
Parallel Implementations of the PEEC Method

Danesh Daroui and Jonas Ekman

Department of Computer Science and Electrical Engineering
Luleå University of Technology, 971 87 Luleå, Sweden

danesh.daroui@ltu.se, jonas.ekman@ltu.se

Abstract ─ This paper presents the first parallel
implementation of a partial element equivalent
circuit (PEEC) based electromagnetic modelling
code suitable for solving general electromagnetic
problems. The parallelization is based on the
GMM++ and ScaLAPACK packages which are
cross-platform libraries available for major
operating systems. The parallel PEEC solver has
been tested on several high performance computer
systems. Large structures containing over 250 000
unknown current and voltage basis functions were
successfully analyzed for the first time with a
general PEEC-solver. The numerical examples are
of orthogonal type, studied both in the time and
frequency domain, for which memory,
performance, and speed-up results are presented.

Index Terms ─ PEEC, parallel computing,
integral equation.

I. INTRODUCTION
 As for all the methods within computational
electromagnetics, the problem system size that can
be solved increases with more efficient computer
implementations and more powerful computer
systems. However, the desired problem sizes to be
solved also increase and there is a clear gap
between desired and possible problem size to be
solved. Fast solutions for EM problems have been
treated for a long time, i.e. [1] where both
differential and integral equation solvers were
discussed. For the integral equation based solvers,
fast Krylov subspace approaches are available, for
example, the fast-multipole method (FMM) [2]
and QR-based algorithms [3]. The next step, after
faster implementations, is to improve the
computing power running the algorithms. One
solution is to use grid computing on different
levels. For example, using a local area network of
interconnected computers to speed-up calculations

or by porting the code to parallel architectures.
Recent publications on the extension to parallel
implementations are for example [4] where a
nesting combination of the finite element domain
decomposition method and the algebraic multigrid
method is presented, [5] on the implicit FDTD
method, and [6] for a parallel version of the
numerical electromagnetics code (NEC).
 The partial element equivalent circuit (PEEC)
method [7] is widely used for solving mixed
circuit and electromagnetic (EM) problems. The
method gives a framework for creating electric
equivalent circuit representations for three-
dimensional electromagnetic problems and
calculating self and mutual partial inductances [8]
and capacitances (coefficients of potential) [9].
The resulting equivalent circuits can be solved in
SPICE-like solvers or, for the full-wave case, by
creating and solving the fully coupled circuit
equations [10]. Until now, no parallel
implementation on the PEEC method has been
reported except for in [11] where a sequential code
was parallelized for LANs using a freeware. In
this paper, the first parallel implementation of a
non-accelerated, e.g. FMM, PEEC method [12] is
presented for high performance computing using
the ScaLAPACK package [13].
 Other approaches for accelerating PEEC-based
computations are for example FMM-based
approaches as detailed in [14, 15], wavelet-based
PEEC analysis as in [16-18], and QR-
decomposition as shown in [19]. The goal with
this work has been to accelerate the general PEEC
method which allows for both time and frequency
domain solution from DC to the highest frequency
of interest (given by the mesh) and not to be
restricted by the above mentioned acceleration
techniques impacting, for example, on the low
frequency behaviour. The paper is organized in the
following way. Section II presents a summary of

1054-4887 © 2010 ACES

410ACES JOURNAL, VOL. 25, NO. 5, MAY 2010

the PEEC method and the developed computer
program while Section III presents the
parallelization of the same using the ScaLAPACK
package. Then, Section IV and V show the
applicability of the solver for two numerical
examples, a free-space reactor and a shielding
study. Finally conclusions and further work are
detailed in Section VI. It is shown that with this
type of parallel PEEC solvers the problem size can
be increased considerably and new application
areas arise.

II. SUMMARY OF PEEC THEORY
 This section gives a brief summary of the
classical, orthogonal PEEC formulation. For
further information, see [7-9].

A. Extraction of Equivalent Circuit
 The classical PEEC method is derived from the
equation for the total electric field at a point [20]
written as

(,) (,)(,) (,)t tt t
t

i J r A rr rE

, (1)

where iE is an incident electric field, J is a
current density, A is the magnetic vector potential,
 is the scalar electric potential, and the
electrical conductivity all at observation point r.
By using the definitions of the scalar and vector
potentials, the current- and charge-densities are
discretized by defining pulse basis functions for
the conductors and dielectric materials. Pulse
functions are also used for the weighting functions
resulting in a Galerkin type solution. By defining a
suitable inner product, a weighted volume integral
over the cells, the field equation (1) can be
interpreted as Kirchhoff’s voltage law over a
PEEC cell consisting of partial self inductances
between the nodes and partial mutual inductances
representing the magnetic field coupling in the
equivalent circuit. The partial inductances shown
as 11pL and 22pL in Fig. 1 are defined as

v vp dvdv

rraa
L 11

4
, (2)

for volume cell and . Figure 1 also shows the
node capacitances which are related to the

coefficients of potential iip while ratios consisting
of iiij pp are leading to the current sources in the
PEEC circuit. The coefficients of potentials are
computed as

i jS S ij
jiji

ij dSdS
rrSS

p 1
4

11

0
 , (3)

and a resistive term between the nodes, defined as

 a

l
R . (4)

In (2) and (4), a represents the cross section of the
rectangular volume cell normal to the current
direction , and l is the length in the current
direction. Further, v represents the current volume
cells and S the charge surface cells. For a detailed
derivation of the method, including the
nonorthogonal formulation, see [21].

(a)

(b)

Fig. 1. Metal strip with 3 nodes and 2 cells (a) and
corresponding PEEC circuit (b).

B. Solution of Equation of Circuit
 The discretization process of the EFIE in (1)
and the successive Galerkin’s weighting leads to
an equivalent circuit formulation. When
Kirchhoff’s voltage and current laws are enforced

411 ACES JOURNAL, VOL. 25, NO. 5, MAY 2010

to the iN independent loops and N independent
nodes of the PEEC equivalent circuit we obtain:

),()()(

),()()()(
1 titiAtP

tvtiLtRitA

sL
T

sLpL

 (5)

where

 Nt)(is the vector of node

potentials to infinity; N is the node
space of the equivalent network;

 iN
L ti)(is the vector of currents

including both conduction and
displacement currents; iN is the current
space of the equivalent network;

 PL is the matrix of partial inductances
describing the magnetic field coupling;

 P is the matrix of coefficients of potential
describing the electric field couplings;

 R is the matrix of resistances;
 A is the connectivity matrix;
)(tvs is the vector of distributed voltage

sources due to external electromagnetic
fields or lumped voltage sources;

)(tis is the vector of lumped current
sources.

 The equation system in (5) is equivalent to the
circuit equations formulated in SPICE-type of
solvers for obtaining the solution in node voltages
and branch currents. However, for PEECs the
equation system in (5) contain more dense
matrices (PL and P) compared to a pure electric
network system solution due to the large number
of mutually coupled inductors and mutual
capacitances. Therefore, the solution of PEECs
requires linear algebra packages suitable for dense
matrices. The exception is the full-wave, time
domain case where retarded magnetic and electric
field couplings are treated as known sources and
the pL and P matrices are more sparse [10].
 The equation system in (5) is often entitled a
Modified Nodal Analysis (MNA) formulation [22]
and can be modified to suit the solution of PEECs
[10]. From the MNA formulation, the Nodal
Analysis (NA) formulation can be derived which
only solves for the node potentials by a reduced

equation system while the branch currents are
calculated in a second step. In the frequency
domain the NA system can be written as

 Sp
T IPjALjRA 111)())(()(.

(6)

to solve for the node potentials at a specific
frequency for the excitation specified by SI . Both
formulations are tested in this paper and results are
presented in Sec. IV and V.

C. Sequential Code for EM Analysis Using
PEEC Theory
 A program for EM analysis, based on the
theory and references outlined above, has been
developed [23]. The solver can handle both the
traditional orthogonal PEEC model and the newly
introduced nonorthogonal formulation [21]. In this
paper, only orthogonal models are considered
while nonorthogonal results will be presented in a
future paper since different issues arise when
working with nonorthogonal PEEC models [24],
[25]. The program creates an equivalent circuit
and calculates the corresponding resistances,
partial inductances, capacitances, and coupled
voltage and current sources (to account for
electromagnetic couplings) for the given
geometrical layout (CAD-data as specified in an
input file). The user adds external electronic (sub-)
systems and analysis mode as described by the
SPICE syntax. The actual solution of the resulting
circuit equations (5) in either the time or frequency
domain is performed in the solver and results are
given as current- and voltage distributions in the
geometrical layout. Post-processing routines are
implemented for calculating field quantities at
specified locations. The workflow in the program
is shown in Fig. 2.
 The sequential implementation utilizes the
GMM++ linear algebra package and the Intel C++
Compiler with pragmas for compiler optimization
to be performed. This allows, for example, for the
use of multiple processors in calculating partial
elements and other trivial pipelining, loop
unrolling/distribution, data prefetching, and loop-
carried dependencies occurring in the original,
 sequential implementation.
 It is the presented sequential code that has been

412DAROUI, EKMAN: PARALLEL IMPLEMENTATIONS OF THE PEEC METHOD

parallelized and for which results are presented in
this paper.

Fig. 2. Flow diagram for the PEEC solver.

III. PARALLELIZATION OF THE PEEC

SOLVER
A. Introduction
 The development platform was a Linux cluster
consists of nodes equipped with two Intel Xeon
quad-core 2.5 GHz CPUs and 16 GB of RAM
memory. The code has been written in C++ under
Linux and is compatible with parallel computer
systems with distributed memory architecture

using ScaLAPACK as computational library.
ScaLAPACK (Scalable LAPACK) is a library of
LAPACK routines, revised for parallel computer
systems with distributed memory architecture. The
package enables the use of high performance
computing clusters in a simple fashion and allows
for a considerable acceleration of the developed
PEEC-based program. Like LAPACK,
ScaLAPACK offers a set of highly optimized
routines to solve systems of linear equations,
which consists of matrices distributed among a
bunch of processors. The library performs basic
linear algebra operations such as product between
matrices and vectors using PBLAS. PBLAS is
parallel version of a rich library of computational
routines called BLAS which is included in
LAPACK. Finally a set of routines called BLACS
is used to manage communication between nodes
running ScaLAPACK. These routines use
algorithms called block-partitioned algorithms to
minimize movement of data between nodes by
load balancing between computational elements.
ScaLAPACK has been written in FORTRAN and
developed for parallel computer systems. The
choice to use this library was based on optimized
and efficient message passing methods have been
used in it, speed and scalability and good interface
for C++ programmers. In addition it is a stable,
well tested, and efficient library and provides
access to a very large collection of useful,
powerful and flexible functions in BLAS and
LAPACK which have been parallelized
efficiently. Using ScaLAPACK we were assured
that a good load balancing is achieved by
distributing input data on a bunch of processing
nodes using block cyclic data distribution
algorithms which speeds up the operations
by minimizing data transfer between processing
units.
 The parallel solver performs these four steps to
solve a problem:

1. The discretization process is entirely serial
and duplicated on all processors.

2. The partial element calculations are easily
parallelized as no communication is
required between nodes while each node
calculates assigned part of basic matrices
in parallel with other nodes. The main
difficulty lies in the mapping between
global and local matrix coordinates [6].

413 ACES JOURNAL, VOL. 25, NO. 5, MAY 2010

3. The matrix formulation, (5) or (6), and
solution parts are implemented using
ScaLAPACK routines.

4. At the end when all processes have
reached final synchronization point, the
results will be gathered on the root
processing unit and will be saved in
appropriate format.

B. Parallelization of Partial Element
Computations
 The partial element calculations are easily
parallelized using parallel processors which fill a
large matrix, distributed by ScaLAPACK data
management algorithms, completely in parallel
and independent of each other. For the time
domain problems these are PL and P matrices
which are symmetric and have entries of type
double precision floating-point. Hence the fill-in
times for the time domain solver is decreased
linearly as number of allocated processors grows.
Since these two matrices are symmetric, Cholesky
factorization routines in ScaLAPACK package can
be used to factorize them. Due to the properties of
the entries of PL and P matrices which has the
type complex with double precision floating point
for problems in frequency domain and because
these matrices do not fulfill Hermitian properties,
only LU factorization is possible and therefore the
need to fill in the whole matrix. The process of
placing element from one part of a distributed
matrix to the other part is computationally
expensive and complicated in parallel programs
and especially for the MNA-approach seen in (5).
But this was overcome by a special Transpose-
And-Add method as detailed in [26].

C. Parallelization of Matrix Solutions
 After filling-in the matrices, the solution of the
time or frequency domain versions of the circuit
equations in (5) and (6) has to be performed. This
is done using the ScaLAPACK library of high-
performance linear algebra routines for distributed
memory message-passing MIMD (multiple
instruction stream, multiple data stream)
computers and networks of workstations
supporting parallel virtual machine (PVM) and/or
message passing interface (MPI). ScaLAPACK
uses block cyclic data distribution [27] to
achieving good load balancing. This means that

matrices are divided into blocks in two dimensions
and these blocks are assigned to a set of
processors. This is further detailed in [6] when
using the numerical electromagnetic code (NEC)
to solve electromagnetic problems using
ScaLAPACK.

IV. NUMERICAL TEST (I) - AIR-CORE

REACTOR
 To present the speed-up of the parallel PEEC
implementation, an air-core reactor structure is
utilized since measurement results have been
collected and the cell count is easily increased. In
previous papers, i.e. [28], the reactor have been
studied in the time and frequency domain with
regular),,,(PRLP PEEC models. However, the
inclusion of Skin and proximity effects have not
been possible in earlier works through the volume
filament approach, (VFI)PEEC, due to the
excessive number of unknowns. Here, the air-core
reactor is analyzed with both the original serial
PEEC solver, when possible and the new parallel
PEEC solver in the time and frequency domain.

Fig. 3. Reactor voltage simulation result at 4 μs
after impulse test.

 The test structure, seen in Fig. 3, is of
rectangular type with four sides equal in length =
0.5 m. The windings (turns) are totally 65 and
consist of copper tape with dimension 0.076 mm x
6.35 mm. The center to center spacing between the
turns is 10 mm. The parallel implementation of the
solver can now treat this type of problem and give
a more correct model for the current distribution in

414DAROUI, EKMAN: PARALLEL IMPLEMENTATIONS OF THE PEEC METHOD

the conductors. Figure 3 shows an example of the
voltage distribution in the reactor windings for a,
time domain, impulse test.

A. Partial Element Calculation Speed-Up
 To test the speed-up, five different meshes for
the reactor are utilized as seen in Table 1. For
example, the first test, T1-400, has 1300 surface
cells, 1040 volume cells, resulting in 2340
unknowns, and 1 105 nodes. The last test, T5-609,
has 50180 unknowns since it uses the volume
filament approach to model Skin effect in the
windings. The naming conventions used for these
test cases is in the format of T[n]-[abc], where n is
the test case number and a, b and c represent the
discretization level in the directions x, y and z
respectively.
 The partial element calculations are efficiently
parallelized as seen in Table 2. The table is
collected from time domain simulations. To be
noted is that the test case is an orthogonal PEEC
model utilizing analytical routines to evaluate
partial inductances (< 5μs/element in sequential
solver). The performance gain for the parallel
implementation, as shown in Table 2, can be
displayed by using a speed-up factor

np

p

t
t

nS 1)(, (7)

where

1pt is the time taken by the parallel code

using one processor and
npt is the time taken by

the parallel code using n processors. This is shown
in Fig. 4 where results from Table 2 are used
together with results from the frequency domain
solver by running the same test cases in the
frequency domain.
 From the figure it is clear that the time domain
fill-in time is better than the frequency domain fill-
in. This is because the time domain solvers use
symmetric matrices with the data type of double
precision floating point, so they can use symmetric
compatible functions in ScaLAPACK which
employ Cholesky factorization. But in the
frequency domain, since non-Hermitian matrices
with the data type of complex with double
precision floating point are used, ScaLAPACK
does not offer any symmetric compatible function.
Therefore for frequency domain solvers the

calculated part of matrix needs to be copied to the
other part to form the complete matrix and this
process will affect the speed-up factor as is shown
in Fig. 4.

Fig. 4. Speed-up factor for partial element
calculation and fill-in for air-core reactor example.

B. Solution Method - MNA or NA
 From the calculated matrices, as briefly
detailed in Sec. II-B, two popular methods are
used to formulate the circuit equations for the
PEEC model. First, the MNA formulation as
shown in (5) and second the NA formulation as
shown in (6). The MNA formulation is the more
general of the two and preferred mainly due to its
ability to handle general circuit element inclusion
with the PEEC model [22] and a stable low
frequency behavior. Table 3 gives details on the
formulations of the different systems of circuit
equations from a performance point of view.
 The table gives details for three of the
problems, T1, T3, and T5, when formulating the
circuit equations using the Nodal Analysis (NA) or
Modified Nodal Analysis (MNA) formulation in
the time or the frequency domain. The table also
shows several interesting results. For example, the
formulations of the circuit equations are more time
consuming in the frequency domain. This is
expected since the equations involve complex
numbers. Further, we see that the MNA
formulation is always faster than the NA
formulation even if the equation systems are larger
in size. This is mainly due to an efficient
formulation of (5) for which the inversion of the
coefficient of potential matrix P is avoided [10].

415 ACES JOURNAL, VOL. 25, NO. 5, MAY 2010

Table 1: Reactor characteristics.

Number of
Test surface cells)(N

(charge basis function)
volume cells)(iN

(current basis function)
unknowns)(iNN

(total)

nodes

T1-400 1 300 1 040 2 340 1 105
T2-900 2 600 2 340 4 940 2 405
T3-601 3 640 4 940 8 580 3 250
T4-605 10 920 18 460 29 380 9 750
T5-609 18 200 31 980 50 180 16 250

Table 2: Partial element calculations times for
NA-implementation.

Number of
processors

Time for TD-tests [s]

 T1 T2 T3 T4 T5
Serial 9.0 35.0 81.0 -* -

1 6.0 23.4 53.5 590.2 -
2 3.1 12.0 27.0 291.6 -
4 1.6 6.1 13.6 144.2 476.5
8 0.8 3.1 7.1 78.2 229.6
20 0.4 1.3 3.0 33.2 91.3
30 0.3 0.8 2.1 22.3 71.2

C. Total PEEC-Model Solution Time
 To conclude the two previous subsections,
speed-up factors for total PEEC-model solutions
are given. This is shown in Fig. 5 for the time
domain implementation of the NA and MNA
methods and in Fig. 6 for the frequency domain
implementation of the NA and MNA methods.
 Since the speed-up factors, as presented in Figs.
5 and 6, are based on results for one processor, as
seen in (7), it is not possible to show results for all
test cases. However, using 30 processors, the only
tests that could not be carried out with the current
implementation are T4 and T5 in the frequency
domain using the MNA method.
From the figures, several conclusions can be
drawn:

 For small problems in the time domain,
i.e. T1, and T2, increasing the number of
processors does not improve the overall
solution time since the communication

 (a)

(b)

Fig. 6. Total PEEC-model solution time for
frequency domain simulations using Nodal
Analysis (a) and Modified Nodal Analysis (b).

416DAROUI, EKMAN: PARALLEL IMPLEMENTATIONS OF THE PEEC METHOD

Table 3: Time for formulation of circuit equations.

 Time in TD / FD [s]
 T1-400 T3-601 T5-609
 NA MNA NA MNA NA MNA

Coefficient matrix size 1 300
 1 300

 2 340
 2 340

 2 640
 2 640

 8 580
 8 580

 18 200
 18 200

 50 180
 50 180

Number of processors
1 1.0 / 3.1 0.93 / 2.7 51.1 / 182.7 26.8 / 35 - / - - / -
8 0.25 / 0.58 0.22 / 0.35 11.75 / 27.7 4.5 / 9.0 1 434 / 5 400 473 / -

30 0.26 / 0.32 0.14 / 0.26 4.11 / 9.7 2.0 / 3.0 634 / 2 300 138 / 380

(a)

(b)

Fig. 6. Total PEEC-model solution time for
frequency domain simulations using Nodal
Analysis (a) and Modified Nodal Analysis (b).

time between the processors increases and
exceed the total solution time. For
example in Fig. 5 (a) and (b), problem T1
saturates at 8 processors. Hence, using a
bunch of processors for a small problem
will not necessarily improve the
performance.

 Frequency domain problems experience a
larger speed-up factor compared to time
domain problem. However, in general
frequency domain problems are more time
consuming in absolute numbers.

 In both domains, the MNA-based solver
shows better speed-up factor compared to
the NA counterpart. This means that in
both NA figures, the problem is already
saturated or the speed-up factor grows
very slowly when more processors are
allocated. Thus, the MNA-formulation is
more suited for parallelization using
ScaLAPACK.

 The figures presented in this section do not
reveal the absolute solution time of the problems.
It might seem that the MNA formulation is the
fastest. However, in fact, the NA formulation is
the fastest solution method for all tests. The MNA
formulation is preferred for reasons given in Sec.
IV-B.

D. Memory Usage
 In this section, the memory usage of the
parallel solver is presented based on the following
aspects:

 memory usage as a function of number of
processors;

417 ACES JOURNAL, VOL. 25, NO. 5, MAY 2010

 memory usage as a function of problem
size.

1) Memory usage as a function of the number of
processors: The total memory usage M should be
a function of the number of processors, n, and the
problem size. This can be expressed as

banM , (8)

where a and b are constants. Figure 7 shows the
total memory usage M as a function of processors.
The increase is clearly linear and eq. (8) is
verified.

Fig. 7. Total memory usage as a function of
processors.

 Another way of expressing this is as average
memory usage per processor m as

cn
bm . (9)

This behavior for the parallel PEEC solver is
verified by Table 4.

2) Memory usage as a function of problem size:
The expected memory usage is

dcnbnM uu 2 . (10)

This is a simplification as in reality the actual
increase is not as straightforward. This is due to

the number of surface cells, volume cells, and
nodes vary and the memory usage will be a more
complicated function of these variables. The
validity of (10) is exemplified in Fig. 8 for the
parallel implementation using the NA approach in
both the time and frequency domain on all the test
cases from Table 1. Studying Fig. 8 when letting
M be total memory usage and)(iu NNn be
the number of unknowns in eq. (10), the
assumption is valid.

Table 4: Average memory usage for varying
number of processors. Simulation of reactor.

 Average memory usage/proc. [MB]

Number of
processors

T2-900 T5-609

 TD FD TD FD
1 281 643 - -
2 160 303 - -
4 86 159 7 472 -
8 51 88 3 815 -

20 28 44 1 543 3 545
30 24 34 1 049 2 395

V. NUMERICAL TEST (II) – SURGE

TEST
 In order to test the parallel solver and to find
out how large problems can be solved, a second
numerical example is presented. The setup is a
surge pulse that is applied to a 100_100_150 cm
enclosure. This is a problem that requires a fine
mesh for a large structure and a long simulation
time for the pulse to decay. In this test, the
enclosure is excited on the top surface with a surge
pulse given by

)()(0
tt eeIti , (11)

Where
2188100 I , 11354 and 647265 .

The enclosure is grounded using 1Ω resistor at the
bottom surface. For comparison, CST software has
been used to study the same problem. Figure 9 (a)
shows voltage distribution in the enclosure due to
the surge test and Fig. 9 (b) a comparison of CST
and PEEC results for the resistor current/voltage
(due to 1Ω resistor). As can be seen, the results are
close to overlapping.

418DAROUI, EKMAN: PARALLEL IMPLEMENTATIONS OF THE PEEC METHOD

 The simulation time was the main advantage of
the PEEC simulations for this case. It was about
31 hours with the CST (note that the CST has
more number of points than PEEC simulation).

Fig. 8. Total memory usage for the Nodal Analysis
implementation when increasing the problem size
for a fixed number of processors (30).

The corresponding time with PEEC was about ten
minutes using a sequential code (not the parallel
implementation) for a mesh corresponding to ten
cells per wavelength. The comparison can seem
unfair, as often when comparing different basic
formulations in computational electromagnetics.
This example is an optimal PEEC-type of problem
due to the thin, metallic walls of the enclosure
located in free space. However, CST was used to
validate the results and not to benchmark the
implementation.
 To test the parallel implementation, three cases
with different discretization level were tested
using the NA, time domain solver. Table 5
describes each test case and the corresponding
number of unknowns. As can be seen, Surge3
contains more than a quarter of a million of
unknowns and is the largest PEEC problem that
has been solved using a general PEEC
implementation capable of handling time and
frequency domain analysis from DC to a
maximum frequency given by the mesh. These
problems have been designed to be large enough
to stress the solver in both memory and
computational complexity sense.

 During these tests, it was always considered to
choose an optimum number of processors, while
using many processors for a small problem is not
efficient and can even degrade the performance if
the solver reaches or even pass saturation point.
By optimum, it is meant smallest number of
processors which can provide enough memory for
a problem and solve the problem as fast as
possible. Table 6 shows the simulation time,
number of unknowns (repeated for convenience),
memory consumption, and number of allocated
processors for each test case.

(a)

(b)

Fig. 9. Surge voltage simulation result at 1.8μs
after impulse test (a) and comparison of PEEC and
CST resistor current (b).

419 ACES JOURNAL, VOL. 25, NO. 5, MAY 2010

Table 5: Surge test characteristics.

Number of
Test surface cells

(charge basis function)
volume cells

(current basis function)
unknowns

(total)
nodes

Surge 1 10 404 20 400 30 804 10 200
Surge 2 48 884 96 880 145 764 48 400
Surge 3 89 244 177 240 266 484 88 800

Table 6: Total solution times and memory for NA-implementation.

Test Time [s] Memory [GB] Unknowns Processors
Surge 1 45 16 30 804 80
Surge 2 677 278 145 764 120
Surge 3 8 700 931 266 484 440

 With the number of unknowns handled in the
largest test case, > 250 000, many complex
problems can be studied using the PEEC method.
For example, pure inductance and capacitance
calculations for geometrically complex
geometries, R-L-C equivalent circuit extraction,
shielding and radiation problems of new
computational complexity. However, with more
complex models, new challenges arise in order to
ensure correct simulation results [29], optimal
mesh generation, and optimal usage of
computational resources.

VI. CONCLUSION

 In this paper the first parallel PEEC-based
solver was presented which is applicable to
problems formulated in both the time and
frequency domain solving problems from DC to
the highest frequency given by the appropriate
mesh. The parallel PEEC-based solver is a ported
version of the original sequential PEEC-based
solver which uses GMM++ linear algebra package
and is suitable for systems with shared memory
structure such as multi-core machines. The parallel
solver is designed to run on clusters with
distributed memory architecture by using
ScaLAPACK package to take advantage of any
number of processors allocated in a parallel
computer system.
 The presented implementation opens up new
doors for the solution of large problems formulates
using the PEEC approach. In order to understand
how parallel PEEC-based solver can improve

solving problems, several tests were done. The
results of these tests conclude that:
 Using a number of processors for small

problems will not improve the solution time
and even can degrade the performance, due to
saturation.

 In general, frequency domain problems need
more memory and are more time consuming,
compared to time domain problems, but
experienced larger speed-up factors when the
number of processors was increased.

 MNA-based solver in both time and frequency
domain resulted better in speed-up factor than
NA-based.

 By using 440 processors, problems with over
quarter of a million unknowns could be studied
using the nodal analysis formulation in the time
domain. The next step for the presented parallel
implementation is to apply acceleration
algorithms, e.g. FMM, MLFMM, QR and using
other LAPACK-based computational libraries,
making the program suitable for solving different
classes of EM problems on desktop machines.

REFERENCES

[1] W. C. Chew, J. M. Jin, C. C. Lu, E.
Michielssen, and J. M. Song “Fast solution
methods in electromagnetics”, IEEE
Transactions on Antennas and Propagation,
vol. 45, no. 3, pp. 533–543, 1997.

[2] N. Engheta, W. D. Murphy, V. Rokhlin, and
M. S. Vassilou, “The fast multipole method
(FMM)”, PIERS, July 1991.

420DAROUI, EKMAN: PARALLEL IMPLEMENTATIONS OF THE PEEC METHOD

[3] S. Kapur and D. Long., “IES: A fast integral
equation equation solver for efficient 3-
dimensional extraction,” Int. Conf. on
Computer Aided Design, pp. 448–455,
November 1997.

[4] Y. Liu and J. Yuan, “A finite element domain
decomposition combined with algebraic
multigrid method for largescale
electromagnetic field computation”, IEEE
Transactions on Magnetics, vol. 42, no. 4, pp.
655– 658, April 2006.

[5] T. Hanawa, M. Kurosawa, and S. Ikuno,
“Investigation on 3-D implicit FDTD method
for parallel processing”, IEEE Transactions
on Magnetics, vol. 41, no. 5, pp. 1696– 1699,
May 2005.

[6] A. Rubinstein, F. Rachidi, M. Rubinstein, and
B. Reusser, “A parallel implementation of
NEC for the analysis of large structures”,
IEEE Transactions on Electromagnetic
Compatibility, vol. 45, no. 2, pp. 177–188,
May 2003.

[7] A. E. Ruehli, “Equivalent circuit models for
three dimensional multiconductor systems”,
IEEE Transactions on Microwave Theory and
Techniques, vol. MTT-22, no. 3, pp. 216–
221, March 1974.

[8] A. E. Ruehli, “Inductance calculations in a
complex integrated circuit environment”.
IBM Journal of Research and Development,
vol. 16, no. 5, pp. 470–481, September 1972.

[9] A. E. Ruehli and P. A. Brennan, ”Efficient
capacitance calculations for three-
dimensional multiconductor systems”, IEEE
Transactions on Microwave Theory and
Techniques, vol. MTT-21, no. 2, pp. 76–82,
February 1973.

[10] G. Antonini, J. Ekman, and A. Orlandi, “Full
wave time domain PEEC formulation using a
modified nodal analysis approach”, Proc. of
EMC Europe, 2004.

[11] F. Monsefi and J. Ekman, “Optimization of
PEEC based electromagnetic modeling code
using grid computing”, Proc. of EMC
Europe, 2006.

[12] J. Ekman and P. Anttu, “Parallel
implementation of the PEEC method”, Proc.
of Special Session at the IEEE Int. Symp. On
EMC, 2007.

[13] J. Choi, J. J. Dongarra, R. Pozo, and D.
Walker. “ScaLAPACK: A scalable linear

algebra library for distributed memory
concurrent computers”, Proceedings of the
Fourth Symposium on the Frontiers of
Massively Parallel Computation, IEEE
Computer Society Press, 1992.

[14] G. Antonini, “Fast Multipole Formulation for
PEEC Frequency Domain Modeling”,
Journal of Applied Computational
Electromag Society, vol. 17, no. 3, November
2002.

[15] G. Antonini, J. Ekman, A. Ciccomancini
Scogna, and A. E. Ruehli, “A comparative
study of PEEC circuit elements computation”,
Proc. of the IEEE International Symposium
on EMC, 2003.

[16] G. Antonini, A. Orlandi, and A. Ruehli,
”Speed-up of PEEC method by using wavelet
transform”, Proc. of the IEEE Int.
Electromagnetic Compatibility, August 2000.

[17] G. Antonini, A. Orlandi, and A. Ruehli, “Fast
Iterative Solution for the Wavelet-PEEC
Method”, Proc. of the International Zurich
Symposium on Electromagnetic
Compatibility, February 2001.

[18] G. Antonini and A. Orlandi, “Computational
properties of wavelet based PEEC analysis in
time domain”, Proc. of Applied
Computational Electromagnetics Society
Conference, March 2000.

[19] A. Ruehli, D. Gope, and V. Jandhyala,
“Block partitioned gaussseidel PEEC solver
accelerated by QR-based coupling matrix
compression techniques”, Digest of Electr.
Perf. Electronic Packaging, vol. 13, pp. 325–
328, October, 2004.

[20] S. Ramo, J. R. Whinnery, and T. Van Duzer,
Fields and Waves in Communication
Electronics, John Wiley and Sons, 1994.

[21] A. E. Ruehli, G. Antonini, J. Esch, A. Mayo
J. Ekman, and A. Orlandi, “Non-orthogonal
PEEC formulation for time and frequency
domain EM and circuit modeling”, IEEE
Transactions on Electromagnetic
Compatibility, vol. 45, no. 2, pp. 167–176,
May 2003.

[22] C. Ho, A. Ruehli, and P. Brennan, “The
modified nodal approach to network
analysis”, IEEE Transactions on Circuits and
Systems, pp. 504–509, June 1975.

[23] LTU/UAq PEEC solver. Available. Online:
http://www.csee.ltu.se/peec.

421 ACES JOURNAL, VOL. 25, NO. 5, MAY 2010

[24] A. Musing, J. Ekman, and J. W. Kollar,
“Efficient calculation of non-orthogonal
partial elements for the PEEC method”. IEEE
Transactions on Magnetics, 45(3), March
2009.

[25] J. Ekman, G. Antonini, G. Miscione, and P.
Anttu, “Electromagnetic modeling of
automotive platforms based on the PEEC
method”. Proc. of Applied Computational
Electromagnetics Society Conference,
Verona, IT, March 2007.

[26] D. Daroui. “Performance of integral equation
based electromagnetic analysis software on
parallel computer systems”, Master’s thesis,
University of Gothenburg, February 2007.

[27] J. J. Dongarra and D. W. Walker. “The design
of linear algebra libraries for high
performance computers”, Technical Report
ORNL/TM-12404, University of Tennessee,
Knoxville, TN, USA, 1993.

[28] M. Enohnyaket and J. Ekman. “Analysis of
air-core reactors from dc to very high
frequencies using PEEC models”, IEEE
Transactions on Power Delivery, vol. 24, no.
2, April 2009.

[29] J. Ekman, G. Antonini, A. Orlandi, and A. E.
Ruehli, “The impact of partial element
accuracy on PEEC model stability”, IEEE
Transactions on Electromagnetic
Compatibility, vol. 48, no. 1, pp. 19–32,
March 2006.

422DAROUI, EKMAN: PARALLEL IMPLEMENTATIONS OF THE PEEC METHOD

