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Abstract � The parallelization of the FDTD on 
GPUs has become popular due to the low cost, low 
power and high compute performance achieved 
with these devices. In recent years, manufacturers
of multi-core processors have enhanced the vector 
processing capability inherent in conventional 
processing cores, to the extent that these are now 
contributing considerably to the acceleration of the 
FDTD and competing with GPUs. This paper will 
compare the power consumption and purchase cost 
versus the performance benefits of several parallel 
FDTD implementations, in order to quantify the 
effect of parallelizing the FDTD using various 
processing paradigms. The purchase cost of 
hardware, computational performance and power 
consumption are used to compare the parallel 
FDTD deployments on the BlueGene/P, GPU 
clusters and the multi-core clusters using SSE. It is 
shown that the deployment of the parallel FDTD 
using a hybrid programming paradigm achieves 
the best computational performance for the lowest 
purchase cost and power consumption.

Index Terms – AVX, cluster, FDTD, GPU, multi-
core, performance, SSE and vector processing.

I. INTRODUCTION
The Finite Difference Time Domain (FDTD) 

method is inherently highly parallel and has been 
accelerated by coding the FDTD in parallel form 
on a variety of platforms. Contemporary examples 
included the BlueGene/P, multi-core clusters and 
clusters using Graphical Processing Units (GPU). 
These systems can all achieve similar 
computational throughput, depending on the scale 

of the system. Upfront purchase cost and power 
consumption are crucial considerations when 
evaluating high performance computing hardware. 
Recent years have seen a sustained effort by 
manufacturers to reduce both, but nonetheless 
maintain an increase in computational 
performance [1]. 

This paper will compare the performance 
related cost of purchase and power consumed by 
the FDTD implementations on three different high 
performance computing architectures. To avoid 
the effect of scaling on the comparison, 
computational performance, price and power 
consumption will be normalized on a per core 
basis. The FDTD will be implemented using a task 
parallel method on the BlueGene/P and the multi-
core clusters and by a combination of data parallel 
and task parallel methods; i.e., hybrid methods on
the GPU cluster and multi-core clusters. The 
multi-core clusters make use of their Vector 
Arithmetic Logic Units (VALU), such as the 
Streaming SIMD Extensions (SSE) or the 
Advanced Vector Extensions (AVX), to achieve 
good performance for the FDTD. The 
computational performance of these parallelised 
FDTD implementations will be used to compare
the cost and power consumption for the FDTD on 
high performance computers on a per core basis.
These results are the main contribution of this 
paper, as most results in the literature for parallel 
FDTD deployments do not compare across 
entirely different architectures. With the exception 
of results for an i7-3960x and the GPU cluster 
(which are taken from the literature), results to be 
compared were obtained from parallel code 
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developed and deployed by the present authors in 
C on the different platforms. As such, another 
contribution made by this work is in removing the 
bias, which can be associated with different 
programming styles, programming languages and 
differing test data.

II. PARALLEL FDTD ON HIGH
PERFORMANCE COMPUTERS

A. The FDTD method as a computational load
The FDTD method is based on a finite 

differences approximation of Maxwell’s equations
in both the time and spatial domains [2]. The 
computation is performed on a lattice of electric 
grid values offset by one half a grid spacing from 
the magnetic grid values. The FDTD remains the 
most widely-used time domain based 
Computational Electromagnetic (CEM) solver and 
overall is one of the most widely-used CEM 
methods

In the serial form of the FDTD process, 
program profiling shows that typically more than 
98% of the process load is dominated by the 
repeated calculation of the updated FDTD grid.
These calculations are also referred to as iterations,
or sometimes leap-frogging and comprise several 
sets of three level deep computational loops (in 
three dimensions) [2].

The FDTD process is readily decomposed for 
parallelisation in either a task parallel or data 
parallel sense, as described by the methods that 
follow next. 

In this paper, a compute node usually consists 
of several processors, each processor having several 
cores, following widely-used terminology in the 
high performance computing field.

B. Techniques used to parallelise the FDTD 
method.

Accelerating the FDTD on different 
architectures requires that the method of 
parallelisation matches the architecture of the High 
Performance Computing (HPC) system. There are 
currently three principal methods used to parallelise
the FDTD on specific architectures. These are:

1) Message Passing Interface (MPI) - appropriate 
for a multi-core cluster or BlueGene [3]. The 
FDTD is parallelised as independent processing 
threads that will exchange FDTD grid data 

between iteration cycles. The MPI interface 
provides the communication protocol for the 
exchange of FDTD grid data fringes between 
successive iterations of the FDTD process [3].

2) openMP - appropriate for multi-core processors 
or shared memory processors [4,5]. The FDTD 
is parallelised on the basis of loop parallelism. 
openMP is a parametric language construct that 
is embedded in the program code before 
compilation. The openMP directive spawns 
FDTD threads that operate in the same memory 
space.

3) Vector processors or vector processor like 
architectures - i.e., GPU or vector registers, 
such as SSE or AVX [6,7,8,9,10,11]. The 
FDTD grid data is presented to the GPU’s 
streaming multi-core processor as a data array 
for processing in an SIMD-like manner. Good 
performance can be achieved by optimizing the 
SIMD processing on the vector devices by 
adhering to best practice rules for data 
alignment and coalescence of the processing 
cores with the data being computed. Although 
the processing of the FDTD with a SIMD 
processor has gained great popularity over
recent years with the emergence of the GPU, 
SIMD processing of the FDTD has been well 
documented in the literature dating back nearly 
20 years [12].

In terms of programming complexity and effort 
required to code the FDTD with these methods, 
the rating in Table 1 is based on the subjective 
experience of programming the FDTD on the 
respective CHPC systems. A rating of 1 is “best,”
i.e., implies least effort to parallelise.

Table 1: Coding effort required to parallelise the 
FDTD
Technique Implementation Effort
MPI 2
openMP 1
GPU 4
VALU 3

In practice, contemporary HPC systems are a 
combination of several of these basic 
architectures. The method with which the FDTD is 
implemented on these architectures reflects this.
As an example, consider the FDTD implemented 
on a GPU cluster. The GPU cluster hardware 
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architecture consists of a collection of multi-core 
nodes using GPUs as acceleration devices. The 
corresponding parallel FDTD program consists of 
a data parallel program processing the FDTD on 
the GPU nodes, with an MPI process providing the 
communication between the multi-core compute 
nodes. 

III. PARALLEL FDTD 
IMPLEMENTATIONS

The parallel FDTD implementations on the 
BlueGene/P, Xeon 5670 cluster and the discrete 
GPUs described here have been deployed by the 
present authors on various computing systems of 
the national South African Centre for High 
Performance Computing (CHPC), located in Cape 
Town, South Africa, using code developed by the 
authors. The results of these implementations are 
compared to those from a variety of publications 
as referenced.

The size of the models processed in this paper 
are limited by the memory available to each node 
and the extent to which the physical hardware has 
been scaled. A 32 bit system is obviously at a 
disadvantage in this respect, in that it will require 
many more nodes to process the same data volume 
as a 64 bit system. None the less, all of the multi 
node systems examined here, process models in 
the order of several billion grid points.

A. Parallel FDTD on the BlueGene/P
The BlueGene/P is a collective of compute 

nodes that communicate via a sophisticated 
interconnect system, as is shown schematically in 
Fig. 1. The communication interconnect between 
the compute nodes can be configured to reflect 
different processing strategies and topologies. The 
four core PowerPC 450 processors available on 
this machine each have access to two GB of 
memory. A schematic of this assembly is shown in 
Fig. 1. 

The BlueGene/P allows the interconnect to be 
configured to map the topology of the hardware to 
the requirements of the FDTD. The Torus memory 
interconnect is particularly suitable for the 
processing of the 3D FDTD, as the physical 
topology reflects the structure of the FDTD in a
3D cubic mesh [13,14].

Fig. 1. BlueGene/P architecture as seen by the 
FDTD application. 

The parallel FDTD is built using the MPI 
application interface. Equal FDTD grid allocations 
are computed on each processor, one MPI thread 
per core. Some implementations make use of the 
shared memory nature of the BlueGene’s 
processing nodes, to process the FDTD grids local 
to these nodes with the openMP method [14,15].
The efficiency of the FDTD implemented on the 
BlueGene/P, as described in this paper, is 
compared to an implementation undertaken for the 
BlueGene/L (the earlier model of the system) in 
Fig. 2. The efficiency is calculated as (noting that 
“ideal” implies linear speed-up): 
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× 100

(1)

Fig. 2. Efficiency of the FDTD on two BlueGene
models with a FDTD grid of two billion cells.
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B. Parallel FDTD on the multi-core cluster
The Xeon 5670 cluster computer has the 

simplest architecture of all the HPC platforms 
compared here. This cluster is a collection of 
processors in a blade configuration, as shown 
schematically in Fig. 3. The blades communicate 
via a local area network system, the physical 
network structure comprised by a system of Quad 
Data Rate (QDR) Infiniband switches (note that 
some clusters use Ethernet as the interconnect 
fabric, but proprietary systems such as Infiniband 
are usually much faster.) The blade configurations 
are comprised of multi-core chips, which are in 
themselves tightly coupled using the Quick Path 
Interconnect (QPI) fabric [16]. It is worthwhile 
noting that the 6275 Blade configuration allows 
the memory to be accessed via three physical 
channels, a feature which greatly improves the 
access to memory [17] and reduces the data 
bottleneck experienced by the parallel FDTD on
multi-core processors. The QPI fabric will provide 
cache coherency between the processing cores on 
all of the CPUs [16] connected with QPI.

Fig. 3. Schematic architecture of the CHPC multi-
core cluster.

All of the blades on the network will contend 
for network communication bandwidth, as
required by the process running on the system. 
The Infiniband connection does not possess any 
switching logic to provide features such as parallel 
memory access to one thread, as is found in 
interconnects such as the one used by the 
BlueGene/P.

For this paper, the FDTD is implemented on 
the clusters using the Message Passing Interface 
(MPI) threading. The shared memory architecture 
of the multi-core processors has also been 
exploited by some [4] to produce hybrid 

implementations of the FDTD using both the 
openMP and MPI threading methods.

Figure 4 shows a comparison of the efficiency 
achieved by the parallel FDTD on a Xeon 5670 
multi-core cluster at the CHPC, parallelized using 
the MPI method.

Fig. 4. A comparison of the efficiency of the 
parallel FDTD with MPI on a cluster at the CHPC 
with results from [13]. 

C. Parallelisation using Vector registers on 
multi-core processors

The SSE and Advanced Vector Extensions 
(AVX) are also described as Vector Arithmetic 
Logical Units (VALU) in some publications. Their 
functionality is based on a collection of vector 
registers resident on the die of contemporary
microprocessor cores. The SSE and AVX registers 
allow the parallelisation of the FDTD in a data 
parallel manner [10], by using a Single Instruction 
Multiple Data (SIMD) approach, as is shown
schematically in Fig. 5; i.e., the SSE and AVX can 
respectively process four or eight single precision 
floating point values simultaneously [18]. Figure 6
illustrates the benefit in terms of FDTD 
throughput when processing with AVX on a 
contemporary four core processor. Figure 7
demonstrates the performance improvement when 
using SSE on the CHPC’s Xeon 5670 clusters. 
Also shown in Figure 7 is an implementation of 
the FDTD on a cluster of i7-3960x multi-core 
processors with the AVX functionality [8]. One 
particular feature of the i7-3960x’s architecture is 
the presence of four dedicated memory channels 
supplying data to processors using the processing 
cores, thereby mitigating the effect of memory 
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bandwidth bottlenecking associated with 
processing of large FDTD data sets.

Fig. 5. A comparison of AVX and SSE on a multi-
core processor. 

Fig. 6. A comparison of the acceleration of the 
FDTD on a GPU and on a four core processor 
using the AVX functionality. 

Fig. 7. Comparing AVX and SSE on a cluster. 

D. Parallel FDTD on the GPU cluster
The discrete GPU is typically configured to a 

host computer via a Peripheral Component
Interconnect express (PCIe) bus, as is shown in 
Fig. 8. The cluster GPU architecture shown in Fig. 
10 is in effect, still a multi-core cluster 
architecture and uses the S870 GPU boards as 
accelerators connected to the multi-core worker 
nodes. 

Fig. 8. Discrete GPU attached to host computer
consisting of a four core multi-core processor.

The programming of the GPU allows some 
programming flexibility over and above that 
provided by the VALU technology [11,19], in that 
each GPU core or Stream Processor (SP) in Nvidia 
terminology, is allocated a dedicated program 
thread [20,21]. All cores in a Streaming 
Multiprocessor (SM) will execute the same thread.
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Figure 8 illustrates the physical relationship 
between the SP and the SM. Nvidia has coined the 
term Single Instruction Multiple Threads (SIMT) 
to differentiate this style of programming from the 
purist SIMD. The difference between SIMT and 
SIMD, is that with SIMT one can use conditional 
(IF) logic within the SIMT program flow. The 
discrete GPU on its own can achieve good FDTD 
throughput, as is shown in Figs. 6 and 9. The two 
GPUs compared in Fig. 9 are NVIDIA’s C1060 
and the C2070 GPUs. The C2070 has 448 stream 
processors and 6 GB of global memory, whereas 
the C1060 has 240 stream processors, as shown in 
the architectural sketch of Fig. 8. The GPU is 
programmed in a data parallel sense and optimal 
performance is gained by the alignment and 
coalescence of data with the processing cores 
[7,9,22,23,24,25,26].

Fig. 9. Performance comparison of the FDTD on 
two different GPUs.

The architecture in Fig. 10 illustrates the 
configuration of multiple GPUs attached to a 
worker node or host PC. The multiple GPUs are 
attached to the worker node via a dedicated 
switch, which uses a single PCIe form connection. 
The CHPC achieves a similar architectural 
configuration, although individual GPUs are 
attached to the worker node by dedicated PCIe 
form factors; i.e., the worker node uses multiple 
PCIe channels to accommodate several GPUs 
directly. For these results the GPU used is 
Nvidia’s S870 node, a collection of four low 
power GPUs, each with 128 stream processors. 
Power consumption per S870 is a low 800 watt. 

Fig. 10. Schematic of a cluster using GPUs as 
FDTD accelerators. 

The processing of the FDTD on a cluster of 
GPUs overcomes the memory limitation of 
processing the FDTD on a single discrete GPU. 
All of the FDTD data processed by a discrete GPU 
needs to be transferred on to the GPU’s physically 
dedicated memory before the computation 
commences. A comparison of the data sizes that 
the systems described in this paper are capable of 
processing, is shown in Fig. 11. It must also be 
born in mind that the data processing capability of 
a cluster will depend on the scale of a specific 
system.

Fig. 11. A comparison of the processing capability 
of various systems described in the article.

The GPU and multi-core clusters compared in 
Fig. 12 show very similar performance 
characteristics for a low number of cores. Both
systems compared here show a reduction in 
efficiency as the number of cores deployed on 
increases. Of note is the performance of the i7-
3960x cluster, which achieves the greatest FDTD 
throughput per core, as is listed in Table 3.The 
reduction in efficiency as the size of a system 
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increases is very probably due to the
communication overhead between a larger number 
of processors. 

Fig. 12. FDTD throughput compared for a GPU 
cluster and a cluster using AVX optimised multi-
cores.

IV. PERFORMANCE COMPARISON
A. Performance summary

The performance summary in Table 2 is an 
indication of the computational performance of the 
parallel FDTD implementations discussed in this 
paper. The rating used for the performance is the 
FDTD throughput on the respective platforms, in 
Millions of Cells Per Second (MCPS). In order to 
compare the performance on these platforms, the 
peak MCPS has been normalized on a per core
basis, as is shown in Table 3.

Table 2: Computational throughput of the FDTD 
method on various computing platforms 
Platform Cores Peak 

MCPS
Peak 
MCPS 
Per 
Core

Release 
Date

BlueGene/P 4096 8900 2.2
June 
2007

S870 node 
cluster

8192 12 900 1.6
Mar.
2008

x5670 SSE
cluster 

100 4155 41.6 
Mar.
2010

i7-3960x
AVX
cluster

36 6900 192
Nov
2011 

B. Price and performance
Typical cost of purchase, pricing of HPC 

systems are shown in Table 3. These pricings were 
obtained from the Centre of High Performance 
Computing in Cape Town. The prices given in 
Table 3 are approximates for the year 2012/2013. 
Prices have been normalized to the peak FDTD 
throughput in MCPS per core.

Table 3: Performance/purchase cost comparison. 
CPS=FDTD grid cells per second.
Platform Cost In

USD 
2012 

Price 
Per 
Core 
In 
USD

Peak 
MCPS

Peak 
CPS
Per 
USD

BlueGene/P 750000 183 8900 11900
S870 node 
cluster

46000 6 12900 262000 

x5670
cluster 

37000 370 4155  112000 

i7-3960x
cluster

15000 416 6900 462000 

The normalized prices show that best 
computational performance per dollar is achieved 
by the optimized FDTD using the AVX on the i7-
3960x multi-core cluster [8]. The GPU cluster lies 
in second position and is a better proposition than 
the BlueGene/P, when considering processing 
performance for the FDTD. It is not surprising that 
these performance ratings are all roughly ordered 
with the age of the hardware, as this accords with 
Koomey’s law.

Two pricing considerations that have not been 
factored into the study are the maintenance costs 
for the HPC systems and for the system life 
expectancy before it is overtaken by newer 
technology. According to Koomey’s law [1], the 
life cycle of a HPC system may currently be only 
one to two years before it is overtaken by newer 
technology.

Large computing systems require 
sophisticated servicing and sub systems, such as 
cooling racks and clean rooms. The costs attached 
to a maintenance plan for a HPC system in terms 
of capital expenditure and in terms of dependence 
on a specific vendor are not included in this paper. 
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C. Power consumption per core
Table 4 shows that for the systems compared 

in this paper, the multi-core cluster at the CHPC 
consumes the least power for the performance 
achieved when processing the parallel FDTD. The 
variation in the normalized power consumption 
between the lowest and highest consumers is not 
large and is a reflection of the low power design
criterion for all of these systems.

Table 4: Performance/power comparison 
Platform System 

Power
(kW)

Cores Power 
Per
Core 
(W)

MCPS 
Per W

BlueGene/P 31.5 4096 7.7 0.285
S870 node 
cluster

16 8192 2.0 0.860 

x5670
cluster 

4 100 40 1.004 

i7-3960x
cluster

2 36 56 0.571 

The power consumption is a limiting factor for 
the size of the computing system from the aspect 
of being able to dissipate enough heat without 
physically destroying the computing hardware.
Larger clusters will need dedicated cooling 
systems.

V. CONCLUSION
The performance of four parallel FDTD 

implementations, different in hardware and 
programming technique, have been compared to 
show that FDTD deployments accelerated with a 
combination of vector processing paradigm and 
the MPI threading interface, presently provide the 
best performance for cost and best performance 
for power consumed. However, the comparisons 
are of course subject to Koomey’s law - it would 
have been instructive to repeat the comparison 
with a BlueGene/Q, had one been available to the 
authors (the very high cost of these systems means 
they are often not readily available, of course). 
Even with this note, the price/performance and 
power/performance results are not conclusive 
because whilst the acceleration of the FDTD on 
the i7-3960x cluster provides the best 
performance, it does so at a cost of consuming 
50% more power per core than the Xeon 5670

cluster. This work also provides a framework for 
the comparison of the FDTD on nascent low 
power technology, such as the Intel Phi.

It should also be noted that memory is another
major constraint for the FDTD and one which 
GPUs have been slow to overcome, due to the 
relatively small amount of RAM usually 
associated with a GPU.
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