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Abstract � This paper presents quad-band printed 
inverted-F antenna that employs transmission-line based 
on inspired metamaterials for USB applications. The 
reactive loading of the printed IFA is inspired by 
transmission-line based metamaterials (TL-MTM), 
which is exploited to create a new resonant frequency 
while maintaining the antenna’s small form-factor. The 
proposed USB antenna structure consists of two arms 
printed IFA CPW-fed loaded with two TL-MTM unit 
cells to achieve two operating bands with the same 
antenna size in addition to the two fundamental resonant 
frequencies of IFA arms themselves. The structure is 
designed to operate at LTE 11 0.9 GHz, Bluetooth 2.4 
GHz, WIMAX 3.5 GHz, and WLAN 5.2 GHz. The 
component interaction including housing case, USB 
connector, and laptop device are also characterized. The 
design concept, a parametric study of the proposed 
antenna is carried out using HFSS ver. 14 and CST ver. 
2014, and general design guidelines are provided. 
Experimental results are presented to validate the new 
design concept. Measurements and EM simulations are 
in a good agreement.

Index Terms � High frequency structure simulator 
(HFSS), inspired metamaterials, inverted-F antenna 
(IFA), transmission-line based metamaterials (TL-
MTM), universal serial bus (USB).

I. INTRODUCTION
Universal serial bus device (USB) [1] is a good 

candidate for data transmission in most digital devices. 
The challenge in designing a USB antenna is to design 
compact, low cost and multiband antenna to support 
multi standards as much as possible. Generally, the 
monopole antenna applied to a wireless USB dongle has 
dual resonances including 2.4 GHz and 5.2 GHz bands 

only [2-3]. A new research paper [4] supports triple band 
operation. These designs use traditional approach such 
as meander shaped slots [2], [4], and fractal shapes [3];
however, there is tradeoff between design complexity, 
and fabrication cost associated with multiband 
extension. On the other hand, the printed-F antenna 
offers an attractive solution for modern wireless 
communication systems because it has a low profile, can 
be etched on a single substrate and can provide the 
feature of broadband or multiband operation. Recently, 
the combination of inspired metamaterial and printed 
IFA has proven to be a good candidate for the design of 
compact multiband USB antennas [5]. Also, the 
transmission-line metamaterials (TL-MTM) provide a 
conceptual route for implementing small resonant 
antennas [6]-[9]. TL-MTM structures operating at 
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printed antennas in [7].

In this paper, quad-band CPW fed printed IFA 
antenna is proposed using reactive loading, that is 
inspired by using the negative-refractive-index (NRI) 
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LTE900 (0.9–0.96) GHz, the Wi-Fi bands (lower Wi-Fi 
band) of (2.4–2.48) GHz and upper Wi-Fi band of (5.2–
5.25) GHz, and the WiMAX (3.5–3.6) GHz band while 
maintaining a small form factor for USB applications. 
All simulations are carried out using the EM commercial 
simulator, HFSS which is based on finite element 
method.

The rest of the paper is organized as follows: in 
Section II, the design and simulation of the proposed 
antenna is described. Section III discussed the 
components interaction. Section IV explains the 
experimental results and discussion. Section V 
concludes and summarized the features of the proposed 
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antenna.

II. ANTENNA DESIGN AND SIMULATION
Figure 1 shows the geometry of the 2D and 3D 

antenna, resonating at four frequency bands at 0.9, 1.8, 
3.5, and 5.2 GHz, respectively. Table 1 shows the 
optimized dimensions of the proposed antenna. The 
antenna is designed on a low-cost FR4 substrate with 
height h = 0.8 mm, dielectric constant �r = 4.7 and loss 
tangent ���� �� = 0.025. The antenna is fed by a CPW 
transmission-line, which can be easily integrated with 
other CPW-based microwave circuits printed on the 
same substrate. The CPW feed is connected to the 
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The overall size of the antenna including the ground 
plane is 50×20×0.8 mm3. The proposed design is via-free 
and can therefore be easily fabricated. The design steps 
and their responses are shown in Fig. 2. The reactive 
loading of the CPW fed IFA is inspired by transmission-
line metamaterials, specifically the concept of a zero-
index of refraction.

(a) (b) (c)

(d)

Fig. 1. Quad-band CPW fed printed IFA antenna with 
two metamaterial inspired unit cells: (a) top view, (b) 
bottom view, (c) side view, and (d) 3D schematic with 
housing case and USB connector.

Table 1: The dimensions of the proposed antenna (all 
dimensions in mm)
Wp Lp L1 L2 S1 S2 S3 S4 Lsw

20 50 39 6.75 4.5 14.1 7.3 3.8 9.5
LGP A B Wm1 Wm2 Lm1 Lm2 C1 T
34 1.8 0.2 0.8 0.3 7.7 5.4 5.2 1
C2 C3 C4 C W W1 W2 L H
8.5 3 5 3.4 26 1 0.3 55.5 10

In order to maintain the antenna’s small form-factor 
while achieving more operating frequencies, the CPW 
two IFA arms were loaded with a dual asymmetric 
negative-refractive-index transmission line (NRI-TL) 
metamaterial-�����
�
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unit cell is shown in Fig. 3 (b) [8]-[14-16] around 2.4
GHz. The structure consists of a host TL medium 
periodically loaded with discrete lumped element 
components. The unit cell was implemented at 2.4 GHz 
using the advanced design system (ADS) microwave 
circuit simulator. The impedance matching condition 
[8]-[14-15] has been satisfied and, therefore, the stop 
band has been closed. It can also be observed that at 2.4
GHz, the phase shift is 0 (balanced case).

The design flow can be described with the aid of 
Figs. 2 (a) to (d), and its corresponding reflection 
coefficient |S11| less than -6 dB is shown in Fig. 2 (e) as 
follows.

First step starts by designing the conventional CPW 
fed printed IFA as shown in Fig. 2 (a) to operate at 0.9 
GHz, with L1=39 mm. |S11| is shown as blue dashed 
dotted line in Fig. 2 (e).

Second step is to add the IFA second arm with L2 =
6.75 mm as shown in Fig. 2 (b), to operate at WLAN 5.2 
GHz, shown as red dashed line in Fig. 2 (e).

The resonant frequencies of first and second IFA 
arms can be approximately determined by [10]:

� � �

����	

(��)
, (1)

where C, Li and ���� are the speed of light, the IFA 1st,
2nd arm lengths and the effective dielectric constant, 
respectively.

Third step of design, shown in Fig. 2 (c), is to load 
the first cell to operate at 2.7 GHz, shown as dotted green 
line in Fig. 2 (e).

Fourth step of design, shown in Fig. 2 (d), is adding 
the second cell with different size to operate at WIMAX 
3.5 GHz, shown as gray solid line in Fig. 2 (e). It is 
noticed that the resonant frequency at 2.7 GHz is reduced 
to be at Bluetooth 2.4 GHz, due to the coupling effect of 
the nearby elements. All dimensions are listed in Table 
1. The two capacitors formed between the first cell, the 
first IFA arm and ground plane, are represented by the 
two lengths C1 and C2, respectively. The same with the 
second cell, the lengths C3 and C4 represent the two 
capacitors between the second cell, the first IFA arm and 
ground plane while the two inductors of first and second 
cells are represented by the two lengths meander lines, 
Lm1 and Lm2, respectively. The length Lm1 is represented 
by ten turns of 8.8 mm one turn length. The length Lm2 is 
represented by seven turns of 8.8 mm one turn length. 
With decreasing the capacitor C1 between the first cell 
and the IFA first arm, the three resonant 3.5 GHz, 2.5 
GHz, and 5.2 GHz are affected, while all other 
parameters remain constant. The first cell is coupled to 
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the second cell and the IFA second arm. The same 
happens when decreasing the number of meander line 
length as shown in Fig. 4. The parameters C1 and C2

represent the capacitive loading (distance to ground 
plane), therefore the most significant effect will be 
capacitive. While the length Lm1 and Lm2 represent the 
inductive loading (the parameter’s lengths are increased 
right and left without moving toward the ground plane),
therefore the most significant effect will be inductive.

(a) (b) (c) (d)

(e)

Fig. 2. (a)-(d) Design steps of the proposed quad printed-
IFA, and (e) the |S11| design procedures of the proposed 
antenna.

(a) (b)

Fig. 3. (a) The equivalent circuit when the proposed 
antenna operates at the first arm IFA, and (b) dispersion 
relation calculated for the balanced �����
�
����
	���$

(a) (b)

Fig. 4. Variation of |S11| against first cell parameters: (a) 
C1, and (b) Lm1.

On the other hand, with decreasing the number of 
meander line turns and length C3 between the second cell 
and IFA second arm, the resonant frequency is increased 
for wireless communication applications, as shown in 
Figs. 5 (a) and (b), while all other parameters almost 
remain unchanged. The same happens when increasing 
the length C4 between the second cell and the IFA second 
arm, as shown in Fig. 5 (c). The second cell has 
independent tuning due to free space zone to the ground 
plane

Otherwise, the first cell has dependent tuning due to 
coupling effect with second cell and IFA second arm
loading. The operations of the antenna at the four 
resonant frequencies are further studied using the surface 
current distribution, as shown in Fig. 6. In addition to the 
two fundamental resonant frequencies of the two IFA 
arms, at 0.9 GHz and 5.2 GHz, the two TL-MTM 
reactive loading unit cells introduce new two resonances 
around Bluetooth 2.4 GHz and WIMAX 3.5 GHz. At 
these frequencies, the antenna no longer acts as a printed 
IFA mode, but rather as dipole mode along the x-axis [7], 
as shown in Figs. 6 (b) and (c). The highest current 
densities mainly flow around each element that 
corresponds to its resonant frequency, and so is 
responsible for the corresponding radiations.

(a) (b)

(c)

Fig. 5. Variation of |S11| against second cell parameters:
(a) C3, (b) Lm2, and (c) C4.

(a) (b) (c) (d)

Fig. 6. The surface current distribution at: (a) 0.9 GHz, 
(b) 2.4 GHz, (c) 3.5 GHz, and (d) 5.2 GHz, respectively.
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III. COMPONENTS INTERACTION
The whole USB structure has dimensions of 

0.8×20×50 mm3, while the USB antenna has dimensions 
of 0.8×20×16 mm3. The rest of this space is used to 
mount the other components of the USB. Therefore, 
component interaction is an issue to take into account as 
for mobile handset [11]. This section deals with the 
effect of the housing case, USB connector and laptop 
device on the antenna performance.

Figure 7 (a) shows the geometry of the USB antenna 
with housing case, USB connector, and laptop device. 
The antenna is packaged with PVC (Polyvinyl chloride) 
casing materials of permittivity 4.5. The permittivity of 
screen, keyboard, laptop housing are 3.5, 2.25 and 3,
respectively. Figure 7 (b) shows the effect on antenna 
reflection coefficient of the proposed antenna. To 
validate our results we are using another simulator, 
microwave studio transient solver (CST) ver. 2013, 
which is based on finite integral technique.

It is noticed that loading the antenna with PVC 
housing case, USB connector, and laptop device causes 
a slight shift on the frequencies at 0.9 GHz, 3.5 GHz and 
5.2 GHz, but still covers the channel bandwidth of LTE, 
WIMAX and upper WLAN.

(a)

(b)

Fig. 7 (a). The HFSS proposed antenna with housing 
case, USB connector and laptop device, and (b) 
simulated |S11| of the proposed antenna with housing 
case, connector and laptop using different simulators.

In the simulation, it seems that the proposed antenna 
is too small with respect to the laptop. The simulation 
results are performed using HFSS, both solver discreet 
and interpolating setup solution and CST microwave 
studio time domain solver. HFSS and CST programs 
have automatic and manual adaptive meshing options. 
The number of mesh cells could be controlled in the 

antenna’s area than the other areas (laptop), as shown in 
Table 2. As expected, there is a slight difference between 
both results due to different methods of meshing, as 
shown in Fig. 7 (b).

Table 2: Different simulator parameters
Simulator HFSS 

Interpolating
HFSS 

Discreet
CST

Start Fo

(GHz)
0.1 0.1 0.1

Stop Fo

(GHz)
6 6 6

Step Fo

(GHz)
0.01 0.01 0.01

No. of points 551 551 551

No. of tetra 
hydras

95391 195244 -

No. of mesh 
cells

- - 24200079

IV. EXPERIMENTAL RESULTS AND
DISCUSSION

To verify the simulated results, two proposed 
antennas are fabricated at C4=5 mm and C4=2 mm, as 
shown in Figs. 8 (a) and (b). The antennas are fabricated 
using photolithographic technique and were measured 
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line with a metal strip width Ws =1 mm and a gap distance 
Wss =0.2 mm is used to excite the designed antenna. 
Figure 9 (a) shows the comparison between the 
simulated and measured reflection coefficient of the 
antenna. The experimental result shows good agreement 
with the simulated one at the target operating 
frequencies. Figure 9 (b) shows that the unbalanced case 
between the right and left handed regions [8] are 
appeared when decreasing the length C4 to 2 mm, which 
broaden the bandwidth of the original resonant 
frequency of the second cell itself, covering wide 
bandwidth at 3 GHz.

Figure 8 (c) and Fig. 9 (c) show the fabricated USB 
antenna with the PVC case material and comparison 
between measured and simulated |S11|, respectively. It is 
noticed that matching is improved by increasing the 
permittivity of the casing material, while the radiation 
efficiency is worsened. The simulated gains, radiation 
efficiency at each operating frequency are summarized 
in Table 3. The radiation efficiency was measured by 
using wheeler-cap method [12-13]. The average 
radiation efficiency is more than 75% over operating 
frequencies. The measured -6 dB impedance bandwidths 
for each resonance are suitable for the channel 
bandwidth of the LTE band 11 (0.9-0.96 GHz), 
Bluetooth (2.4-2.45 GHz), WIMAX (3.5-3.6 GHz), and 
upper WLAN (5.2-5.25 GHz).
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(a) (b) (c)

Fig. 8. Photos of proposed antennas (C4 =2 mm & 5 mm):
(a) upper layer, (b) bottom layer, and (c) with casing 
material.

(a)

(b)

(c)

Fig. 9. Simulated and measured |S11| of the proposed 
antenna: (a) C4=5 mm, (b) C4=2 mm, and (c) with 
package of PVC casing material.

Table 3: The simulated and measured antenna 
parameters

                      Fo (GHz)
Parameter 0.9 2.4 3.5 5.2

Sim. Gain (dBi) 2.2 2.5 2.6 2.9
Sim. Effi. (%) 65 79 85 88

Measu. Effi. (wheeler) (%) 68 81 84 86
Sim. BW (MHz) (-6 dB) 70 80 95 80

Measu. BW (MHz) (-6 dB) 70 80 90 120

The radiation patterns of the proposed antenna are 
measured in a Star-Lab 18 anechoic chamber, and the 
walls inside the chamber are covered with absorbing 
materials to mitigate signal reflections. The simulated 
and measured radiation patterns of the proposed antenna 
are listed in Table 4 in E-plane (��	�
0) and H-Plane (��
= 900), with normalized co- and cross-polarization (E�
and E�), respectively. For almost all frequency bands, the 
normalized co-polarized (co-pol) patterns show nearly 
omni-directional radiations and their corresponding 
cross-polarized (x-pol) patterns exhibit monopole-like. 
The average difference between the co and cross levels 
in the main plane for most of the frequencies is higher 
than 10 dB, which is accepted for wireless 
communication. Some discrepancies between the 
simulated and measured results appear at certain
frequencies that may be attributed to the inadequate size 
of the absorbers in addition to normalization error.

Table 4: Radiation patterns, simulated: black lines; 
measured: red lines; E:: solid lines; E;: dotted lines at 
each resonant frequency; axes are shown in Fig. 1
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V. CONCLUSION
New quad-band USB antenna was presented in this 

paper. A metamaterial inspired reactive loading was used 
to create multiband for wireless USB applications. The 
theory of the proposed antenna was verified by using EM 
simulator and measurements. The antenna was designed 
to have quad-band operation covering LTE 0.9 GHz, 
Bluetooth 2.4 GHz, WIMAX (3.5 GHz), and upper 
WLAN (5.2 GHz) bands. The effect of the laptop, 
housing case, and USB connector is studied using 
different simulation programs. The results show that 
these components have no significant effect on the 
performance of the proposed antenna. The measured and 
simulated results were in good agreement. The proposed 
antenna demonstrates good gain and radiation efficiency. 
The radiation patterns approximate an omnidirectional 
pattern. These features make the antenna a good 
candidate for a multiband USB dongle antenna.
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