
Price-Performance Aspects of Accelerating the FDTD Method Using
the Vector Processing Programming Paradigm on GPU and Multi-

Core Clusters

Robert G. Ilgner and David B. Davidson

Department of Electrical and Electronic Engineering
University of Stellenbosch, Matieland, Private Bag X1, Western Cape, South Africa

bobilgner@gmail.com, davidson@sun.ac.za

Abstract � The parallelization of the FDTD on
GPUs has become popular due to the low cost, low
power and high compute performance achieved
with these devices. In recent years, manufacturers
of multi-core processors have enhanced the vector
processing capability inherent in conventional
processing cores, to the extent that these are now
contributing considerably to the acceleration of the
FDTD and competing with GPUs. This paper will
compare the power consumption and purchase cost
versus the performance benefits of several parallel
FDTD implementations, in order to quantify the
effect of parallelizing the FDTD using various
processing paradigms. The purchase cost of
hardware, computational performance and power
consumption are used to compare the parallel
FDTD deployments on the BlueGene/P, GPU
clusters and the multi-core clusters using SSE. It is
shown that the deployment of the parallel FDTD
using a hybrid programming paradigm achieves
the best computational performance for the lowest
purchase cost and power consumption.

Index Terms – AVX, cluster, FDTD, GPU, multi-
core, performance, SSE and vector processing.

I. INTRODUCTION
The Finite Difference Time Domain (FDTD)

method is inherently highly parallel and has been
accelerated by coding the FDTD in parallel form
on a variety of platforms. Contemporary examples
included the BlueGene/P, multi-core clusters and
clusters using Graphical Processing Units (GPU).
These systems can all achieve similar
computational throughput, depending on the scale

of the system. Upfront purchase cost and power
consumption are crucial considerations when
evaluating high performance computing hardware.
Recent years have seen a sustained effort by
manufacturers to reduce both, but nonetheless
maintain an increase in computational
performance [1].

This paper will compare the performance
related cost of purchase and power consumed by
the FDTD implementations on three different high
performance computing architectures. To avoid
the effect of scaling on the comparison,
computational performance, price and power
consumption will be normalized on a per core
basis. The FDTD will be implemented using a task
parallel method on the BlueGene/P and the multi-
core clusters and by a combination of data parallel
and task parallel methods; i.e., hybrid methods on
the GPU cluster and multi-core clusters. The
multi-core clusters make use of their Vector
Arithmetic Logic Units (VALU), such as the
Streaming SIMD Extensions (SSE) or the
Advanced Vector Extensions (AVX), to achieve
good performance for the FDTD. The
computational performance of these parallelised
FDTD implementations will be used to compare
the cost and power consumption for the FDTD on
high performance computers on a per core basis.
These results are the main contribution of this
paper, as most results in the literature for parallel
FDTD deployments do not compare across
entirely different architectures. With the exception
of results for an i7-3960x and the GPU cluster
(which are taken from the literature), results to be
compared were obtained from parallel code

1054-4887 © 2014 ACES

351ACES JOURNAL, Vol. 29, No. 5, MAY 2014

developed and deployed by the present authors in
C on the different platforms. As such, another
contribution made by this work is in removing the
bias, which can be associated with different
programming styles, programming languages and
differing test data.

II. PARALLEL FDTD ON HIGH
PERFORMANCE COMPUTERS

A. The FDTD method as a computational load
The FDTD method is based on a finite

differences approximation of Maxwell’s equations
in both the time and spatial domains [2]. The
computation is performed on a lattice of electric
grid values offset by one half a grid spacing from
the magnetic grid values. The FDTD remains the
most widely-used time domain based
Computational Electromagnetic (CEM) solver and
overall is one of the most widely-used CEM
methods

In the serial form of the FDTD process,
program profiling shows that typically more than
98% of the process load is dominated by the
repeated calculation of the updated FDTD grid.
These calculations are also referred to as iterations,
or sometimes leap-frogging and comprise several
sets of three level deep computational loops (in
three dimensions) [2].

The FDTD process is readily decomposed for
parallelisation in either a task parallel or data
parallel sense, as described by the methods that
follow next.

In this paper, a compute node usually consists
of several processors, each processor having several
cores, following widely-used terminology in the
high performance computing field.

B. Techniques used to parallelise the FDTD
method.

Accelerating the FDTD on different
architectures requires that the method of
parallelisation matches the architecture of the High
Performance Computing (HPC) system. There are
currently three principal methods used to parallelise
the FDTD on specific architectures. These are:

1) Message Passing Interface (MPI) - appropriate
for a multi-core cluster or BlueGene [3]. The
FDTD is parallelised as independent processing
threads that will exchange FDTD grid data

between iteration cycles. The MPI interface
provides the communication protocol for the
exchange of FDTD grid data fringes between
successive iterations of the FDTD process [3].

2) openMP - appropriate for multi-core processors
or shared memory processors [4,5]. The FDTD
is parallelised on the basis of loop parallelism.
openMP is a parametric language construct that
is embedded in the program code before
compilation. The openMP directive spawns
FDTD threads that operate in the same memory
space.

3) Vector processors or vector processor like
architectures - i.e., GPU or vector registers,
such as SSE or AVX [6,7,8,9,10,11]. The
FDTD grid data is presented to the GPU’s
streaming multi-core processor as a data array
for processing in an SIMD-like manner. Good
performance can be achieved by optimizing the
SIMD processing on the vector devices by
adhering to best practice rules for data
alignment and coalescence of the processing
cores with the data being computed. Although
the processing of the FDTD with a SIMD
processor has gained great popularity over
recent years with the emergence of the GPU,
SIMD processing of the FDTD has been well
documented in the literature dating back nearly
20 years [12].

In terms of programming complexity and effort
required to code the FDTD with these methods,
the rating in Table 1 is based on the subjective
experience of programming the FDTD on the
respective CHPC systems. A rating of 1 is “best,”
i.e., implies least effort to parallelise.

Table 1: Coding effort required to parallelise the
FDTD
Technique Implementation Effort
MPI 2
openMP 1
GPU 4
VALU 3

In practice, contemporary HPC systems are a
combination of several of these basic
architectures. The method with which the FDTD is
implemented on these architectures reflects this.
As an example, consider the FDTD implemented
on a GPU cluster. The GPU cluster hardware

352 ACES JOURNAL, Vol. 29, No. 5, MAY 2014

architecture consists of a collection of multi-core
nodes using GPUs as acceleration devices. The
corresponding parallel FDTD program consists of
a data parallel program processing the FDTD on
the GPU nodes, with an MPI process providing the
communication between the multi-core compute
nodes.

III. PARALLEL FDTD
IMPLEMENTATIONS

The parallel FDTD implementations on the
BlueGene/P, Xeon 5670 cluster and the discrete
GPUs described here have been deployed by the
present authors on various computing systems of
the national South African Centre for High
Performance Computing (CHPC), located in Cape
Town, South Africa, using code developed by the
authors. The results of these implementations are
compared to those from a variety of publications
as referenced.

The size of the models processed in this paper
are limited by the memory available to each node
and the extent to which the physical hardware has
been scaled. A 32 bit system is obviously at a
disadvantage in this respect, in that it will require
many more nodes to process the same data volume
as a 64 bit system. None the less, all of the multi
node systems examined here, process models in
the order of several billion grid points.

A. Parallel FDTD on the BlueGene/P
The BlueGene/P is a collective of compute

nodes that communicate via a sophisticated
interconnect system, as is shown schematically in
Fig. 1. The communication interconnect between
the compute nodes can be configured to reflect
different processing strategies and topologies. The
four core PowerPC 450 processors available on
this machine each have access to two GB of
memory. A schematic of this assembly is shown in
Fig. 1.

The BlueGene/P allows the interconnect to be
configured to map the topology of the hardware to
the requirements of the FDTD. The Torus memory
interconnect is particularly suitable for the
processing of the 3D FDTD, as the physical
topology reflects the structure of the FDTD in a
3D cubic mesh [13,14].

Fig. 1. BlueGene/P architecture as seen by the
FDTD application.

The parallel FDTD is built using the MPI
application interface. Equal FDTD grid allocations
are computed on each processor, one MPI thread
per core. Some implementations make use of the
shared memory nature of the BlueGene’s
processing nodes, to process the FDTD grids local
to these nodes with the openMP method [14,15].
The efficiency of the FDTD implemented on the
BlueGene/P, as described in this paper, is
compared to an implementation undertaken for the
BlueGene/L (the earlier model of the system) in
Fig. 2. The efficiency is calculated as (noting that
“ideal” implies linear speed-up):

����������(%) =

	�
���� ���� ���� ���������

���
� ���� ���� ���������

× 100

(1)

Fig. 2. Efficiency of the FDTD on two BlueGene
models with a FDTD grid of two billion cells.

ILGNER, DAVIDSON: PRICE-PERFORMANCE ASPECTS OF ACCELERATING THE FDTD METHOD 353

B. Parallel FDTD on the multi-core cluster
The Xeon 5670 cluster computer has the

simplest architecture of all the HPC platforms
compared here. This cluster is a collection of
processors in a blade configuration, as shown
schematically in Fig. 3. The blades communicate
via a local area network system, the physical
network structure comprised by a system of Quad
Data Rate (QDR) Infiniband switches (note that
some clusters use Ethernet as the interconnect
fabric, but proprietary systems such as Infiniband
are usually much faster.) The blade configurations
are comprised of multi-core chips, which are in
themselves tightly coupled using the Quick Path
Interconnect (QPI) fabric [16]. It is worthwhile
noting that the 6275 Blade configuration allows
the memory to be accessed via three physical
channels, a feature which greatly improves the
access to memory [17] and reduces the data
bottleneck experienced by the parallel FDTD on
multi-core processors. The QPI fabric will provide
cache coherency between the processing cores on
all of the CPUs [16] connected with QPI.

Fig. 3. Schematic architecture of the CHPC multi-
core cluster.

All of the blades on the network will contend
for network communication bandwidth, as
required by the process running on the system.
The Infiniband connection does not possess any
switching logic to provide features such as parallel
memory access to one thread, as is found in
interconnects such as the one used by the
BlueGene/P.

For this paper, the FDTD is implemented on
the clusters using the Message Passing Interface
(MPI) threading. The shared memory architecture
of the multi-core processors has also been
exploited by some [4] to produce hybrid

implementations of the FDTD using both the
openMP and MPI threading methods.

Figure 4 shows a comparison of the efficiency
achieved by the parallel FDTD on a Xeon 5670
multi-core cluster at the CHPC, parallelized using
the MPI method.

Fig. 4. A comparison of the efficiency of the
parallel FDTD with MPI on a cluster at the CHPC
with results from [13].

C. Parallelisation using Vector registers on
multi-core processors

The SSE and Advanced Vector Extensions
(AVX) are also described as Vector Arithmetic
Logical Units (VALU) in some publications. Their
functionality is based on a collection of vector
registers resident on the die of contemporary
microprocessor cores. The SSE and AVX registers
allow the parallelisation of the FDTD in a data
parallel manner [10], by using a Single Instruction
Multiple Data (SIMD) approach, as is shown
schematically in Fig. 5; i.e., the SSE and AVX can
respectively process four or eight single precision
floating point values simultaneously [18]. Figure 6
illustrates the benefit in terms of FDTD
throughput when processing with AVX on a
contemporary four core processor. Figure 7
demonstrates the performance improvement when
using SSE on the CHPC’s Xeon 5670 clusters.
Also shown in Figure 7 is an implementation of
the FDTD on a cluster of i7-3960x multi-core
processors with the AVX functionality [8]. One
particular feature of the i7-3960x’s architecture is
the presence of four dedicated memory channels
supplying data to processors using the processing
cores, thereby mitigating the effect of memory

354 ACES JOURNAL, Vol. 29, No. 5, MAY 2014

bandwidth bottlenecking associated with
processing of large FDTD data sets.

Fig. 5. A comparison of AVX and SSE on a multi-
core processor.

Fig. 6. A comparison of the acceleration of the
FDTD on a GPU and on a four core processor
using the AVX functionality.

Fig. 7. Comparing AVX and SSE on a cluster.

D. Parallel FDTD on the GPU cluster
The discrete GPU is typically configured to a

host computer via a Peripheral Component
Interconnect express (PCIe) bus, as is shown in
Fig. 8. The cluster GPU architecture shown in Fig.
10 is in effect, still a multi-core cluster
architecture and uses the S870 GPU boards as
accelerators connected to the multi-core worker
nodes.

Fig. 8. Discrete GPU attached to host computer
consisting of a four core multi-core processor.

The programming of the GPU allows some
programming flexibility over and above that
provided by the VALU technology [11,19], in that
each GPU core or Stream Processor (SP) in Nvidia
terminology, is allocated a dedicated program
thread [20,21]. All cores in a Streaming
Multiprocessor (SM) will execute the same thread.

ILGNER, DAVIDSON: PRICE-PERFORMANCE ASPECTS OF ACCELERATING THE FDTD METHOD 355

Figure 8 illustrates the physical relationship
between the SP and the SM. Nvidia has coined the
term Single Instruction Multiple Threads (SIMT)
to differentiate this style of programming from the
purist SIMD. The difference between SIMT and
SIMD, is that with SIMT one can use conditional
(IF) logic within the SIMT program flow. The
discrete GPU on its own can achieve good FDTD
throughput, as is shown in Figs. 6 and 9. The two
GPUs compared in Fig. 9 are NVIDIA’s C1060
and the C2070 GPUs. The C2070 has 448 stream
processors and 6 GB of global memory, whereas
the C1060 has 240 stream processors, as shown in
the architectural sketch of Fig. 8. The GPU is
programmed in a data parallel sense and optimal
performance is gained by the alignment and
coalescence of data with the processing cores
[7,9,22,23,24,25,26].

Fig. 9. Performance comparison of the FDTD on
two different GPUs.

The architecture in Fig. 10 illustrates the
configuration of multiple GPUs attached to a
worker node or host PC. The multiple GPUs are
attached to the worker node via a dedicated
switch, which uses a single PCIe form connection.
The CHPC achieves a similar architectural
configuration, although individual GPUs are
attached to the worker node by dedicated PCIe
form factors; i.e., the worker node uses multiple
PCIe channels to accommodate several GPUs
directly. For these results the GPU used is
Nvidia’s S870 node, a collection of four low
power GPUs, each with 128 stream processors.
Power consumption per S870 is a low 800 watt.

Fig. 10. Schematic of a cluster using GPUs as
FDTD accelerators.

The processing of the FDTD on a cluster of
GPUs overcomes the memory limitation of
processing the FDTD on a single discrete GPU.
All of the FDTD data processed by a discrete GPU
needs to be transferred on to the GPU’s physically
dedicated memory before the computation
commences. A comparison of the data sizes that
the systems described in this paper are capable of
processing, is shown in Fig. 11. It must also be
born in mind that the data processing capability of
a cluster will depend on the scale of a specific
system.

Fig. 11. A comparison of the processing capability
of various systems described in the article.

The GPU and multi-core clusters compared in
Fig. 12 show very similar performance
characteristics for a low number of cores. Both
systems compared here show a reduction in
efficiency as the number of cores deployed on
increases. Of note is the performance of the i7-
3960x cluster, which achieves the greatest FDTD
throughput per core, as is listed in Table 3.The
reduction in efficiency as the size of a system

356 ACES JOURNAL, Vol. 29, No. 5, MAY 2014

increases is very probably due to the
communication overhead between a larger number
of processors.

Fig. 12. FDTD throughput compared for a GPU
cluster and a cluster using AVX optimised multi-
cores.

IV. PERFORMANCE COMPARISON
A. Performance summary

The performance summary in Table 2 is an
indication of the computational performance of the
parallel FDTD implementations discussed in this
paper. The rating used for the performance is the
FDTD throughput on the respective platforms, in
Millions of Cells Per Second (MCPS). In order to
compare the performance on these platforms, the
peak MCPS has been normalized on a per core
basis, as is shown in Table 3.

Table 2: Computational throughput of the FDTD
method on various computing platforms
Platform Cores Peak

MCPS
Peak
MCPS
Per
Core

Release
Date

BlueGene/P 4096 8900 2.2
June
2007

S870 node
cluster

8192 12 900 1.6
Mar.
2008

x5670 SSE
cluster

100 4155 41.6
Mar.
2010

i7-3960x
AVX
cluster

36 6900 192
Nov
2011

B. Price and performance
Typical cost of purchase, pricing of HPC

systems are shown in Table 3. These pricings were
obtained from the Centre of High Performance
Computing in Cape Town. The prices given in
Table 3 are approximates for the year 2012/2013.
Prices have been normalized to the peak FDTD
throughput in MCPS per core.

Table 3: Performance/purchase cost comparison.
CPS=FDTD grid cells per second.
Platform Cost In

USD
2012

Price
Per
Core
In
USD

Peak
MCPS

Peak
CPS
Per
USD

BlueGene/P 750000 183 8900 11900
S870 node
cluster

46000 6 12900 262000

x5670
cluster

37000 370 4155 112000

i7-3960x
cluster

15000 416 6900 462000

The normalized prices show that best
computational performance per dollar is achieved
by the optimized FDTD using the AVX on the i7-
3960x multi-core cluster [8]. The GPU cluster lies
in second position and is a better proposition than
the BlueGene/P, when considering processing
performance for the FDTD. It is not surprising that
these performance ratings are all roughly ordered
with the age of the hardware, as this accords with
Koomey’s law.

Two pricing considerations that have not been
factored into the study are the maintenance costs
for the HPC systems and for the system life
expectancy before it is overtaken by newer
technology. According to Koomey’s law [1], the
life cycle of a HPC system may currently be only
one to two years before it is overtaken by newer
technology.

Large computing systems require
sophisticated servicing and sub systems, such as
cooling racks and clean rooms. The costs attached
to a maintenance plan for a HPC system in terms
of capital expenditure and in terms of dependence
on a specific vendor are not included in this paper.

ILGNER, DAVIDSON: PRICE-PERFORMANCE ASPECTS OF ACCELERATING THE FDTD METHOD 357

C. Power consumption per core
Table 4 shows that for the systems compared

in this paper, the multi-core cluster at the CHPC
consumes the least power for the performance
achieved when processing the parallel FDTD. The
variation in the normalized power consumption
between the lowest and highest consumers is not
large and is a reflection of the low power design
criterion for all of these systems.

Table 4: Performance/power comparison
Platform System

Power
(kW)

Cores Power
Per
Core
(W)

MCPS
Per W

BlueGene/P 31.5 4096 7.7 0.285
S870 node
cluster

16 8192 2.0 0.860

x5670
cluster

4 100 40 1.004

i7-3960x
cluster

2 36 56 0.571

The power consumption is a limiting factor for
the size of the computing system from the aspect
of being able to dissipate enough heat without
physically destroying the computing hardware.
Larger clusters will need dedicated cooling
systems.

V. CONCLUSION
The performance of four parallel FDTD

implementations, different in hardware and
programming technique, have been compared to
show that FDTD deployments accelerated with a
combination of vector processing paradigm and
the MPI threading interface, presently provide the
best performance for cost and best performance
for power consumed. However, the comparisons
are of course subject to Koomey’s law - it would
have been instructive to repeat the comparison
with a BlueGene/Q, had one been available to the
authors (the very high cost of these systems means
they are often not readily available, of course).
Even with this note, the price/performance and
power/performance results are not conclusive
because whilst the acceleration of the FDTD on
the i7-3960x cluster provides the best
performance, it does so at a cost of consuming
50% more power per core than the Xeon 5670

cluster. This work also provides a framework for
the comparison of the FDTD on nascent low
power technology, such as the Intel Phi.

It should also be noted that memory is another
major constraint for the FDTD and one which
GPUs have been slow to overcome, due to the
relatively small amount of RAM usually
associated with a GPU.

ACKNOWLEDGMENT
DBD and RGI acknowledge the support of

SKA South Africa, the South African Research
Chairs Initiative of the Department of Science and
Technology (DST), National Research Foundation
(NRF) and the Centre of High Performance
Computing.

REFERENCES
[1] J. G. Koomey, S. Berard, M. Sanchez, and H.

Wong, “Implications of historical trends in the
electrical efficiency of computing,”

, vol. 33, pp. 46-54, 2011.
[2] A. Taflove and S. C. Hagness, “Computational

electrodynamics: the finite-difference time-domain
method,” Third Edition , chapters 3-
7, 2005.

[3] C. Guiffaut and K. Mahdjoubi, “A parallel FDTD
algorithm using the MPI library,”

, vol. 43, no 2, pp. 94-
103, April 2001.

[4] D. Luebke, White Paper, “Nvidia® GPU
architecture and implications,” 2007.

[5] openMP website: available at
.

[6] W. Yu, X. Yang, Y. Liu, and R. Mittra, “A novel
hardware acceleration technique for high
performance parallel conformal FDTD method,”

, Virginia,
USA, pp. 903-908, March 2011.

[7] S. E. Krakiwsky, L. E. Tumer, and M. M.
Okoniewski, “Acceleration of finite-difference
time-domain (FDTD) using graphics processor
units (GPU),”

, vol. 2, pp. 1033-
1036, June 2004.

[8] W. Simon, A. Lauer, and A. Wien, “FDTD
simulations with 1011 unknowns using AVX and
SSD on a consumer PC,”

Chicago, IL, USA, pp. 1-2, July 2012.
[9] V. Demir and A. Z. Elsherbeni, “Programming

finite-difference time-domain for graphics
processor units using compute unified device

358 ACES JOURNAL, Vol. 29, No. 5, MAY 2014

architecture,”
, Toronto,

Ontario, Canada, July 2010.
[10] L. Zhang, X. Yang, and W. Yu, “Enhanced parallel

FDTD method using SSE instruction sets,”

, vol. 27, no. 1, pp. 1-8, January 2012.
[11] W. Yu and W. Li, “An enhanced hardware

acceleration FDTD technique for parallel signal
line simulation,”

, Ohio, USA, pp. 411-416, April 2012.
[12] D. B. Davidson and R. W. Ziolkowski, “A

connection machine implementation of a three
dimensional parallel finite difference time-domain
code for electromagnetic field simulation,”

, vol. 8,
pp. 221-232, 1995.

[13] W. Yu, X. Yang, Y. Liu, L. Ma, T. Su, N. Huang,
R. Mittra, R. Maaskant, Y. Lu, Q. Che, R. Lu, and
Z. Su, “A new direction in computational
electromagnetics: solving large problems using the
parallel FDTD on the bluegene/l supercomputer
providing teraflop-level performance,”

, vol. 50, no.
2, pp. 26-41, April 2008.

[14] W. Yu, M. Hashemi, R. Mittra, D. de Araujo, M.
Cases, N. Pham, E. Matoglu, P. Patel, and B.
Herrman, “Massively parallel conformal FDTD on
a bluegene supercomputer,”

, San Antonia, Texas,
2009.

[15] M. F. Su, I. El-Kady, D. Bader, and Y. Lin, “A
novel FDTD application featuring openMP-MPI
hybrid parallelization,”

, Montreal, QC,
Canada, 2004.

[16] R. Maddox, G. Singh, and R. Safranek, “Weaving
high performance multiprocessor fabric,”

, chapters 1-2, 2009.
[17] U. Drepper, “What every programmer should know

about memory,”
, 2007, available at:

http://www.akkadia.org/drepper/cpumemory.pdf.
[18] W. Yu, X. Yang, Y. Liu, R. Mittra, J. Wang, and

W. Yin, “Advanced features to enhance the FDTD
method in GEMS simulation software package,”

, Washington, USA, pp.
2728-2731, July 2011.

[19] V. Demir, “An algorithm to improve solution
efficiency of FDFD method on GPU,”

, Ohio, USA, pp. 364-

369, April 2012.
[20] V. Demir and A. Z. Elsherbeni, “CUDA-openGL

interoperability to visualize electromagnetic fields
calculated by FDTD,”

, vol. 27,
no. 2, pp. 206-214, February 2012.

[21] V. Demir, “A stacking scheme to improve the
efficiency of finite-difference time-domain
solutions on graphics processing units,”

, vol. 25, no. 4, pp. 323-330, April 2010.
[22] “CUDA programming manual,” available at:

http://www/nvidia.com.
[23] J. Stack and Jr., “Accelerating the finite difference

time domain (FDTD) method with CUDA,”

, Virginia,
USA, pp. 897-902, March 2011.

[24] M. Weldon, L. Maxwell, D. Cyca, M. Hughes, C.
Whelan, and M. Okoniewski, “A practical look at
GPU-accelerated FDTD performance,”

, vol. 25, no. 4, pp. 314-322, April 2010.
[25] M. Ujaldon, “Using GPUs for accelerating

electromagnetic simulations,”

, vol. 25, no. 4, pp. 294-302, April 2010.
[26] J. Stack, B. Suchoski, and J. Infantolino, “CUDA

implementation of moving window finite
difference time domain,”

, Ohio, USA, pp. 300-
304, April 2012.

Robert G. Ilgner obtained his B.Sc. and B.Sc. (Hons)
degrees in Geophysics from the
University of Witwatersrand in
1982 and 1983, respectively. As a
Geophysicist he conducted
geophysical exploration surveys for
mining houses. He then worked in
London for Siemens in the
Information Technology industry

building large database systems and received his M.Sc.
in 1991 from the University of Surrey in Guildford,
UK. He was awarded his Ph.D. from the University of
Stellenbosch in 2013. He was employed by
Schlumberger in the Seismic division, creating parallel
processing applications used for Seismic data reduction
and modeling. He built software for the creation of
panoramic images and advertising on the internet. He is
currently a Postdoctoral Researcher at the University of
Stellenbosch.

ILGNER, DAVIDSON: PRICE-PERFORMANCE ASPECTS OF ACCELERATING THE FDTD METHOD 359

David B. Davidson received his
B.Eng., B.Eng. (Hons) and M.Eng.
degrees (all cum laude) from the
University of Pretoria, South
Africa, in 1982, 1983 and 1986,
respectively. He received his Ph.D.
degree from the University of
Stellenbosch, Stellenbosch, South

Africa, in 1991. In 1988, he joined the University of
Stellenbosch. As of 2011, he holds the South African
Research Chair in Electromagnetic Systems and EMI
Mitigation for SKA there. He has held a number of
visiting appointments, including at the University of
Arizona; Cambridge University, England; Delft
University of Technology, The Netherlands and the
University of Manchester, England. His main research
interest through most of his career has been
Computational Electromagnetics (CEM) and he has
published extensively on this topic. He is the author of
“Computational Electromagnetics for RF and
Microwave Engineering” (Cambridge, U.K.:
Cambridge Univ. Press, 1st ed., 2005, 2nd ed., 2011).
Recently, his interests have expanded to include
engineering electromagnetics for radio astronomy.
Davidson is a Fellow of the IEEE and a member of the
South African Institute of Electrical Engineers and the
Applied Computational Electromagnetic Society. He
was a recipient of the South African FRD (now NRF)
President’s Award in 1996. He received the Rector’s
Award for Excellent Research from the University of
Stellenbosch in 2005. He is the editor of the “EM
Programmer’s Notebook” column of the IEEE
Antennas and Propagation Magazine. He was Chair of
the local organizing committee of ICEAA’12-IEEE
APWC-EEIS’12, held in Cape Town in September
2012.

360 ACES JOURNAL, Vol. 29, No. 5, MAY 2014

