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Abstract ─ In this paper, the stability, dispersion, 
and convergence of the high-order FDTD (HO-
FDTD), the multi-resolution time-domain 
(MRTD), and the Runge-Kutta multi-resolution 
time-domain (RK-MRTD) schemes are derived, 
analyzed, and compared. The computational cost 
and memory requirements of the three methods are 
also investigated. It is found that the RK-MRTD 
method is of considerable potential due to its 
dispersion properties and computational abilities.  
  
Index Terms ─ Convergence, dispersion, HO-
FDTD, MRTD, RK-MRTD, and stability.  

 
I. INTRODUCTION 

The classical Yee FDTD [1] method has 
become the most important numerical technique in 
the computational electromagnetics time domain 
over the past few decades, and has been applied 
widely to simulate electromagnetic wave 
propagation, scattering, radiation, and various 
microwave geometries, owing to its simple 
implementation and versatility. However, the 
technique suffers from serious limitations due to 
the substantial computer resources required when 
it involves modeling a complex problem, which 
has large stencil size at least 10 cells or more per 
wavelength. It is well known that the FDTD 
method has a second order accuracy in spatial-
temporal and brought significant computational 
errors. In order to improve the limitations of the 
FDTD method, a mass of methods are proposed, 
including the HO-FDTD [2-4], the MRTD [5], the 
RK-MRTD method [6] have been raised. The HO-
FDTD approach, firstly presented by Fang [2], 
using the Taylor series instead of the spatial and 

temporal derivatives to reducing the dispersion 
error. It is noted that the HO-FDTD method 
adopted a second-order approximation in time, 
fourth-order accurate in space-domain called HO-
FDTD (2, 4) scheme, and the HO-FDTD (2, 6) 
with sixth-order in space and second-order in time 
was developed to deal with the electric large size 
problem [3]. Zhang and Chen [7] put forward to 
the general updated equations and dispersion 
relations for the arbitrary HO-FDTD (2N, 2M). 
The fourth-order accurate FDFD scheme is 
proposed and applied in the waveguide structures. 
The results demonstrate that the proposed method 
can save more time and memory than MRFD and 
the traditional FDFD methods [8]. The MRTD 
method, introduced by Krumpholz and Katehi, are 
based mainly on the filed expansions of different 
basis scaling and wavelet function, such as the 
Battle-Lemarie [9-10] basis, the Daubechies basis 
[11], Cohen - Daubechies - Feauveau (CDF) bi-
orthogonal functions [12, 13] basis, and Coifman 
function basis [14, 15]. In [16], Cao and Tamma 
discussed the MRTD method based on different 
scaling function expansions, and computed the 
reflected and transmission coefficients for 
stratified slab media, and the results show that the 
cubic spline Battle-Lemarie, Daubechies D4 and 
Coiflet bases are in excellent agreement with the 
analytic solutions. Cao and Tamma also applied 
the MRTD methods based on different basis 
functions to study the scattering of planar stratified 
medium and rectangular dielectric cylinder [17]. 
In [18] the MRTD method has been discussed in 
detail, especially a non-uniform Cartesian grid and 
a uniaxial perfectly matched layer implementation 
for arbitrary levels of wavelet resolution. A 
procedure to implement the PML absorbing 
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boundary conditions into the MRTD method based 
on the discrete wavelet transform has been 
developed in [19]. The strong stability Runge-
Kutta (SSP-RK) method was first introduced and 
extended in [20] and [21]. Compactly supported 
nth-order wavelets and mth-order, mth-stage Runge- 
Kutta are applied in spatial discretization and time 
integration, respectively. Numerical experiments 
have shown that much better numerical dispersion 
properties are obtained by employing the RK-
MRTD scheme. 

In summary, the HO-FDTD, the MRTD, and 
the RK-MRTD methods are the high order 
accuracy time domain methods and have 
extremely low numerical dispersion errors. In 
section II, the update equations of the HO-FDTD, 
the MRTD, and the RK-MRTD schemes are 
discussed. The numerical properties of the HO-
FDTD, the MRTD, and the RK-MRTD methods 
are derived including stability conditions, 
dispersion relation, and convergence in section III. 
The computational cost and memory requirements  
of the three schemes are investigated in section IV. 
In section V, a numerical example will be 
simulated for different methods. Conclusions are 
summarized in section VI. 
 

II. THEORY AND ALGORITHM 
A. HO-FDTD method 

For simplicity (σ = 0) and without loss of 
generality, in three-dimensional (3D), one update 
equation of the arbitrary HO-FDTD (2N, 2M) [7] 
can be written as, 
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where ∆t, ∆y, and ∆z are the time step size and the 
spatial step size in the y- and z-directions, 2N 
means the (2N)th-order central difference 
approximation in time domain, 2M is the (2M)th-
order in space time, ε is the permittivity, and the 
coefficients a(v) [7] are listed in Table 1.We note 
that the HO-FDTD (2, 2M) equations are similar 

to the MRTD method. Here in this paper, we 
mainly discuss the HO-FDTD (2, 2M) scheme. 

 
B. MRTD method 

Similarly, considering the same electromagnetic 
condition as the HO-FDTD method, one update 
equation of the MRTD scheme based on 
Daubechies scaling functions [6] can be written as 
follows, 
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where ∆x, ∆y ,∆z, and ∆t represent the space and 
time discretization intervals in x-, y-, z- and t-
directions, respectively, and  refers to the 
Daubechies or Coifman scaling functions, ε is the 
permittivity, and the coefficients a(ν) are listed in 
Table 2 for Daubecies (D2), (D3), and (D4) 
schemes [6] and Coifman scheme [14], and the 
coefficients a(v) have the symmetric relations, 
namely, a(v) = a(v1). 
 
C. RK-MRTD method 

For the same conditions above, one update 
equation of the RK-MRTD scheme [6], which is 
based on the same convergence rate for the time 
and space, can be written as, 
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where the coefficients a(v) is the same as the 
MRTD method listed in Table 2. 

The general form for equation (3) as in [6], can 
be written as 

                     ( ),
F

uF S t
t


 


                      (4) 

where F = {E, H}T, E and H are expressed as E = 
{Ex, Ey, Ez}

T, H = {Hx, Hy, Hz}
T, where T is the 

transpose of the vector, u is a operator and defined 

as 
0

0
H

E

u
u

u

 
  
 

, S(t) is a source, the form of the 

m′th-order m′ stage strong stability preserving 
Rung-Kutta (SSP-RK) [6] schemes are shown as, 
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Now, we use the Fourier method [22] to 
analyze the stability of the RK-MRTD, following 
the [23], we solve the update equations of RK-
MRTD and obtain,   
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Table 1: Coefficients a(v) for the HO-FDTD (2N, 2M) method. 

 (2, 6) (2, 10) (2, 14) (2, 16) 
a (1) 1.171875 1.211242676 1.228606224 1.23409107 
a (2) -0.0651041667 -0.0897216797 -0.102383852 -0.106649846 
a (3) 0.0046875000 0.0138427734 0.0204767704 0.0230363667 
a (4)  -0.00176565988 -0.00417893273 -0.0053423856 
a (5)  0.000118679470 0.000689453549 0.00107727117 
a (6)   -0.0000769225034 -0.000166418878 
a (7)   0.00000423651475 0.0000170217111 
a (8)    -0.000000852346421 

 

Table 2: Coefficients a(v) for the MRTD method. 

 D2 D3 D4 Coifman 
a (1) 1.2291666667 1.2918129281 1.3110340773 1.31103179882954 
a (2) -0.0937500000 -0.1371343465 -0.1560100710 -0.15600971692384 
a (3) 0.0104166667 0.0287617723 0.0419957460 0.04199608161407 
a (4)  -0.0034701413 -0.0086543236 -0.00865439622799 
a (5)  0.0000080265 0.0008308695 8.30874303205e-04 
a (6)   0.0000108999 1.09002750582e-05 
a (7)   -0.0000000041 -4.10840975298e-09 
a (8)    -7.977050410221e-13 
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the component 0 is a 3 by 3 zero matrix, and uE1, 
uE2, uE3, uE4, uE5, uE6, uH1, uH2, uH3, uH4, uH5, uH6 are 

 

1

0
1

2i ( ) sin( (1 / 2 ) )
Nv

z
v

E

a v k v z
u

z





 
 




, 

382 ACES JOURNAL, VOL. 28, NO. 5, MAY 2013



 

  

1

0
2

2i ( ) sin( (1 / 2 ) )
Nv

y
v

E

a v k v y
u

y





 





, 

1

0
3

2i ( ) sin( (1 / 2 ) )
Nv

z
v

E

a v k v z
u

z





 





,                

1

0
4

2i ( ) sin( (1 / 2 ) )
Nv

x
v

E

a v k v x
u

x





 
 




, 

1

0
5

2i ( ) sin( (1/ 2 ) )
Nv

y
v

E

a v k v y
u

y





 
 




,  

1

0
6

2i ( ) sin( (1 / 2 ) )
Nv

x
v

E

a v k v x
u

x





 





, 

1

0
1

2i ( ) sin( (1 / 2 ) )
Nv

z
v

H

a v k v z
u

z





 





,     

1

0
2

2i ( ) sin( (1 / 2 ) )
Nv

y
v

H

a v k v y
u

y





 
 




, 

1

0
3

2i ( ) sin( (1 / 2 ) )
Nv

z
v

H

a v k v z
u

z





 
 




,  

1

0
4

2i ( ) sin( (1 / 2 ) )
Nv

x
v

H

a v k v x
u

x





 





, 

 

1

0
5

2i ( ) sin( (1 / 2 ) )
Nv

y
v

H

a v k v y
u

y





 





 , 

        

1

0
6

2i ( ) sin( (1 / 2 ) )
Nv

x
v

H

a v k v x
u

x





 
 




.     (8) 

We use the characteristic equation to solve u for 
equation (7) and be obtained as follows, 

6 2 4 2 2 2

4 2 2 2 2

4 4 4

8 ( ) ( ) ( )

    16 2( ) 2( ) 2( )

                          ( ) ( ) ( ) 0

x y z

x y x z y z

x y z

I u c

c

     

      

  

      
  

   

   (9) 

           

1

0

( )sin( (1/ 2 ) )
Nv

v

a v k v












 





,     (10) 

where i 1  , τ = x, y, z, the positive part of the 
Eigen value for u can be derived as, 

2 2 2i2 ( ) ( ) ( )  =i '  x y zc          (11) 

where c is the speed of light in vacuum in this 
paper, λ′ is the imaginary part of λ. 
 

III. NUMERICAL PROPERTIES 
A. Stability 

Based on the stability condition of the Yee’s 
FDTD with the uniform discretization size ∆x = ∆y 
= ∆z = ∆l, the HO-FDTD (2N, 2M) stability 
condition can be derived as, 
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We only discuss the HO-FDTD (2, 2M) case, 
so the stability condition relation above can be 
modified as, 
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The stability condition for MRTD scheme is 
derived, as in [11], 
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where a(v) are listed in Table 2, and d is the 
number of dimensions (1, 2, or 3). 

The RK-MRTD method is based on the SSP-
RK algorithm and the MRTD scheme, so the 
stability condition of the scheme should be 
considered as the combination of the two 
algorithms. In reference [20], equation (5) can take 
the general forms as, 
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where m′ is the order of the SSP-RK, L is the 
spatial amplification matrix of the Eigen value λ, 
and G is the general growth factor, so the absolute 
value of G is lower or equal to 1, from equation 
(15) we can define the growth factor σ [23] as, 

383ZHU, CAO, CAO: STUDYING AND ANALYSIS OF THE CHARACTERISTIC OF THE HIGH-ORDER AND MRTD AND RK-MRTD SCHEMES



 

'

0

1
( )

!

m
l

l

t
l

 


  .                 (16) 

If m′ = 4, then the stability condition of the 
RK4-MRTD-D4 method, which RKm′-MRTD-Dm′ 
refers to the m′th-order m′ stage SSP-RK method 
based on Daubechies m′ scaling function [24], is 
obtained as, 
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substituting equations (11) into (17)， then the 
RK4-MRTD-D4 stability condition can be derived 
as,  
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The stability conditions of the other order 
RKm′-MRTD-Dm′ algorithm are derived as the 
same procedure of the RK4-MRTD-D4, which was 
not described here for simplicity. 

The maximum Courant-Friedrichs-Lewy (CFL) 
number of the HO-FDTD (2, 2M), MRTD, and 
RK-MRTD methods are listed in Table 3, and the 
Dubechies Dm′ (m′ = 2, 3, 4) and Coifman basis are 
used in the MRTD and RK-MRTD methods. It is 
found that the higher order in the spatial and 
temporal discretizations, the more strict stability 
condition required, but the RK4-MRTD-D4 is less 
restrictive than any other method, and the RK2-
MRTD-D2 is unconditionally unstable.    

 
Table 3: The maximum CFL number for the HO-
FDTD, MRTD, and RK-MRTD method. 

 HO-FDTD MRTD RK-MRTD 
(2,6) / D2 0.4650 0.4330 - 

(2,10) / D3 0.4385 0.3951 0.3422 
(2,14)/ D4 0.4256 0.3802 0.5377 
(2,16)/ coif 0.4213 0.3802 0.53770 
 

B. Dispersion 
The dispersion characteristics are typically 

derived by assuming a time harmonic plane wave 
solution in an isotropic, linear, and lossless 
medium. The dispersion relation for the arbitrary 
HO-FDTD (2N, 2M) [7] method can be written as, 
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where k is the numerical wave number vector, λn 
is the numerical wavelength, its components are kx 

= ksinθcos , ky = ksinθsin , kz = kcosθ. (θ,  ) is 
the wave propagation angle in the spherical 
coordinate, the uniform spatial step size is 
assumed as ∆x = ∆y = ∆z = ∆. Defining the CFL 
number q = (c∆t) /∆ and the number of cells per 
wavelength p = λc /∆. The ratio of the theoretic 
wavelength value λc to the numerical wavelength 
λn is defined as u= λc/λn. Therefore, the dispersion 
relationship can be written as,  
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With the same procedure above, the dispersion 
relation for the MRTD [11] method can be 
obtained as follows,         
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The dispersion of the RK-MRTD needs to use 
the theory of the SSP-RK [24], take RK3-MRTD-
D3 for example, and according to [25], by 
substituting equations (11) and (16) in to equation 
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(22), then the dispersion relation can be derived in 
equation (23) as, 

( )t Arg                          (22) 
3

2 2
2

6 ( )2
( ) (arctan( ))

6 3( )
i i

i

t tq

up t

 


  


 
.        (23) 

With the wave propagation angle θ=90° and =0°, 
CFL number q = 0.25. Figures (1) to (3) show the 
dispersion error Vn/c versus the number of cells 
per wavelength p for different methods in 3D. A 
summarized performance of the three methods is 
presented in Fig. 4.         
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Fig. 1. Dispersion error of the HO-FDTD method.  
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Fig. 2. Dispersion error of the MRTD methods. 

 
 Figure 1 shows the dispersion error Vn/c, 
where Vn refers to the numerical phase velocity, 
for the HO-FDTD (2, 6), (2, 10), (2, 14), (2, 16). 

With increasing p, the HO-FDTD (2, 16) is 
obviously superior to the other three low order 
schemes (2, 6), (2, 10), and (2, 14), especially 
when p is larger than 17.  
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Fig. 3. Dispersion error of the RK-MRTD method. 
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Fig. 4. Dispersion error of the different methods. 
 

 
Figures 5 to 9 show the dispersion error versus 

the wave propagation angle for θ = 90° and ∆x = 
∆y = ∆z = ∆=λ /5. From the figures, we can see 
that: (i) the larger the stencil spatial size the 
minimum is the dispersion error for the same 
method; (ii) for different methods and with the 
same spatial stencil size, the HO-FDTD and RK-
MRTD method both provide the better dispersion 
characteristics than their corresponding MRTD 
counterparts. 
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Fig. 5. Dispersion error versus for the MRTD 
methods. 
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Fig. 6. Dispersion error versus of the HO-FDTD 
method. 
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Fig. 7. Dispersion error versus   of the MRTD 
and HO-FDTD methods. 
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Fig. 8. Dispersion error versus of the RK-MRTD 
methods. 
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Fig. 9. Dispersion error versus  of the different 
methods. 
 
C. Convergence 

Because the HO-FDTD method uses Taylor 
series to expand the Maxwell’s equations, the 
arbitrary HO-FDTD (2N, 2M) schemes employ the 
2Nth-order Taylor series expansion in time and the 
2Mth-order Taylor series expansion in space, 
therefore,  
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where equation (26) is the Taylor series remainder, 

nC  , mC  and 'rC are the coefficients, so the error is a 

convergence relation that can be written as the 
RK-MRTD in [6], 

HO-FDTD (2N, 2M)-error ' 'n mA t B x    . (27)   

Thus, the convergence relation of HO-FDTD (2, 
2M) scheme can be derived as, 

HO-FDTD (2, 2M) -error 2 '' ' mC t B x   (28)              

where A΄, B΄, and C΄ are the constant coefficients. 
Take the Daubechies N′ scaling functions, for 
example, and the CFL stability condition ∆t = q∆x 
/c (q≤1), then the convergence relation of the 
MRTD schemes [6] can be derived as, 

MRTD-error ' 2NA x B t     

' 2 2( )N x
A x B C x

c
 

     . (29) 

The RK-MRTD method based on the MRTD 
uses the m′th-order m′ stage SSP-RK method in 
temporal discretization. It is known in [6] that 

RK-MRTD error ' 'm N
t xC t C x    ,      (30) 

simplified and summarized as, 

RK-MRTD -error '
'

N
NC x  .            (31) 

 
From Fig. 10, it is easily to find the RK-MRTD 
scheme based on Daubechies basis functions that 
have the higher temporal and spatial convergence 
than other cases. 
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Fig. 10. Convergence of the MRTD, HO-FDTD, 
and RK-MRTD methods.  

 

IV. COMPUTATIONAL COST AND 
MEMORY REQUIREMENTS 

Here, we analyze and discuss the 
computational cost and memory requirements of 
the HO-FDTD (2, 2M), MRTD and RK-MRTD 
method. As in [6], for 3D case, the fields at a final 
time for the HO-FDTD (2, 2M) and MRTD 
methods only En and Hn-1/2  need to be stored at 
each time step, while the RK-MRTD method 
demand to store the values of F(i) and Fn+1, so the 
memory requirements of the RK-MRTD method 
are twice that of the other two methods.  

The computational cost of the MRTD method 
[6] for a single time step is,  

Cost MRTD = 2 ( n1 ) ³ × ( 4 N′ - 2 )          (32) 

where N′ is the order of the scaling function DN′, n1 

is the number of cells in a single direction. If the 
domain is the unit size, then n1=1/∆x1, and ∆x1 is 
the grid spacing. Similarly, the computational cost 
of the HO-FDTD (2, 2M ) method is, 

Cost HO-FDTD = 2 ( n2 ) ³ × 2 M          (33) 

where n2 is the number of the cells in a single 
direction, n2 = 1/∆x2 for unit size and ∆x2 is the 
grid spacing for the HO-FDTD (2, 2M) method. 
We know that the RK-MRTD method base on the 
m′ stage m′th-order SSP-RK algorithm (cf. (5)), for 
a single time step, the computational cost [6] is,  

Cost RK-MRTD = 2 ( nm′ ) ³ × m′ × (4 N′ -1)   (34) 

where nm′ is the number of the cells in a single 
direction, nm′ = 1/∆xm′ for unit size and ∆xm′ is the 
grid spacing for the RK-MRTD method.  

From equations (32) and (33), we found that 
the MRTD and HO-FDTD (2, 2M) methods have 
the same computational cost if they have the same 
number of the cells in a single direction and the 
spatial stencil size. If the computational domain is 
unit size, and ∆t1 is the maximal stable time step 
for the MRTD method and m′= N′, the time step 
∆tN′ for the RK-MRTD must be chosen as ∆tN′ = 
2∆t1 / N′, the same as the HO-FDTD method, ∆t2 is 
the maximal stable time step for the HO-FDTD (2, 
2M) method and the time step must be chosen as 
∆tN′ = 2∆t2 / N′. If the total computational time is 1, 
then the cost of the three methods are, 

 Cost MRTD= 3
1

1

1
2( ) (4 '-2)n N

t
 


            (35) 
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For a given accuracy, and using the above 
equations, the computational cost relations among 
the MRTD, HO-FDTD, and RK-MRTD methods 
can be derived as, 
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where η1 and η2 are constants dependent on nm′, n1, 
N′, n2, and M. From equations (38) and (39), we 
know that the computational time of the RK-
MRTD method is η1 times of the MRTD and η2 

times of the HO-FDTD method, and η1, η2 can be 
controllable. 
 

V. NUMERICAL EXAMPLE  
In this section, the three above methods will 

be validated via a simple classical metal sphere 
scattering example. The radius of the sphere is 1 m, 
and illuminated by a Gaussian pulse at a Gaussian 
pulse at θ = 0°, φ = 90°, and the polarization of the 
electric field along x-direction with increasing 
centre frequencies from 1 MHz to 300 MHz. The 
CFL number is 0.3, the cell size ∆ = 0.05 m, the 
time step size ∆t = 0.3 ∆ / c, and the total 
computational time is 2000 steps. Backward 
scattering RCS for different methods of the metal 
sphere are shown in Fig. 11, including the Mie 
series solution, HO-FDTD (2, 14), MRTD-D4 and 
RK4-MRTD-D4. From the Fig. 11, we can see that 
errors are increased with increasing the centre 
frequency because the number of per wavelength 
decreases with increasing the centre frequency for 
fixed cell size. But in the lower frequency part, the 
RK4-MRTD-D4 method is better in comparison 
with the Mie series solution than other methods. 
The results also agree with those shown in Figs. 4 
and 9. 
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Fig. 11. Backward scattering RCS of the metal 
sphere. 

 
Figure 12 shows the convergence of the metal 

sphere scattering in a 3D case. From the figure, we 
can see that the convergence rate of the RK4-
MRTD-D4, MRTD-D4, and HO-FDTD (2, 14) are 
4, 2, 2, respectively, and the RK4-MRTD-D4 is 
faster than the other two methods, which are in 
accordance with the conclusion in Fig. 10.   
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Fig. 12. Convergence of different methods for the 
scattering of a metal sphere in a 3D case. 
 

VI. CONCLUSION 
In this paper, the stability, numerical 

dispersion, and convergence of the HO-FDTD, 
MRTD, and RK-MRTD schemes have been 
investigated, respectively. Analytical stability 
condition expression for the arbitrary HO-FDTD 
(2N, 2M) method has been derived. It is proved 
that the HO-FDTD schemes have less restrictive 
conditions of the stability than those of the MRTD 
method. The dispersion relation for the RK-
MRTD schemes also has been derived. It is found, 
that for the same scheme, for example the HO-
FDTD schemes, finer discretizations in time and 
space domains can decrease the numerical 
dispersion; among  different methods the RK-
MRTD schemes demonstrate better dispersion 
than the HO-FDTD and MRTD methods. The 
computational cost and memory requirements are 
discussed in this paper. In section V, a simple and 
classical example has been used to prove that these 
methods have certain research value, especially 
the RK-MRTD method, which has both the better 
numerical properties and controllable 
computational time. The conclusions demonstrate 
that the RK-MRTD method has the potential 
ability and research significance in computational 
electromagnetics. 
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