal to the GFDM solution, which can be seen from
Figure 1. The eigenvalue equation of FDFD is derived
from Maxwell’s curl equations, where the eigenvalue and
eigenvector expressions are β/k0 and [Ex,Ey,Hx,Hy]

T,
respectively. This method cannot directly yield kc for
each mode, nor can it determine the wave transmission
mode; so the results are given as scatter points. Since

Fig. 4. Dispersion characteristics of T E10, T E01, and
T M11 modes in rectangular waveguide. Results are cal-
culated using GFDM and FDFD.

the eigenvector involves four field components, the cor-
rection of the FDFD difference formula at the boundary
is more complicated than that of FDM, and it is neces-
sary to consider both the Dirichlet BCs and the Neumann
BCs. In addition, each discrete point of FDFD will pro-
duce two variables. Consequently, the size of the coef-
ficient matrix obtained by FDFD is about 2NI×2NI , and
the size of GFDM is about NI×NI . This means that using
the same subdivision, GFDM saves memory space when
compared against FDFD.

RBF is similar to GFDM, and both express the
derivative at the center node by the weighted sum of the
function values of each node in the point cluster. The size
of the point cluster Ns in RBF needs to satisfy Ns & 2Np,
where Np is the number of polynomials included in the
interpolation function, and the value of Np is related to
the highest degree d of the polynomial. For example,
when d= 2, all polynomials are

{
1,x,y,x2,y2,xy

}
, the

number of polynomials is Np = 6, and RBF requires that
the cluster size must satisfy Ns & 12.

Take a circular waveguide with a radius of 1 mm
as an example to compare the stability and accuracy
of GFDM and RBF. The numbers of computational
points inside the cross section and on the boundary are
NI= 305 and NB= 50, and the cluster size is set to be 12.
Figure 5 shows the relative error of the GFDM solution
and RBF solution of the TE main mode and TM main
mode in circular waveguide at different cluster sizes. If
the relative error in the figure is on the dotted line, it
means that the result is wrong. The improved GFDM
result was not used for comparison because its cluster
size was fixed to be 6. As the point cluster size changes,
GFDM is significantly more stable and accurate than
RBF. It is worth mentioning that although increasing the
number of polynomials in RBF is beneficial to improv-
ing the performance of the method, it means that more
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Fig. 5. Error comparison between the GFDM solution
and the RBF solution of the cutoff wavenumbers of the
TE main mode and TM main mode in the circular waveg-
uide.

Table 1: Comparison of computer execution time in
GFDM and RBF

Point cluster size GFDM RBF
12 0.3886 s 0.7555 s
20 0.4080 s 1.5053 s
30 0.4333 s 2.8191 s

adjacent nodes need to be found to represent the deriva-
tive, which will lead to a sharp increase in the amount of
calculation. Table 1 gives the comparison of computer
execution time between GFDM and RBF under the same
sampling point and cluster size. As the number of adja-
cent points increases, that is, the size of the point clus-
ter increases, the advantages of GFDM are more obvi-
ous. The main reason is that RBF needs to calculate
the distance between each node in the point cluster and
all remaining nodes, when calculating the weight coef-
ficient, while GFDM only requires the distance between
the central node and the adjacent nodes.

Finally, GFDM and an improved version of GFDM
are used to solve the cutoff wavenumbers of an eccentric
circular waveguide. Since the cross section of the waveg-

Table 2: Normalized cutoff wavenumber for the first six
even TM modes
Traditional GFDM Improved GFDM Method in [5]

4.8001 4.8016 4.8106
6.1505 6.1530 6.1724
7.3591 7.3646 7.3945
8.4473 8.4591 8.4974
9.2701 9.2776 9.3409
9.4048 9.4198 9.4739

Fig. 6. The distribution of computational nodes on the
cross-section of the eccentric circular waveguide when
solving even TM modes. The outer and inner radii of
the waveguide are a and 0.5a, respectively. The distance
between the two circle centers is 0.2a.

uide is symmetrical about the x-axis, the odd and even
modes can be solved separately. Figure 6 shows the dis-
tribution of computational nodes on the cross section of
the eccentric circular waveguide when solving even TM
modes. As shown in Table 2, the results of traditional
GFDM and improved GFDM agree with the results given
in [5].

IV. CONCLUSION
In this paper, the effectiveness of GFDM to solve the

eigenvalue problem for the waveguide is verified. Com-
pared with FDM and FDFD, GFDM avoids the com-
plicated meshing process, and the difference formula is
more versatile. What is more, GFDM owns the mesh-
less feature to better handle Neumann boundary condi-
tions. Compared with RBF, which is one of the mesh-
less methods, GFDM has higher efficiency and better
stability. GFDM provides a new idea and contributes sig-
nificantly to solving the eigenvalue problems associated
with waveguides.
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