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Abstract ─ This paper presents the first parallel 
implementation of a partial element equivalent 
circuit (PEEC) based electromagnetic modelling 
code suitable for solving general electromagnetic 
problems. The parallelization is based on the 
GMM++ and ScaLAPACK packages which are 
cross-platform libraries available for major 
operating systems. The parallel PEEC solver has 
been tested on several high performance computer 
systems. Large structures containing over 250 000 
unknown current and voltage basis functions were 
successfully analyzed for the first time with a 
general PEEC-solver. The numerical examples are 
of orthogonal type, studied both in the time and 
frequency domain, for which memory, 
performance, and speed-up results are presented.  
 
Index Terms ─ PEEC, parallel computing, 
integral equation.  
 

I. INTRODUCTION 
    As for all the methods within computational 
electromagnetics, the problem system size that can 
be solved increases with more efficient computer 
implementations and more powerful computer 
systems. However, the desired problem sizes to be 
solved also increase and there is a clear gap 
between desired and possible problem size to be 
solved. Fast solutions for EM problems have been 
treated for a long time, i.e. [1] where both 
differential and integral equation solvers were 
discussed. For the integral equation based solvers, 
fast Krylov subspace approaches are available, for 
example, the fast-multipole method (FMM) [2] 
and QR-based algorithms [3]. The next step, after 
faster implementations, is to improve the 
computing power running the algorithms. One 
solution is to use grid computing on different 
levels. For example, using a local area network of 
interconnected computers to speed-up calculations 

or by porting the code to parallel architectures. 
Recent publications on the extension to parallel 
implementations are for example [4] where a 
nesting combination of the finite element domain 
decomposition method and the algebraic multigrid 
method is presented, [5] on the implicit FDTD 
method, and [6] for a parallel version of the 
numerical electromagnetics code (NEC). 
    The partial element equivalent circuit (PEEC) 
method [7] is widely used for solving mixed 
circuit and electromagnetic (EM) problems. The 
method gives a framework for creating electric 
equivalent circuit representations for three-
dimensional electromagnetic problems and 
calculating self and mutual partial inductances [8] 
and capacitances (coefficients of potential) [9]. 
The resulting equivalent circuits can be solved in 
SPICE-like solvers or, for the full-wave case, by 
creating and solving the fully coupled circuit 
equations [10]. Until now, no parallel 
implementation on the PEEC method has been 
reported except for in [11] where a sequential code 
was parallelized for LANs using a freeware. In 
this paper, the first parallel implementation of a 
non-accelerated, e.g. FMM, PEEC method [12] is 
presented for high performance computing using 
the ScaLAPACK package [13]. 
    Other approaches for accelerating PEEC-based 
computations are for example FMM-based 
approaches as detailed in [14, 15], wavelet-based 
PEEC analysis as in [16-18], and QR-
decomposition as shown in [19]. The goal with 
this work has been to accelerate the general PEEC 
method which allows for both time and frequency 
domain solution from DC to the highest frequency 
of interest (given by the mesh) and not to be 
restricted by the above mentioned acceleration 
techniques impacting, for example, on the low 
frequency behaviour. The paper is organized in the 
following way. Section II presents a summary of 
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the PEEC method and the developed computer 
program while Section III presents the 
parallelization of the same using the ScaLAPACK 
package. Then, Section IV and V show the 
applicability of the solver for two numerical 
examples, a free-space reactor and a shielding 
study. Finally conclusions and further work are 
detailed in Section VI. It is shown that with this 
type of parallel PEEC solvers the problem size can 
be increased considerably and new application 
areas arise. 
 
II. SUMMARY OF PEEC THEORY 
     This section gives a brief summary of the 
classical, orthogonal PEEC formulation. For 
further information, see [7-9]. 

 
A. Extraction of Equivalent Circuit 
     The classical PEEC method is derived from the 
equation for the total electric field at a point [20] 
written as 
 

( , ) ( , )( , ) ( , )t tt t
t

i J r A rr rE 



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
,         (1) 

 
where iE  is an incident electric field, J is a 
current density, A is the magnetic vector potential, 
  is the scalar electric potential, and   the 
electrical conductivity all at observation point r. 
By using the definitions of the scalar and vector 
potentials, the current- and charge-densities are 
discretized by defining pulse basis functions for 
the conductors and dielectric materials. Pulse 
functions are also used for the weighting functions 
resulting in a Galerkin type solution. By defining a 
suitable inner product, a weighted volume integral 
over the cells, the field equation (1) can be 
interpreted as Kirchhoff’s voltage law over a 
PEEC cell consisting of partial self inductances 
between the nodes and partial mutual inductances 
representing the magnetic field coupling in the 
equivalent circuit. The partial inductances shown 
as 11pL  and 22pL  in Fig. 1 are defined as 
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for volume cell   and  . Figure 1 also shows the 
node capacitances which are related to the 

coefficients of potential iip  while ratios consisting 
of iiij pp  are leading to the current sources in the 
PEEC circuit. The coefficients of potentials are 
computed as 
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and a resistive term between the nodes, defined as 
 




 a

l
R   .                       (4) 

 
In (2) and (4), a represents the cross section of the 
rectangular volume cell normal to the current 
direction , and l is the length in the current 
direction. Further, v represents the current volume 
cells and S the charge surface cells. For a detailed 
derivation of the method, including the 
nonorthogonal formulation, see [21]. 
 

 
(a) 

 
 

(b) 
 

Fig. 1. Metal strip with 3 nodes and 2 cells (a) and 
corresponding PEEC circuit (b). 
 
B. Solution of Equation of Circuit 
     The discretization process of the EFIE in (1) 
and the successive Galerkin’s weighting leads to 
an equivalent circuit formulation. When 
Kirchhoff’s voltage and current laws are enforced 
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to the iN  independent loops and N  independent 
nodes of the PEEC equivalent circuit we obtain: 
 

),()()(
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               (5) 

 
where 

 Nt  )(  is the vector of node 

potentials to infinity; N  is the node 
space of the equivalent network; 

 iN
L ti )( is the vector of currents 

including both conduction and 
displacement currents;  iN  is the  current 
space of the equivalent network; 

 PL  is the matrix of partial inductances 
describing the magnetic field coupling; 

 P  is the matrix of coefficients of potential 
describing the electric field couplings; 

 R  is the matrix of resistances; 
 A  is the connectivity matrix; 
 )(tvs  is the vector of distributed voltage 

sources due to external electromagnetic 
fields or lumped voltage sources; 

 )(tis  is the vector of lumped current 
sources. 

     The equation system in (5) is equivalent to the 
circuit equations formulated in SPICE-type of 
solvers for obtaining the solution in node voltages 
and branch currents. However, for PEECs the 
equation system in (5) contain more dense 
matrices ( PL  and P ) compared to a pure electric 
network system solution due to the large number 
of mutually coupled inductors and mutual 
capacitances. Therefore, the solution of PEECs 
requires linear algebra packages suitable for dense 
matrices. The exception is the full-wave, time 
domain case where retarded magnetic and electric 
field couplings are treated as known sources and 
the pL  and P  matrices are more sparse [10]. 
     The equation system in (5) is often entitled a 
Modified Nodal Analysis (MNA) formulation [22] 
and can be modified to suit the solution of PEECs 
[10]. From the MNA formulation, the Nodal 
Analysis (NA) formulation can be derived which 
only solves for the node potentials by a reduced 

equation system while the branch currents are 
calculated in a second step. In the frequency 
domain the NA system can be written as 
 

  Sp
T IPjALjRA 111 )())(()(    . 

(6) 

 
to solve for the node potentials   at a specific 
frequency for the excitation specified by SI . Both 
formulations are tested in this paper and results are 
presented in Sec. IV and V. 
 
C. Sequential Code for EM Analysis Using 
PEEC Theory 
     A program for EM analysis, based on the 
theory and references outlined above, has been 
developed [23]. The solver can handle both the 
traditional orthogonal PEEC model and the newly 
introduced nonorthogonal formulation [21]. In this 
paper, only orthogonal models are considered 
while nonorthogonal results will be presented in a 
future paper since different issues arise when 
working with nonorthogonal PEEC models [24], 
[25]. The program creates an equivalent circuit 
and calculates the corresponding resistances, 
partial inductances, capacitances, and coupled 
voltage and current sources (to account for 
electromagnetic couplings) for the given 
geometrical layout (CAD-data as specified in an 
input file). The user adds external electronic (sub-) 
systems and analysis mode as described by the 
SPICE syntax. The actual solution of the resulting 
circuit equations (5) in either the time or frequency 
domain is performed in the solver and results are 
given as current- and voltage distributions in the 
geometrical layout. Post-processing routines are 
implemented for calculating field quantities at 
specified locations. The workflow in the program 
is shown in Fig. 2. 
     The sequential implementation utilizes the 
GMM++ linear algebra package and the Intel C++ 
Compiler with pragmas for compiler optimization 
to be performed. This allows, for example, for the 
use of multiple processors in calculating partial 
elements and other trivial pipelining, loop 
unrolling/distribution, data prefetching, and loop-
carried dependencies occurring in the original, 
 sequential implementation. 
     It is the presented sequential code that has been 
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parallelized and for which results are presented in 
this paper. 
 

 
 
Fig. 2. Flow diagram for the PEEC solver. 

 
 
III. PARALLELIZATION OF THE PEEC 

SOLVER 
A. Introduction 
     The development platform was a Linux cluster 
consists of nodes equipped with two Intel Xeon 
quad-core 2.5 GHz CPUs and 16 GB of RAM 
memory. The code has been written in C++ under 
Linux and is compatible with parallel computer 
systems with distributed memory architecture 

using ScaLAPACK as computational library. 
ScaLAPACK (Scalable LAPACK) is a library of 
LAPACK routines, revised for parallel computer 
systems with distributed memory architecture. The 
package enables the use of high performance 
computing clusters in a simple fashion and allows 
for a considerable acceleration of the developed 
PEEC-based program. Like LAPACK, 
ScaLAPACK offers a set of highly optimized 
routines to solve systems of linear equations, 
which consists of matrices distributed among a 
bunch of processors. The library performs basic 
linear algebra operations such as product between 
matrices and vectors using PBLAS. PBLAS is 
parallel version of a rich library of computational 
routines called BLAS which is included in 
LAPACK. Finally a set of routines called BLACS 
is used to manage communication between nodes 
running ScaLAPACK. These routines use 
algorithms called block-partitioned algorithms to 
minimize movement of data between nodes by 
load balancing between computational elements. 
ScaLAPACK has been written in FORTRAN and 
developed for parallel computer systems. The 
choice to use this library was based on optimized 
and efficient message passing methods have been 
used in it, speed and scalability and good interface 
for C++ programmers. In addition it is a stable, 
well tested, and efficient library and provides 
access to a very large collection of useful, 
powerful and flexible functions in BLAS and 
LAPACK which have been parallelized 
efficiently. Using ScaLAPACK we were assured 
that a good load balancing is achieved by 
distributing input data on a bunch of processing 
nodes using block cyclic data distribution 
algorithms which speeds up the operations 
by minimizing data transfer between processing 
units. 
     The parallel solver performs these four steps to 
solve a problem: 

1. The discretization process is entirely serial 
and duplicated on all processors. 

2. The partial element calculations are easily 
parallelized as no communication is 
required between nodes while each node 
calculates assigned part of basic matrices 
in parallel with other nodes. The main 
difficulty lies in the mapping between 
global and local matrix coordinates [6]. 
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3. The matrix formulation, (5) or (6), and 
solution parts are implemented using 
ScaLAPACK routines. 

4. At the end when all processes have 
reached final synchronization point, the 
results will be gathered on the root 
processing unit and will be saved in 
appropriate format. 

 
B. Parallelization of Partial Element 
Computations 
     The partial element calculations are easily 
parallelized using parallel processors which fill a 
large matrix, distributed by ScaLAPACK data 
management algorithms, completely in parallel 
and independent of each other. For the time 
domain problems these are PL  and P  matrices 
which are symmetric and have entries of type 
double precision floating-point. Hence the fill-in 
times for the time domain solver is decreased 
linearly as number of allocated processors grows. 
Since these two matrices are symmetric, Cholesky 
factorization routines in ScaLAPACK package can 
be used to factorize them. Due to the properties of 
the entries of PL  and P  matrices which has the 
type complex with double precision floating point 
for problems in frequency domain and because 
these matrices do not fulfill Hermitian properties, 
only LU factorization is possible and therefore the 
need to fill in the whole matrix. The process of 
placing element from one part of a distributed 
matrix to the other part is computationally 
expensive and complicated in parallel programs 
and especially for the MNA-approach seen in (5). 
But this was overcome by a special Transpose-
And-Add method as detailed in [26]. 
 
C. Parallelization of Matrix Solutions 
     After filling-in the matrices, the solution of the 
time or frequency domain versions of the circuit 
equations in (5) and (6) has to be performed. This 
is done using the ScaLAPACK library of high-
performance linear algebra routines for distributed 
memory message-passing MIMD (multiple 
instruction stream, multiple data stream) 
computers and networks of workstations 
supporting parallel virtual machine (PVM) and/or 
message passing interface (MPI). ScaLAPACK 
uses block cyclic data distribution [27] to 
achieving good load balancing. This means that 

matrices are divided into blocks in two dimensions 
and these blocks are assigned to a set of 
processors. This is further detailed in [6] when 
using the numerical electromagnetic code (NEC) 
to solve electromagnetic problems using 
ScaLAPACK. 
 
IV. NUMERICAL TEST (I) - AIR-CORE 

REACTOR 
     To present the speed-up of the parallel PEEC 
implementation, an air-core reactor structure is 
utilized since measurement results have been 
collected and the cell count is easily increased. In 
previous papers, i.e. [28], the reactor have been 
studied in the time and frequency domain with 
regular ),,,( PRLP PEEC models. However, the 
inclusion of Skin and proximity effects have not 
been possible in earlier works through the volume 
filament approach, (VFI)PEEC, due to the 
excessive number of unknowns. Here, the air-core 
reactor is analyzed with both the original serial 
PEEC solver, when possible and the new parallel 
PEEC solver in the time and frequency domain. 
 

 
 
Fig. 3. Reactor voltage simulation result at 4 μs 
after impulse test. 
 
     The test structure, seen in Fig. 3, is of 
rectangular type with four sides equal in length = 
0.5 m. The windings (turns) are totally 65 and 
consist of copper tape with dimension 0.076 mm x 
6.35 mm. The center to center spacing between the 
turns is 10 mm. The parallel implementation of the 
solver can now treat this type of problem and give 
a more correct model for the current distribution in 
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the conductors. Figure 3 shows an example of the 
voltage distribution in the reactor windings for a, 
time domain, impulse test. 
 
A. Partial Element Calculation Speed-Up 
     To test the speed-up, five different meshes for 
the reactor are utilized as seen in Table 1. For 
example, the first test, T1-400, has 1300 surface 
cells, 1040 volume cells, resulting in 2340 
unknowns, and 1 105 nodes. The last test, T5-609, 
has 50180 unknowns since it uses the volume 
filament approach to model Skin effect in the 
windings. The naming conventions used for these 
test cases is in the format of T[n]-[abc], where n is 
the test case number and a, b and c represent the 
discretization level in the directions x, y and z 
respectively. 
     The partial element calculations are efficiently 
parallelized as seen in Table 2. The table is 
collected from time domain simulations. To be 
noted is that the test case is an orthogonal PEEC 
model utilizing analytical routines to evaluate 
partial inductances (< 5μs/element in sequential 
solver). The performance gain for the parallel 
implementation, as shown in Table 2, can be 
displayed by using a speed-up factor 
 

np

p

t
t

nS 1)(    ,                               (7) 

 
where 

1pt is the time taken by the parallel code 

using one processor and 
npt is the time taken by 

the parallel code using n processors. This is shown 
in Fig. 4 where results from Table 2 are used 
together with results from the frequency domain 
solver by running the same test cases in the 
frequency domain. 
     From the figure it is clear that the time domain 
fill-in time is better than the frequency domain fill-
in. This is because the time domain solvers use 
symmetric matrices with the data type of double 
precision floating point, so they can use symmetric 
compatible functions in ScaLAPACK which 
employ Cholesky factorization. But in the 
frequency domain, since non-Hermitian matrices 
with the data type of complex with double 
precision floating point are used, ScaLAPACK 
does not offer any symmetric compatible function. 
Therefore for frequency domain solvers the 

calculated part of matrix needs to be copied to the 
other part to form the complete matrix and this 
process will affect the speed-up factor as is shown 
in Fig. 4. 
 

 
 
Fig. 4. Speed-up factor for partial element 
calculation and fill-in for air-core reactor example. 
 
B. Solution Method - MNA or NA 
     From the calculated matrices, as briefly 
detailed in Sec. II-B, two popular methods are 
used to formulate the circuit equations for the 
PEEC model. First, the MNA formulation as 
shown in (5) and second the NA formulation as 
shown in (6). The MNA formulation is the more 
general of the two and preferred mainly due to its 
ability to handle general circuit element inclusion 
with the PEEC model [22] and a stable low 
frequency behavior. Table 3 gives details on the 
formulations of the different systems of circuit 
equations from a performance point of view. 
     The table gives details for three of the 
problems, T1, T3, and T5, when formulating the 
circuit equations using the Nodal Analysis (NA) or 
Modified Nodal Analysis (MNA) formulation in 
the time or the frequency domain. The table also 
shows several interesting results. For example, the 
formulations of the circuit equations are more time 
consuming in the frequency domain. This is 
expected since the equations involve complex 
numbers. Further, we see that the MNA 
formulation is always faster than the NA 
formulation even if the equation systems are larger 
in size. This is mainly due to an efficient 
formulation of (5) for which the inversion of the 
coefficient of potential matrix P is avoided [10]. 
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Table 1: Reactor characteristics. 
 

Number of 
Test surface cells )( N  

(charge basis function) 
volume cells )( iN  

(current basis function) 
unknowns )( iNN   

(total) 

nodes 

T1-400 1 300 1 040 2 340 1 105
T2-900 2 600 2 340 4 940 2 405
T3-601 3 640 4 940 8 580 3 250
T4-605 10 920 18 460 29 380 9 750
T5-609 18 200 31 980 50 180 16 250 

 
 

Table 2: Partial element calculations times for 
NA-implementation. 

 
Number of 
processors 

Time for TD-tests [s] 

 T1 T2 T3 T4 T5 
Serial 9.0 35.0 81.0 -* -

1 6.0 23.4 53.5 590.2 -
2 3.1 12.0 27.0 291.6 -
4 1.6 6.1 13.6 144.2 476.5
8 0.8 3.1 7.1 78.2 229.6
20 0.4 1.3 3.0 33.2 91.3
30 0.3 0.8 2.1 22.3 71.2

 
C. Total PEEC-Model Solution Time 
     To conclude the two previous subsections, 
speed-up factors for total PEEC-model solutions 
are given. This is shown in Fig. 5 for the time 
domain implementation of the NA and MNA 
methods and in Fig. 6 for the frequency domain 
implementation of the NA and MNA methods. 
     Since the speed-up factors, as presented in Figs. 
5 and 6, are based on results for one processor, as 
seen in (7), it is not possible to show results for all 
test cases. However, using 30 processors, the only 
tests that could not be carried out with the current 
implementation are T4 and T5 in the frequency 
domain using the MNA method. 
From the figures, several conclusions can be 
drawn: 

 For small problems in the time domain, 
i.e. T1, and T2, increasing the number of 
processors does not improve the overall 
solution time since the communication  

                           (a) 

 

 
(b) 

 
Fig. 6. Total PEEC-model solution time for 
frequency domain simulations using Nodal 
Analysis (a) and Modified Nodal Analysis (b). 
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Table 3: Time for formulation of circuit equations. 

 
   Time in TD / FD [s] 
 T1-400 T3-601 T5-609 
 NA MNA NA MNA NA MNA 

Coefficient matrix size  1 300 
  1 300 

    2 340 
  2 340 

    2 640 
  2 640 

    8 580 
  8 580 

     18 200 
  18 200 

    50 180 
  50 180 

Number of processors       
1 1.0 / 3.1 0.93 / 2.7 51.1 / 182.7 26.8 / 35 - / - - / - 
8 0.25 / 0.58 0.22 / 0.35 11.75 / 27.7 4.5 / 9.0 1 434 / 5 400 473 / - 

30 0.26 / 0.32 0.14 / 0.26 4.11 / 9.7 2.0 / 3.0 634 / 2 300 138 / 380 
 
 

 
(a) 

 

 
(b) 

 
Fig. 6. Total PEEC-model solution time for 
frequency domain simulations using Nodal 
Analysis (a) and Modified Nodal Analysis (b). 
 

time between the processors increases and 
exceed the total solution time. For  
example in Fig. 5 (a) and (b), problem T1  
saturates at 8 processors. Hence, using a 
bunch of processors for a small problem  
will not necessarily improve the 
performance. 

 Frequency domain problems experience a 
larger speed-up factor compared to time 
domain problem. However, in general 
frequency domain problems are more time 
consuming in absolute numbers. 

 In both domains, the MNA-based solver 
shows better speed-up factor compared to 
the NA counterpart. This means that in 
both NA figures, the problem is already 
saturated or the speed-up factor grows 
very slowly when more processors are 
allocated. Thus, the MNA-formulation is 
more suited for parallelization using 
ScaLAPACK. 

 
     The figures presented in this section do not 
reveal the absolute solution time of the problems. 
It might seem that the MNA formulation is the 
fastest. However, in fact, the NA formulation is 
the fastest solution method for all tests. The MNA 
formulation is preferred for reasons given in Sec. 
IV-B. 
 
D. Memory Usage 
     In this section, the memory usage of the 
parallel solver is presented based on the following 
aspects: 

 memory usage as a function of number of 
processors; 
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 memory usage as a function of problem 
size. 

1) Memory usage as a function of the number of 
processors:  The total memory usage M should be 
a function of the number of processors, n, and the 
problem size. This can be expressed as 
 

banM  ,                         (8)                    
 
where a and b are constants. Figure 7 shows the 
total memory usage M as a function of processors. 
The increase is clearly linear and eq. (8) is 
verified. 
 

 
 
Fig. 7. Total memory usage as a function of 
processors. 
 
     Another way of expressing this is as average 
memory usage per processor m as 
 

cn
bm  .                            (9) 

 
This behavior for the parallel PEEC solver is 
verified by Table 4. 
 
2) Memory usage as a function of problem size: 
The expected memory usage is 
 

dcnbnM uu  2 .                (10) 
 
This is a simplification as in reality the actual 
increase is not as straightforward. This is due to 

the number of surface cells, volume cells, and 
nodes vary and the memory usage will be a more 
complicated function of these variables. The 
validity of (10) is exemplified in Fig. 8 for the 
parallel implementation using the NA approach in 
both the time and frequency domain on all the test 
cases from Table 1. Studying Fig. 8 when letting 
M be total memory usage and )( iu NNn    be 
the number of unknowns in eq. (10), the 
assumption is valid. 
 
Table 4: Average memory usage for varying 
number of processors. Simulation of reactor. 
 
 Average memory usage/proc. [MB]

Number of 
processors 

T2-900 T5-609 

 TD FD TD FD 
1 281 643 - -
2 160 303 - -
4 86 159 7 472 -
8 51 88 3 815 -

20 28 44 1 543 3 545
30 24 34 1 049 2 395

 
V. NUMERICAL TEST (II) – SURGE 

TEST 
     In order to test the parallel solver and to find 
out how large problems can be solved, a second 
numerical example is presented. The setup is a 
surge pulse that is applied to a 100_100_150 cm 
enclosure. This is a problem that requires a fine 
mesh for a large structure and a long simulation 
time for the pulse to decay. In this test, the 
enclosure is excited on the top surface with a surge 
pulse given by 
 

)()( 0
tt eeIti    ,                (11) 

Where 
2188100 I , 11354  and 647265 .  

 
The enclosure is grounded using 1Ω resistor at the 
bottom surface. For comparison, CST software has 
been used to study the same problem. Figure 9 (a) 
shows voltage distribution in the enclosure due to 
the surge test and Fig. 9 (b) a comparison of CST 
and PEEC results for the resistor current/voltage 
(due to 1Ω resistor). As can be seen, the results are 
close to overlapping. 
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     The simulation time was the main advantage of 
the PEEC simulations for this case. It was about 
31 hours with the CST (note that the CST has 
more number of points than PEEC simulation). 

 
 
Fig. 8. Total memory usage for the Nodal Analysis 
implementation when increasing the problem size 
for a fixed number of processors (30). 
 
The corresponding time with PEEC was about ten 
minutes using a sequential code (not the parallel 
implementation) for a mesh corresponding to ten 
cells per wavelength. The comparison can seem 
unfair, as often when comparing different basic 
formulations in computational electromagnetics. 
This example is an optimal PEEC-type of problem 
due to the thin, metallic walls of the enclosure 
located in free space. However, CST was used to 
validate the results and not to benchmark the 
implementation. 
     To test the parallel implementation, three cases 
with different discretization level were tested 
using the NA, time domain solver. Table 5 
describes each test case and the corresponding 
number of unknowns. As can be seen, Surge3 
contains more than a quarter of a million of 
unknowns and is the largest PEEC problem that 
has been solved using a general PEEC 
implementation capable of handling time and 
frequency domain analysis from DC to a 
maximum frequency given by the mesh. These 
problems have been designed to be large enough 
to stress the solver in both memory and 
computational complexity sense. 

     During these tests, it was always considered to 
choose an optimum number of processors, while 
using many processors for a small problem is not 
efficient and can even degrade the performance if 
the solver reaches or even pass saturation point. 
By optimum, it is meant smallest number of 
processors which can provide enough memory for 
a problem and solve the problem as fast as 
possible. Table 6 shows the simulation time, 
number of unknowns (repeated for convenience), 
memory consumption, and number of allocated 
processors for each test case. 
 

 
 

(a) 
 

 
 

(b) 
 
Fig. 9. Surge voltage simulation result at 1.8μs 
after impulse test (a) and comparison of PEEC and 
CST resistor current (b). 
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Table 5: Surge test characteristics. 
 

Number of 
Test surface cells 

(charge basis function) 
volume cells 

(current basis function) 
unknowns 

(total) 
nodes 

Surge 1 10 404 20 400 30 804 10 200
Surge 2 48 884 96 880 145 764 48 400
Surge 3 89 244 177 240 266 484 88 800

 
 

Table 6: Total solution times and memory for NA-implementation. 
 

Test Time [s] Memory [GB] Unknowns Processors
Surge 1 45 16 30 804 80
Surge 2 677 278 145 764 120
Surge 3 8 700 931 266 484 440

 
     With the number of unknowns handled in the 
largest test case, > 250 000, many complex 
problems can be studied using the PEEC method. 
For example, pure inductance and capacitance 
calculations for geometrically complex 
geometries, R-L-C equivalent circuit extraction, 
shielding and radiation problems of new 
computational complexity. However, with more 
complex models, new challenges arise in order to 
ensure correct simulation results [29], optimal 
mesh generation, and optimal usage of 
computational resources. 

 
VI. CONCLUSION 

     In this paper the first parallel PEEC-based 
solver was presented which is applicable to 
problems formulated in both the time and 
frequency domain solving problems from DC to 
the highest frequency given by the appropriate 
mesh. The parallel PEEC-based solver is a ported 
version of the original sequential PEEC-based 
solver which uses GMM++ linear algebra package 
and is suitable for systems with shared memory 
structure such as multi-core machines. The parallel 
solver is designed to run on clusters with 
distributed memory architecture by using 
ScaLAPACK package to take advantage of any 
number of processors allocated in a parallel 
computer system. 
    The presented implementation opens up new 
doors for the solution of large problems formulates 
using the PEEC approach. In order to understand 
how parallel PEEC-based solver can improve 

solving problems, several tests were done. The 
results of these tests conclude that: 
 Using a number of processors for small 

problems will not improve the solution time 
and even can degrade the performance, due to 
saturation. 

 In general, frequency domain problems need 
more memory and are more time consuming, 
compared to time domain problems, but 
experienced larger speed-up factors when the 
number of processors was increased. 

 MNA-based solver in both time and frequency 
domain resulted better in speed-up factor than 
NA-based. 

    By using 440 processors, problems with over 
quarter of a million unknowns could be studied 
using the nodal analysis formulation in the time 
domain. The next step for the presented parallel 
implementation is to apply acceleration 
algorithms, e.g. FMM, MLFMM, QR and using 
other LAPACK-based computational libraries, 
making the program suitable for solving different 
classes of EM problems on desktop machines. 
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