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Abstract ─ An equivalent dipole-moment method 
(EDM) based multilevel fast multipole algorithm 
(MLFMA), namely EDM-MLFMA, is proposed 
for the electromagnetic scattering from three-
dimensional (3D) dielectric objects. In this 
scheme,  the MLFMA is employed to accelerate 
the interactions of equivalent dipoles in the far 
regions by expanding the 3D dyadic Green's 
function into a multipole expression. The memory 
requirement and CPU time of the conventional 
EDM are reduced from 2( )O N  to ( log )O N N , 
where N  is the number of unknowns. Numerical 
results are presented to validate the efficiency and 
accuracy of this method.  
  
Index Terms ─ Equivalent dipole-moment method 
(EDM), multilevel fast multipole algorithm 
(MLFMA), volume integral equation (VIE).  
 

I. INTRODUCTION 
The scattering of electromagnetic (EM) waves 

from dielectric materials is an important research 
area because of the wide applications in dielectric 
radomes, anisotropic substrates, absorbing 
materials, etc. [1-2]. In the method of moments 
(MoM), the volume integral equation (VIE) is 
generally appropriate for dielectric objects with 
inhomogeneity and anisotropy. However, the 
conventional MoM converts the VIE to a dense 
matrix equation, which is very expensive and 
formidable especially for large scale EM targets. 
The 2( )O N  memory and computational 
complexity for iterative solvers is required for 
both computing the MoM impedance matrix 
elements and solving this dense matrix equation, 
where N  is the number of unknowns. 

More recently, the equivalent dipole-moment 
method (EDM) [3-4] has been developed to 
efficiently generate the impedance matrix 
elements for surface integral equation (SIE). Later, 
the EDM was extended to deal with the isotropic 
media [5] and anisotropic media [6-7]. The EDM 
is based on the commonly used Rao-Wilton-
Glisson (RWG) [8] and Schaubert-Wilton-Glisson 
(SWG) [9] basis functions. In the EDM, each 
RWG triangle pair or SWG tetrahedron pair is 
viewed as a dipole model with an equivalent 
dipole moment. The main advantage of the EDM 
is that the impedance matrix element can be 
expressed in an extremely simplified form. 
However, the memory requirement and the matrix-
solve time do not change, and the complexities are 
still 2( )O N . 

In this article, the EDM is speeded up by the 
multilevel fast multipole algorithm (MLFMA) 
[10-16] for solving the EM scattering from three-
dimensional (3D) dielectric materials in free-
space. All the SWG basis functions are modeled as 
equivalent dipole models and divided into 
multilevel cubical groups. Through expanding the 
3D dyadic Green's function [12] in the formulation 
of the EDM using the addition theorem [17-18], 
the interactions between the source and field 
equivalent dipoles in nonnearby groups are 
transformed into aggregation, translation and 
disaggregation operators. Benefiting from the 
octree-structured grouping, the interpolation and 
anterpolation, only ( )O N  impedance elements at 
the finest level should be calculated and stored, 
and the computation complexity as well as the 
memory requirement of the conventional EDM are 
reduced from 2( )O N  to ( log )O N N .  
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The remainder of the paper is organized as 
follows. In Section II, the EDM is briefly 
presented for the VIE. Then we describe how the 
MLFMA is used to accelerate the EDM in detail. 
In Section III, some numerical results about the 
bistatic radar cross section (RCS) are given to 
verify the efficiency and accuracy of the method. 
Finally, conclusions are drawn in Section IV.  
 

II. FORMULATIONS 
A. Basic principles of the EDM 

Considering an arbitrarily shaped 3D scattering 
target, which consists of electric anisotropic 
material characterized by permittivity tensor ( )ε r .  

The VIE can be constructed by 
1( ) ( ) ( ) ( ) ( )i jε ω φ−= ⋅ + + ∇E r r D r A r r ,     (1) 

where 

0( ) ( ) ( , )
v

G dvµ ′ ′ ′= ∫A r J r r r  ,           (2) 

0

1( ) ( ) ( , )
v

G dv
j

φ
ωε

′ ′ ′ ′= − ∇ ⋅∫r J r r r  .      (3) 

( )iE r  denotes the incident electric field. ( )D r  
denotes the total electric flux density. ( )J r  is the 
equivalent volume current. 0ε  and 0µ are the free-
space permittivity and permeability, respectively.

( )( , ) 4jkG e π′− −′ ′= −r rr r r r  stands for the free-
space scalar Green's function. 

The unknown equivalent volume current ( )J r  
can be expanded by a set of SWG basis functions as 

1
( ) ( ) ( ) ( )

N

n n n
n

j Iωκ κ
=

= ⋅ = ⋅∑J r r D r f r ,          (4) 

where ( )nf r  represents the n th SWG basis 
function  which is defined on two adjoining 
tetrahedron elements nT ±  sharing the n th face nS  in 
the volume mesh. nI  is the unknown expansion 
coefficient. N  is the number of the faces in the 
volume mesh. 1( ) ( )rκ ε −= −r I r  is the contrast ratio 
[19]. I  is the unit tensor. 

Substituting Eq. (2) - Eq. (4) into Eq. (1) and 
using the Galerkin's method, finally the matrix 
equation of the VIE can be obtained by 

1
, 1

N

mn n m
n

Z I V m N
=

= =∑ 
  ,                 (5) 

where 

1

0

( ), ( ) ( ), ( )
1 ( ), ( )

mn m n m n

m r n

Z j

j

ω φ

ε
ωε

−

= + ∇

+ ⋅

f r A r f r r

f r f r
,     (6) 

are the impedance matrix elements. 
( ), ( )i

m mV = f r E r   ,                      (7) 
are the right-hand side vector elements. 

In the conventional MoM, the multipoint 
Gaussian quadrature is usually used to calculate Eq. 
(6). However, this process can be simplified in the 
EDM. The basic idea of the EDM is that the fields 
radiated by the current in a SWG element are 
approximated as the fields due to an infinitely small 
dipole with an equivalent moment [5]. Based on 
this assumption, the interaction of two basis 
functions can be replaced by the interaction of two 
infinitely small dipoles, except they are very close 
to each other. 

The equivalent dipole moment in the n th SWG 
element can be obtained by the integration of the 
volume current over the tetrahedron pair nT ±  [6]. 

( ) ( )

( )
n

c c
m n n n n ns nT

c c
n n n ns

dv a

a

κ κ

κ

±

+ +

− −

′ ′= ⋅ ≈ ⋅ −

+ ⋅ −

∫m f r r r

r r
 , (8) 

where c
n

±r  and c
nsr  are the position vectors of the 

centroid of nT ±  and the centroid of the common face 

nS , respectively. 
The impedance elements mnZ  can be expressed 

in a very simple form [5-6] 

( )( )
4

ˆ ˆ 3

jkR

mn m n

m n

e jkZ C
R

jk C
R

η
π

−   ′= ⋅ +   
 ′− ⋅ ⋅ +  

m m

m R R m
 ,     (9) 

where mn m n= = −R r r r  is the vector from the center 
point nr  of the n th equivalent dipole to the center 
point mr  of the m th equivalent dipole. R = R  , 
ˆ R=R R  . η  is the intrinsic impedance of medium 

in free-space, and [ ] 21 1 ( )C jkR R= + .  
( )c c

m m m ma − +′ = −m r r  ,                    (10) 
is the moment of the SWG basis function [9]. 

It should be mentioned that the matrix elements 
are computed by the EDM directly when the 
distance of two SWG elements is greater than the 
critical distance 0.2 0λ  in this paper. 
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B. Acceleration of the EDM using the MLFMA 
Although the mutual impedance elements can be 

calculated by the EDM efficiently, the 
computational complexity for performing a matrix 
vector product (MVP) is still 2( )O N  for iterative 
methods and all the impedance elements must be 
stored. So the EDM is limited to solve electrically 
small targets. In this work, the MLFMA is 
employed to accelerate the MVP and reduce the 
memory requirement. 

To employ the MLFMA, the entire target needs 
multilevel grouping first, then nonempty cubes are 
recorded using octree-structured data at all levels. 
We consider two dipoles m  and n , which belong to 
two far groups j  and i , respectively. Equation (9) 
of  the impedance element mnZ  can be rewritten as 

( , )mn m m n nZ jkη ′= ⋅ ⋅m G r r m ,             (11) 
where 

ˆ ˆ( , ) (1 ) (1 3 ) ( , )m n m nC C G = + − + G r r I RR r r , (12) 
is the dyadic Green's function in free-space, in 
which 

2

1 1
( )

C
jkR jkR

= +  .                 (13) 

In addition, the vector mn=R r  can be rewritten 
as ji mj ni= + −R r r r , in which 

j iji O O= −r r r , 

jmj m O= −r r r , 
ini n O= −r r r . 

iOr  and 
jOr  are the 

center positions of group i  and j , respectively. 
Since the two groups are the far group pair, the 
addition theorem can be used to expand the dyadic 
Green's function as [12] 

( ) 2ˆ ˆ ˆ( , ) [ ] ( , )mj nij
m n L jie T d− ⋅ −≈ −∫ k r rG r r I kk k r k , (14) 

where 
1 (2)

2
0

ˆ( , ) ( ) (2 1) ( ) ( )
16

L
l

L ji l ji l ji
l

kT j l h kr P
π

+

=

= − + ⋅∑k r k r

.(15) 
(2) ( )lh ⋅  is the spherical Hankel function of the 

second kind, and ( )lP ⋅  is the Legendre function of 
order l .  
Substituting Eq. (14) into Eq. (11), and using the 
identity of ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )− = − ⋅ −I kk I kk I kk , the 
impedance element mnZ  can be represented by 

  ˆ ˆ ˆ( ) ( , ) ( )mn m L ji nZ jk T dη= ⋅∫R k k r F k k ,     (16) 

in which the vectors ˆ( )nF k  and ˆ( )mR k  are radiation 
function and receive function, respectively and are 
given by 

ˆ ˆ ˆ( ) ( ) nij
n n e ⋅= ⋅ − k rF k m I kk ,            (17) 

ˆ ˆ ˆ( ) ( ) mjj
m m e− ⋅′= ⋅ − k rR k m I kk .         (18) 

Physical interpretation of this expansion is that a 
spherical wave from a dipole in free space is 
expanded by the sum of an infinite number of plane 
waves. Using Eq. (16), then the MVP can be 
computed fast through an aggregation-translation-
disaggregation form. The complexities of 
computation and memory requirement can achieve 

( log )O N N  profiting from the interpolation, 
anterpolation, and the grid-tree data structure [10-
11]. At the finest level, only ( )O N  impedance 
elements should be calculated and stored. Further 
more, part of them can be efficiently calculated by 
the EDM. 

 
III. NUMERICAL RESULTS 

In this section, we present some numerical 
results to validate the efficiency and accuracy of 
the new method. In the following examples, all the 
simulations are performed on a personal computer 
with the Pentium(R) Dual CPU E5500 with 2.80 
GHz (only one core is used) and 2.0 GB RAM. 
The GMRES iterative solver is employed to obtain 
an identical residual error ≤  0.001 and the block 
diagonal preconditioner is used. 
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Fig. 1. Bistatic RCSs in θθ polarization of a 
spherical dielectric shell illuminated by a uniform 
plane wave with the incident direction of 
( , ) (0 ,0 )θ φ =   . 
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First, we consider the scattering problem of a 
spherical dielectric shell. The shell's inner and 
outer radii are 0.5 m and 0.55 m and the relative 
permittivity of the shell is rε  =1.5 I , as shown in 
the inset of Fig. 1. The shell is discretized into 
5309 tetrahedrons, and the total number of 
unknowns is 12213. The size of the finest group is 
set to 0.15 m and a 3-level EDM-MLFMA is used. 
The bistatic RCS for θθ  polarization calculated 
by the EDM-MLFMA agrees well with the 
conventional EDM and the Mie series solution 
shown in Fig. 1. At 180 , the RCS value of the 
Mie series is -0.97987 dBsm, and the results 
obtained by the EDM-MLFMA and the 
conventional EDM are -0.97359 and -0.97464 
dBsm, respectively. The root mean square (rms) 
errors of the EDM-MLFMA and the conventional 
EDM are 0.448 and 0.441 dBsm, respectively. 
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Fig. 2. Bistatic RCSs in θθ polarization of a 
dielectric cylinder illuminated by a uniform plane 
wave with the incident direction of ( , ) (0 ,0 )θ φ =   . 

 

Then the bistatic RCS of a dielectric cylinder is 
considered. The radii and height of the cylinder 
are 0.25 m and 2.0 m. The relative permittivity of 
the cylinder is rε  =1.5 I . The target is discretized 
into 5668 tetrahedrons, and the total number of 
unknowns is 11897. A 4-level EDM-MLFMA is 
used and the size of the group at the finest level is 
0.15 m. The bistatic RCS in θθ  polarization 
obtained by the EDM-MLFMA agrees well with 
the conventional EDM shown in Fig. 2.  

Finally the bistatic RCS of an anisotropic 
dielectric target is considered. The target is 
constituted by 5 small slabs with the same size 1.0 
m ×  4.0 m ×  0.05 m, but the 5 small slabs have 

different relative permittivities (see Fig. 3, 1rε
=[1.5, j, 0; -j, 1.5, 0; 0, 0, 2.0], 2rε =(1.75-0.5j) I  
and 3rε =[2.0, j, 0; -j, 2.0, 0; 0, 0, 1.5]). The target 
is discretized into 49470 tetrahedrons, and the total 
number of unknowns is 115620. A 6-level EDM-
MLFMA is used and the group at the finest level is 
also with the size of 0.15 m. The bistatic RCS in 
θθ  polarization obtained by the EDM-MLFMA is 
shown in Fig. 3. This target could not be 
calculated by the conventional EDM, because the 
memory is not enough. The conventional EDM is 
estimated to require about 100 GB memory and 4 
h CPU time. 

 

0 30 60 90 120 150 180 210 240 270 300 330 360

-60

-50

-40

-30

-20

-10

0

10

20

1rε

3rε

xy

z

1.0m

inck

4.0m

0.05m

2rε

1rε
2rε

Ei

 

 

Bi
st

at
ic 

RC
S 

σ θθ
 (d

Bs
m

)

Degrees Elevation ( φ = 0o, θ = 0o~360o )

 EDM-MLFMA

f =300 MHz
Receptance: (θ, φ)=(0o~360o,0o) 

Incidence: (θ, φ)=(0o, 0o)

 

Fig. 3. Bistatic RCSs in θθ  polarization of an 
anisotropic dielectric target illuminated by a 
uniform plane wave with the incident direction of 
( , ) (0 ,0 )θ φ =   . 

 

Table 1 summarizes the CPU time and memory 
requirment of the above simulations. It can be seen 
that the EDM-MLFMA saves much CPU time and 
memory than the conventional EDM. 
 
Table 1: Comparison of CPU time and memory 
requirement of the conventional EDM and EDM-
MLFMA 

Method EDM EDM-MLFMA 
 Time Memory Time Memory 

Problem 1 132 s 1188 MB 51 s 145 MB 
Problem 2 138 s 1128 MB 58 s 171 MB 
Problem 3 - - 520 s 1390 MB 

 
IV. CONCLUSION 

In this article, the EDM based MLFMA is 
introduced and applied to solve the VIE in the 
electromagnetic scattering of dielectric targets. 
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The new method can reduce both the CPU time 
and memory requirement of the conventional 
EDM to ( log )O N N . In the future, this method 
will be extended and applied to solve surface 
integral equation (SIE) and volume-surface 
integral equation (VSIE). 
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