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Abstract ─ For efficiently solving large dense 
complex linear systems that arise in the electric 
field integral equation (EFIE) formulation of 
electromagnetic scattering problems, a new 
adaptive preconditioning technique using fuzzy 
controller (FC) is introduced and used in the 
context of the generalized minimal residual 
iterative method (GMRES) accelerated with the 
multilevel fast multipole method (MLFMM). The 
key idea is to control the choice of the 
preconditioner to be used in an iterative solver by 
using fuzzy controller. This approach allows the 
expert knowledge to be taken into account on the 
controller design and utilizes feedback to tune the 
cores of the fuzzy set. Numerical results show that 
the best preconditioner can be selected while 
maintaining low cost for adaptive procedures. 
 
Index Terms ─ Adaptive preconditioning 
technique, electric field integral equation, fuzzy 
controller, multilevel fast multipole method.  
 

I. INTRODUCTION 
In electromagnetic wave scattering 

calculations, a classic problem is to compute the 
induced currents on the surface of an object 
illuminated by a given incident plane wave. Such 
calculations, relying on Maxwell’s equations, are 
crucial to the simulations of many industrial 
processes ranging from electromagnetic 
compatibility, antenna design, calculation of radar 
cross section (RCS), and so on. All of these 
simulations are very demanding in terms of 

computer resources, and require fast and efficient 
numerical methods, and approximate solution of 
Maxwell’s equations. Using the equivalence 
principle, Maxwell’s equations can be recast in the 
form of integral equations that relate the electric 
and magnetic fields to the equivalent electric and 
magnetic currents on the surface of the object. 

The integral formulation considered in this 
paper is electric integral equation (EFIE) [1]. It is 
widely used for electromagnetic wave scattering 
problems as it can handle the most general 
geometries without any assumption. However, the 
matrix associated with the resulting linear systems 
is large and dense for electrically large targets in 
electromagnetic scattering. It is basically 
impractical to solve EFIE matrix equations using 
direct methods because they have a memory 
requirement of O(N2) and computational 
complexity of O(N3), where N refers to the number 
of unknowns. This difficulty can be circumvented 
by using Krylov iterative methods, and the 
required matrix-vector product operation can be 
efficiently evaluated by multilevel fast multipole 
mehthod (MLFMM) [2]. The use of MLFMM 
accelerated Krylov methods reduce the memory 
requirement to O(N) and the computational 
complexity to O(NlogN). 

It is well-known that EFIE provides a first-
kind integral equation which is ill-conditioned and 
gives rise to linear systems that are challenging to 
solve by Krylov methods. Therefore, a variety of 
preconditioning techniques have been used to 
improve the conditioning of the system before the 
iterative solution. Simple preconditioners like the 
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diagonal or diagonal blocks of the coefficient 
matrix can be effective only when the matrix has 
some degree of diagonal dominance [3]. The 
symmetric successive over-relaxation (SSOR) 
preconditioner shows good performance in the 
conjugate gradient (CG) iterative method [4], but 
becomes poor for nonsysmmetric systems. 
Incomplete LU (ILU) decomposed preconditioners 
have been successfully used on nonsysmmetric 
dense systems in [5], but the factors of the ILU 
preconditioner may become very ill-conditioned. 
Approximate inverse methods are generally less 
prone to instabilities on indefinite systems [6], and 
several preconditioners of this type have been 
proposed in electromagnetism. It has been shown 
in [7] that this technique outperforms more 
classical approaches like incomplete 
factorizations. 

In this paper, we consider the performance of 
different predonditioners used in different 
problems. The choice of preconditioning methods 
suitable for one problem may not be the best for 
another one [13, 14]. Arbitrary selection in some 
cases lead to numerical problems like loss of 
convergence due to those initial choices. As an 
attempt for a possible remedy, a good choice of 
the preconditioner is made adaptively by a fuzzy 
controller after several iterations while 
maintaining low requirement for computer 
resource [8]. As a result, the idea of this work is to 
develop a general framework to dynamically 
change the parameters by taking into account the 
modeler knowledge. And the choices related to 
those preconditioning methods are considered as a 
control problem. 

This paper is organized as follows. Section II 
gives a brief introduction to the EFIE formulation 
and MLFMM. Section III describes the 
construction and implementation of the fuzzy 
controller in more details. Numerical experiments 
with a few electromagnetic scattering problems are 
presented to show the efficiency of the adaptive 
preconditioner by FC in Section IV. Section V 
gives some conclusions. 
 

II. EFIE Formulation and MLFMM 
The EFIE formulation of electromagnetic 

wave scattering problems using planar Rao-
Wilton-Glisson (RWG) basis functions for surface 
modeling is presented in [1]. The resulting linear 

systems from EFIE formulation after Galerkin’s 
testing are briefly outlined as follows: 

1
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N

mn n m
n
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Here, G(r, r′) refers to the Green’s function in free 
space and {αn} is the column vector containing the 
unknown coefficients of the surface current 
expansion with RWG basis functions. Also, as 
usual, r and r′denote the observation and source 
point locations. Ei(r) is the incident excitation 
plane wave, and η and k denote the free space 
impendence and wave number, respectively. Once 
the matrix equation (1) is solved by numerical 
matrix equation solvers, the expansion coefficients 
{αn} can be used to calculate the scattered field 
and RCS. In the following, we use A  to denote 
the coefficient matrix in equation (1), x = {αn}, 
and b = {Vm} for simplicity. Then, the EFIE 
matrix equation (1) can be symbolically rewritten 
as: 

Ax = b.                             (2) 
 

To solve the above matrix equation by an 
iterative method, the matrix-vector products are 
needed at each iteration. Physically, a matrix-
vector product corresponds to one cycle of 
iteractions between the basis functions. The basic 
idea of the fast multipole method (FMM) is to 
convert the interaction of element-to-element to 
the interaction of group-to-group. Here a group 
includes the elements residing in a spatial box. 
The mathematical foundation of the FMM is the 
addition theorem for the scalar Green’s function in 
free space. Using the FMM, the matrix-vector 
product Ax can be written as: 

 

Ax = ANx + AFx.                  (3) 
 

Here, AN is the near part of A and AF is the far 
part of A. 

In the FMM, the calculation of matrix 
elements in AN remains the same as in the MoM 
procedure. However, those elements in AF are not 
explicitly computed and stored. Hence, they are 
not numerically available in the FMM. It has been 
shown that the operation complexity of FMM to 
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perform Ax is 0(N1.5). If the FMM is implemented 
in multilevel, the total cost can be reduced further 
to 0(NlogN) [2]. 
 

III. ADAPTIVE PRECONDITIONER 
USING FUZZY CONTROLLER 

In this section, we show how fuzzy logic 
provides a methodology for representing and 
implementing the expert knowledge about how to 
control the process. In particular, we apply this 
methodology to control the process of 
preconditioner of an iterative solver. We first 
underline the main components and characteristic 
mechanisms of a FC. Afterwards, we present how 
to control the choice of the preconditioner using 
FC. 

First of all, the “early steps” is defined as the 
first several steps of the iterative solver. If the 
convergence rate of the iterative solver can be 
evaluated approximately by the early steps. Using 
this information, we could decide which 
preconditioner is the most suitable one to 
accelerate solution of the linear system. The key 
problem is how to evaluate the convergence rate 
from the early steps. In this paper, the residual of 
the iterative solver and the difference of the 
residual between two steps are used to evaluate 
this information. 

Generally, a preconditioner corresponding to 
the smallest residual at the first step can be 
considered as the best preconditioner. However, 
the largest difference of the residual between first 
two steps can be considered as the best 
precondioner. High order difference can also be 
used to describe the property of a preconditioner. 
Therefore, a fuzzy controller is used and shown in 
Figure 1. The process block is the object to be 
controlled. u(t) is the process input and y(t) is the 
process output. r(t) represents the desired target 
for the output of the process. The controller block 
is for changing the value of u(t) based on the 
controller input y(t) and the target r(t). The error as 
well as the rate of change-in-error defined as 

 

e(t) = r(t) – y(t),                     (4) 

     t t t
t

t t
 


 

e e
e ,            (5) 

 

where ∆t is the time between two consecutive 
data captured by the controller. In particular, 
∆t is set equal to one in an iterative solver. 

 
Fig. 1. Block diagram of a feedback fuzzy control. 
 

As a controller for the choice of the 
preconditioner when solving equation (2), the 
feedback fuzzy control system takes advantage of 
residual at each iterative step. u(t) is the 
preconditioner selected by controller, y(t) is the 
approximate solution and r(t) represents the right-
hand-side of the equation (2). As a result, ( )te  is 
the residual defined by 

e(t) = b – Ax(t).                       (6) 
Therefore,   /t t e  is the rate of change-in-
residual which means the difference of residual 
between two iterative steps. 

This fuzzy-logic-based approach allows expert 
knowledge to be taken into account on the 
controller design. A preconditioning method is 
selected by controller with the principle that the 
best preconditioner performs highest convergence 
rate for a given problem. After several iterations, 
the approximate convergence rate can be defined 
by using the high order difference of residual 
which shown as 

2 21/ /
2

t t       rate e e e      (7) 

Obviously, if the order equal to the total number of 
iterations, the rate can describe the convergence 
exactly. Due to the finite computer resource, we 
often use two or three iterative steps to compute 
the approximate rate. The formulations can be 
defined by 

/ t   rate e e ,                        (8) 
2 21/ /

2
t t      rate e e e .            (9) 

As a result, we choose the preconditoner with the 
largest convergence rate as a suitable 
preconditioning method. 

Assume that three preconditioning methods 
are available ranging from Jacobi, SSOR, and SAI 
(sparse approximate inverse). The main steps of 
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this preconditioning method are described as 
follows: 

Step 1: Construct the preconditioners by those 
three methods separately. 

Step 2: Do several iterations by Krylov 
iterative methods and note the residual and 
change-in-residual at each step. In this paper, the 
number of iterations is set to be 3. 

Step 3: Apply the FC to choose the best 
preconditioner. 

Step 4: Use the best preconditonier to 
complete the iteration. 

 
IV. NUMERICAL RESULTS 

In this section, we show some numerical 
results that illustrate the effectiveness of the 
proposed adaptive preconditioning method for the 
solution of large dense linear systems arising from 
the discretization of the EFIE formulation in 
electromagnetic scattering problems. In our 
experiments, the restarted version of GMRES(m) 
[9] algorithm is used as an iterative method, where 
m is the dimension size of Krylov subspace for 
GMRES. Additional details and comments on the 
implementation are given below: 

(1) Zero vector is taken as initial approximate 
solution for all examples. 

(2) The maximum number of iterations is 
limited to be 2000. 

(3) The iteration process is terminated when 
the normwise backward error is reduced by 310  
for all examples. 

We investigate the performance of the 
adaptive preconditioner using a fuzzy controller on 
four examples, which is shown in Figs. 2-5. They 
consist of an almond with 1815 unknowns at 
3GHz, a double ogive with 2574 unknowns at 
5GHz, a cube with 3366 unknowns at 350MHz, 
and a sphere with 3972 at 200MHz. The first two 
geometries come from [10], the side length of the 
cube is 1m and the radius of the sphere is also 1m. 
The numerical results of bistatic RCS for 
horizontal polarization are also displayed in Figs. 
2-5 for these four geometries. All experiments are 
performed on a Pentium 4 with 2.66 GHz CPU 
and 960MB RAM in single precision. 
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Fig. 2. Bistatic RCS for horizontal polarization at 
3GHz for NASA Almond. 
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Fig. 3. Bistatic RCS for horizontal polarization at 
5GHz for double-ogive. 
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Fig. 4. Bistatic RCS for horizontal polarization at 
350MHz for PEC cube. 
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Fig. 5. Bistatic RCS for horizontal polarization at 
200MHz for PEC sphere. 
 

Figures 6-9 show convergence history of 
GMRES(m) algorithms with different 
preconditioners for all examples. It can be 
observed that the adaptive preconditioned GMRES 
has almost the same convergence history as that of 
the optimal preconditioner. 

Since a good preconditioner depends not only 
on its effect on convergence but also on its 
construction and implementation time. Tables 1-4 
list the construction time and total solution time of 
GMRES algorithms with different preconditioners 
on all examples. According to these results, we 
can easily find that the proposed adaptive 
preconditioning method using FC requires more 
construction time than other preconditioners. As a 
control method for the choice of preconditioners, 
the adaptive preconditioner has to prepare all of 
the preconditioners for choice. Therefore, large 
time costs during the process of construction of all 
the preconditioners. However, the new method 
shows its efficiency on convergence in these 
examples. Furthermore, the initial time of an 
adaptive preconditioner is negligible when 
compared with the total CPU time cost in 
monostatic RCS computation. Therefore, this 
proposed method is suitable for analysis of 
monostatic scattering. 
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Fig. 6. Convergence history of GMRES algorithms 
with different preconditioners on the almond 
example. 
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Fig. 7. Convergence history of GMRES algorithms 
with different preconditioners on the double-ogive 
example. 
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Fig. 8. Convergence history of GMRES algorithms 
with different preconditioners on the cube example. 
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Fig. 9. Convergence history of GMRES algorithms 
with different preconditioners on the sphere 
example. 
 
Table 1: Comparison of the cost and performance 
of different preconditioners on the almond 
example (Time: Second) 

Almond Construc- 
time 

Number 
of 

Iterations 

Sol-
time 

Total 
-time 

Jacobi / 552 31.73 31.73 
SSOR / 449 28.25 28.25 
SAI 18.42 23 1.61  20.03 

FC-AP 25.45 27 1.77  27.32 
 
Table 2: Comparison of the cost and performance 
of different preconditioners on the double-ogive 
example (Time: Second) 

Double 
ogive 

Construc- 
time 

Number 
of 

Iterations 

Sol- 
time 

Total- 
time 

Jacobi / 229 22.94 22.94 
SSOR / 187 20.56 20.56 
SAI 11.61 26 2.86 14.47 

FC-AP 16.77 30 3.19 19.96 
 
Table 3: Comparison of the cost and performance 
of different preconditioners on the cube example 
(Time: Second) 

Cube Construc- 
time 

Number 
of 

Iterations 

Sol- 
time 

Total 
-time 

Jacobi / 308 33.38 33.38 
SSOR / 249 29.91 29.91 
SAI 23.02 31 3.17 26.19 

FC-AP 33.45 35 3.48 36.93 
 

Table 4: Comparison of the cost and performance 
of different preconditioners on the sphere example 
(Time: Second) 

Sphere Construc- 
time 

Number 
of 

Iterations 

Sol- 
time 

Total-
time 

Jacobi / 195 31.44 31.44 
SSOR / 241 42.02 42.02 
SAI 17.33 31 5.48 22.81 

FC-AP 24.72 35 5.98 30.70 
 

V. CONCLUSIONS AND COMMENTS 
In this paper, a fuzzy controller is presented 

and used for building robust adaptive 
preconditioning method for efficiently solving 
large dense linear systems that arise in EFIE 
formulation of electromagnetic scattering 
problems. The main idea is to make a choice of 
preconditioners which performs the highest 
convergence rate. Numerical experiments on 
several examples are preformed and comparison 
with general preconditioners are made, which 
shows the new method is more efficient. 
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