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Abstract ─ In this paper, we propose a low complexity 

adaptive beamforming with joint robustness against 

array steering vector (ASV) mismatch and array manifold 

errors. The proposed robust beamforming is based on the 

diagonal loading technique, and the diagonal loading 

factor can be adjusted adaptively according to the  

input signal-to-noise ratios (SNRs). The eigenvalue 

corresponding to the desired signal is identified by 

projecting the presumed ASV of the desired signal onto 

the eigenvectors of the sample covariance matrix. We 

find that the ratio of the eigenvalues corresponding to the 

desired signal and the noise can be used to accurately 

reflect the input SNR when the input SNRs is large 

enough, and the ratio is also the diagonal loading factor. 

Then, an orthogonal subspace is obtained with the 

steering vectors associated with the region where the 

desired signal may locate at. Also, the actual steering 

vector is estimated as a linear combination of this 

orthogonal subspace. In order to further reduce the 

computation complexity, we use the traditional diagonal 

loading method in low SNRs. Simulations results 

demonstrate that the proposed beamformer provides 

strong robustness against a variety of array mismatches, 

and the complexity is significantly reduced compared 

with popular existing methods. 

 

Index Terms ─ Adaptive arrays, diagonal loading, low 

complexity, robust beamforming. 
 

I. INTRODUCTION 
Adaptive beamforming has been widely used in 

radar, sonar, mobile communications, radio astronomy 

and other fields due to its ability on suppressing the 

interferences and noise [1-4]. The standard Capon 

beamformer (SCB), which is one of the representative 

adaptive beamformers, has excellent resolution and 

jammer rejection performance in ideal case. Unfortunately, 

the SCB lacks robustness in the presence of model 

mismatches, especially, when the desired signal is 

presented in the training data. Therefore, the behavior of 

the SCB significantly degraded when the mismatch 

existed in the array steering vectors (ASV) or the array 

manifold [5-10]. 

Many robust adaptive beamforming methods have 

been developed over the past several decades [11-19]. 

Among these methods, the diagonal loading method is 

the most common one due to its lowest complexity, 

where a fixed value is added to the diagonal of sample 

covariance matrix [11]. However, it doesn’t provide any 

guidance to select the optimal diagonal loading factor, 

and thus it cannot provide sufficient robustness. Robust 

Capon beamformer (RCB) was proposed in [12], which 

exploited a spherical or ellipsoidal uncertainly set to 

limit the ASV of the desired signal. This method has 

been proved belongs to a kind of diagonal loading 

approach except that the loading factor can now be 

determined precisely based on the uncertainty set. 

However, the performance of the RCB is mainly 

determined by the uncertain parameter set, and uncertain 

parameter set is difficult to be known accurately in 

practice. The RCB is equivalent with the worst-case 

beamformer proposed in [13]. 

Robust adaptive beamforming based on steering 

vector estimation has been proposed in [14]. To achieve 

an accurate steering vector, one needs to maximize the 

beamformer output power, and the ASV prevented from 

converging to any interference ASVs or their linear 

combinations, which is a quadratically constrained 

quadratic programming (QCQP) problem and can be 

converted to semi-definite programming (SDP). Certainly, 

the large amount of calculation is needed and long time 

to converge. In [15], robust adaptive beamforming based 

on interference-plus-noise (IPN) covariance matrix 

reconstruction and ASV estimation has been proposed, 
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the IPN covariance matrix was reconstructed by utilizing 

the Capon spectrum to integrate over a region separated 

from the SOI direction. This method enjoys good 

performance in the case of ASV direction errors. 

Unfortunately, the array manifold information must be 

known accurately in this method. As a result, this method 

lacks robustness in the presence of array calibration 

errors, especially in low signal-to-noise ratios (SNRs) 

[16-17]. Then, a variable loading method is proposed in 

[19], which can improve the robustness by deliberately 

preventing the weight vector converging to the noise 

components, where the loading factor is set in an ad hoc 

manner.  

In this paper, we propose a novel variable diagonal 

loading beamforming to achieve high performance  

and low complexity. The diagonal loading factor is 

associated with the input SNRs and can be adaptively 

adjusted. In our proposed beamformer, the eigenvalue 

corresponding to the desired signal is identified by 

projecting the presumed ASV of the desired signal  

onto the eigenvectors of the sample covariance matrix. 

The input SNR is estimated by using the eigenvalues 

corresponding to the desired signal and noise, 

respectively, which is also the diagonal loading factor in 

high SNR. The traditional diagonal loading method is 

used in low SNR for further reducing the computation 

complexity. A correlation matrix of the ASV associated 

with the region where the desired signal may locate is 

constructed and an orthogonal subspace is obtained by 

Eigen-decomposition of this matrix. The actual ASV of 

the desired signal is subsequently expressed as a linear 

combination of the orthogonal subspace. The proposed 

method with low complexity can obtain a closed-form 

expression of the weight vector. Simulation results show 

the proposed beamforming can provide strong joint 

robustness against ASV mismatch and array manifold 

errors. 
 

II. THE SIGNAL MODEL 
We consider a uniform linear array (ULA) with N 

unidirectional antennas with spacing d. Assuming that 

there are 1M   signals arriving from the directions

,  =0,1, , .p p M  The received data of the array can be 

expressed as: 

 ( ) ( ) ( ),k k kX AS N   (1) 

where 1 2( ) [ ( ) ( )  ( )]T

Nk x k x k x kX   is a 1N  array 

observations data vector. ( )T  denotes the transpose.  

k is the time index. 0 1( ) [ ( ) ( )  ( )] ,S
T

Mk s k s k s k

( )ps k  denotes the complex waveform of the thp  

signal. Here, 0 ( )s k  is considered as the desired  

signal, while ( ),  1,2, ,is k i M  are the interferences. 

1 2( ) [ ( ) ( )  ( )]T

Nk n k n k n kN   is a vector of the 

additive white sensor noise, 
0 1[ ( ) ( )  ( )],A a a a M    

where 
( )1

( ) [1 e   e ]p pj j N T

pa
 




 represents a steering 

vector in the 
p  direction, and 

p  is the wave number 

that can be represented as 2 sin( ) .p pd     

We assume that the signal and noise are statistically 

independent. The output of the beamformer ( )y k  is given 

by: 

 H( ) ( ),y k kw X  (2) 

where w  is the 1N  complex weight vector and ( )H  

represents the Hermitian transpose. 

The minimum variance distortionless response 

(MVDR) beamformer is formulated as the following 

linearly constrained quadratic optimization problem: 

 
0min       subject  to  =1,H H

i n
w

w R w w a
 (3) 

where 
0a  is the presumed ASV of the desired signal, 

i nR 
 is the IPN covariance matrix. In practice, 

i nR 
 is 

commonly replaced by the sample covariance matrix: 

 

1

1ˆ ( ) ( ),
K

H

k

k k
K

R X X


   (4) 

where K  is the number of snapshots. Thus, the optimal 

solution to (3) is: 

 
1

0

1

0 0

ˆ
.

ˆH

R a
w

a R a




  (5) 

The solution (5) is commonly referred to as the 

sample matrix inverse (SMI). The standard MVDR 

beamformer has a good interference rejection 

performance by producing sharp nulls at the direction of 

interferences in the ideal case. However, the standard 

MVDR beamformer lacks robustness against the ASV or 

manifold errors, which case seriously performance 

degradation. 

 

III. THE PROPOSED ALGORITHM  

A. Input SNR estimation and diagonal loading 

In this section, we propose a novel low complexity 

variable diagonal loading beamformer. In this method, 

the eigenvalue corresponding to desired signal is 

identified firstly. The sample covariance matrix R̂  

defined by (4) can be decomposed as: 

 

1

ˆ ,
N

H H H

i i i s s s n n n

i

R υ υ U Λ U U Λ U


    (6) 

where ,  1,2, ,i i N   are the eigenvalues are of R̂ , 

and ,  1,2, ,i i Nυ   are the corresponding eigenvectors. 

1  2 +1 [  ]s MU υ υ υ represents the signal-plus-interference 

(SPI) subspace, which is composed by the M interferences 

and a desired signal. 2  +3  [  ]n M M NU υ υ υ
 
represents 

the noise subspace,  1 2 1, , ,s MdiagΛ      are the 
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eigenvalues of the SPI, and  2 3, , ,n M M NdiagΛ    

are the eigenvalues of noise. As we know, the 

eigenvectors in 
sU  and the ASVs of the SPI lie in the 

same subspace. What’s more, the mismatch between 

0( )a   and 
0a  is not too large in fact. We project the 

presumed desired signal ASV 
0a  onto the eigenvectors 

to get ( ),  =1,2, , .p i i N ( )p i  can be expressed as: 

 
2

0( ) ,   =1,2, , .H

ip i i Nυ a  (7) 

The projections ( )p i  can be arranged in descending 

order, as
[ ] [ 1] [1].N Np p p    Meanwhile, the 

corresponding eigenvectors can be arranged as

[ ]  [ -1] [1] 
, ,  , ,υ υ υ

N N
 and the corresponding eigenvalues 

can be arranged as
[ ] [ 1] [1], , , .N N  

 Note that the 

eigenvalues
[ ] [ 1] [1], , ,N N  

are the same as (6), but they 

have been reordered according to 
[ ] [ 1] [1]

.
N N

p p p


    

As well known, when 
  iυ  is the eigenvector 

corresponds to the desired signal, the maximum of the 

projections 
[ ]Np  can be obtained [8]. That is to say  

the eigenvector corresponding to the desired signal  

can be identified by 
[ ].Np  Easy to see that 

[ ]  N
υ  and 

[ ]N  are the corresponding eigenvector and eigenvalue, 

respectively. There is no doubt that 
[1]  is the eigenvalue 

corresponding to the noise. Subsequently, we can use  

the parameter   to reflect the input SNR directly [20], 

which can be expressed as: 

 [ ]

[1]

10*log( ).
N




  (8) 

When the input SNR is very small, 0.   On the 

contrary, the large value of   can be obtained in high 

SNR environment. Here, we give an example to discuss 

the relationship between 
 
and the input SNR.  

We consider a ULA of 10N   antennas spaced at a 

half wavelength distance. Additive noise is modelled as 

independent complex Gaussian noise with zero mean 

and unit variance. Two independent interferences are 

from the directions of 30  and 50 , respectively. The 

interference-to-noise ratios (INRs) of the interferences 

are 30 dB. The desired signal is assumed from the 

direction of 3 .  The random DOA estimation mismatch 

is distributed in [ 5 ,5 ].   The number of snapshots is 

K=100. 200 repetitions are executed to obtain each 

simulated point.  

Figure 1 shows the values of   versus input SNRs. 

We can observe form Fig. 1 that the values of   are 

quite consistent with the optimal SINR when the input 

SNR> 10 dB. The relationship between   and SNR is 

almost linear. We can say the parameter 
 
can reflect 

the input SNR exactly as long as SNR is large enough. 

When SNR -10 dB,   failed to reflect the input SNR 

due to the overestimated of signal subspace. Luckily, the 

traditional diagonal loading method can achieve the 

same performance as other methods in low SNRs. 

Naturally, we prefer to use the traditional diagonal 

loading in low SNR due to its low complexity.  
 

 
 

Fig. 1. Values of   versus the SNRs. 
 

Thus, the proposed diagonal method can be expressed 

as: 

 
[ ]

[1]

ˆ             0
,

ˆ                 0

N
R I

R

R I






 


 

 


 

 (9) 

where I  is an identity matrix, and  is a fixed value. 

We usually set   as twice as the noise power. We can 

see that a new covariance matrix can be obtained by 

using the proposed diagonal method. The diagonal 

loading factor in (9) is changed according to the SNR. 

When 0  , the diagonal loading factor is positive to 

the SNR. The large diagonal loading factor can increase 

the noise power and the proportion of the desired signal 

in the covariance matrix is reduced. As a result, the effect 

of the desired signal is reduced in high SNRs. When

0  , the diagonal loading factor is set to be a fixed 

value.  
 

B. Desired signal steering vector estimation 

In practical applications, the presumed ASV of the 

desired signal may not precisely, and the mismatches 

cause significant performance degradation. Using the 

similar idea of [18], we can obtain accurate ASV of the 

desired signal. We assume that the   
is the angular 

sector in which the desired signal is located. Define the 

correlation matrix of the steering vector: 

 ( ) ( ) ,H dC a a  


   (10) 

where ( )a   is the ASV associated with a presumed 

direction   located in .  The matrix can be decomposed 
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as: 

 

1

,
N

H

n n n

n

C u u


  (11) 

where 
n  are the eigenvalues of C  in descending, and 

nu  are the corresponding eigenvectors. The Q  largest 

eigenvalues can be extracted, and the corresponding 

eigenvectors can be expressed as ,  =1,2, , .un n Q  Then 

a column orthogonal matrix U can be constructed as 

1 2[ , , , ]QU u u u . As we all know, the Q  
eigenvalues 

can contain most of the energy of C  as long as Q  is 

large enough. That is to say any ASV whose direction 

located in   
can be expressed as a linear combination of 

columns of .U  So the actual ASV of the desired signal 

can be estimated as: 

 
0 ,a Ur  (12) 

where r  is defined as a rotating vector. In order to obtain 

the vector r , we can maximize the output power of  

the desired signal. Taking into the norm constraint, the 

optimization problem can expressed as: 

 
ˆmin             

subject  to   ,

H

U

H N

r
r R r

r r 

 (13) 

where 1ˆ ˆ .R U R U
H

U

  The constraint 
H Nr r   is aims 

to avoid scaling ambiguity. The problem (13) can be 

solved by Lagrange multiplier methodology, and the cost 

function is given by: 

 1 ˆ ˆ( , )=  ( )
2

H H

UL N r U r R r r r , (14) 

where ̂  denotes the Lagrange multiplier. Computing 

the gradient of ( , )L r U  with respect to ,r  and then setting 

it equal to zero. We can get: 

 ˆ ˆ .UR r r  (15) 

It is easy to understand that r  can be regarded as the 

eigenvector of ˆ
UR  which corresponding to the smallest 

eigenvalue. r  can be obtained as follows: 

 ˆ[ ],Ur R  (16) 

where [ ] is the operator that extracts the eigenvector 

corresponding to the smallest eigenvalue. Then, the 

estimated ASV of the desired signal can be obtained  

by substituting this solution into (12). Taking into 

consideration of the norm constraint, we obtain: 

 
0

N
a Ur

r
. (17) 

Once the 0a  is obtained, according to (5), the 

weighting vector can be achieved. It is worth noting that 

this method suffers performance degeneration in low 

SNR due to the Eigen-decompose operator. To address 

this problem, we can utilize the presumed ASV 0a  for 

0  . Then the weighting vector can be expressed as: 

 

[ ] 1

0

[1]

[ ] 1

0 0

[1]

1

0

1

0 0

ˆ( )

    >0

ˆ( )

ˆ( )
        0

ˆ( )

N

NH

H

λ

λ
γ

λ

λ

η
γ

η

R I a

a R I aw

R I a

a R I a

.

 

(18) 

It can be seen from (18) that the diagonal loading 

factor and ASV of the desired signal in the proposed 

method can be adjusted by introducing the parameter .γ  

The expression of the weight vector is an attractive 

closed-form without any iteration process. As a result, 

the complexity is significantly reduced, especially in low 

SNR.  
 

C. Complexity analysis 

The main computational complexity of the proposed 

method is the Eigen-decomposition operation and  

matrix inverse operation. Its overall computational 

complexity is 3( ).O N  The RCB algorithm also needs 

Eigen-decomposition operation, which has a complexity 

of 3( ).O N  The worst-case beamforming and the 

beamformer of [14] (SDP-RAB) have at least the 

complexity of 3.5( ).O N  The beamformer of [15] (IPN-

RAB) has a complexity of 2( ),O SN where S is the number 

of sampling points in the area eliminating desired signal. 

Typically, .S N  The computational complexity of the 

beamformer in [19] is 3( ).O N  
 

IV. SIMULATION 
In this section, the basic simulation conditions are 

the same as above unless otherwise is specified. The 

possible angular sector of the SOI is set to [ 5 ,11 ],     

so the complement sector is [ 90 , 5 ) (11 ,90 ]       . 

We set 2Q  .The proposed beamformer is investigated 

and compared with the diagonally loaded SMI (LSMI) 

[11], RCB [12], SDP-RAB[14], IPN-RAB[15], the 

beamformer of [18] and the beamformer of [19]. The 

optimal parameter 0.3N   is used for the RCB, while 

the diagonal loading factor of LSMI is selected as twice 

as the noise power. CVX software is used to solve these 

convex optimization problems [21]. 
 

A. Simulation Example 1: The ASV was known exactly 

In this example, we consider the situation that  

the actual ASVs are exactly known. That means the 

presumed ASVs and array manifold knowledge are 

consistent with the actual. 

Figure 2 shows the output SINR of the tested 

beamformers versus input SNR for K=100. It can be  

seen from the Fig. 2 that the IPN-RAB enjoys the best 

performance with a high complexity when the ASV is 

known exactly. The proposed method outperforms the 
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RCB, beamformer of [18] and beamformer of [19], 

which all have the same computational complexities. As 

it can be observed that the beamformer of [18] suffers 

significantly performance degradation due to the subspace 

swap phenomenon in low SNRs. The proposed method 

overcomes this problem by using the traditional diagonal 

loading method in low SNRs without eigenvalue 

decomposition of the sample covariance matrix. The 

output SINR of the proposed beamformer exceeds 

beamformer of [19] 3.94 dB when the input SNR is 30 dB. 

Figure 3 corresponds to the output SINR performance 

versus the number of the snapshots with input SNR=20 dB. 

It can be observed that the proposed beamformer offers 

good performance with low computational complexity. 

The inaccurate eigenvalue decomposition of the covariance 

matrix in (6) and (16) is the main reason why the proposed 

method suffers little performance degradation when the 

number of snapshots is very small.  
 

 
 

Fig. 2. Output SINR versus the input SNR when the 

ASVs are exactly known. 
 

 
 

Fig. 3. Output SINR versus the number of snapshots 

when the ASVs are exactly known. 
 

B. Simulation Example 2: Signal look direction 

mismatch 

In this example, we consider the situation that the 

random desired signal direction error is occurred. The 

random DOA estimation mismatch is distributed in 

[ 5 ,5 ]   for each simulation run. So, the actual desired 

signal DOA is uniformly distributed in [ 2 ,8 ]  . It is 

worth noting that the DOA mismatch is changed in each 

run but remain fixed in each snapshot.  

Figure 4 displays the mean output SINR of the  

tested methods versus the SNR for K=100. As it can  

be observed, the LSMI suffers significant performance 

degradation in high SNRs. The performance of the 

proposed beamformer is only next to the IPN-RAB 

method. The proposed method provides better 

performance compared with the LSMI, RCB, beamformer 

of [18] and beamformer of [19]. In Fig. 5, the output 

SINR is shown with respect to the number of snapshots 

for SNR=20 dB. Similar to the previous example, the 

proposed beamformer has good performance except that 

the number of the snapshots is very small.  
 

 
 

Fig. 4. Output SINR versus the input SNR in the case of 

look direction mismatch. 
 

 
 

Fig.5. Output SINR versus the number of snapshots in 

the case of look direction mismatch. 
 

C. Simulation Example 3: Desired ASV mismatch due 

to wavefront distortion 

In this simulation, we consider the ASV of the 

desired signal is distorted by the effects of wave 

propagation due to the inhomogeneous medium [14]. In 
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particular, the independent-increment phase distortions 

are accumulated from the components of the presumed 

ASV. Assuming that the phase increments are fixed in 

each simulation runs and are independently chosen from 

a Gaussian random generator with zero mean and 

standard deviation 0.04. Figure 6 shows the output SINR 

of the beamformers versus input SNR for K=100. Figure 

7 shows the output SINR of the beamformers versus the 

number of snapshots for fixed input SNR=20 dB. 
 

 
 

Fig. 6. Output SINRs versus input SNR in the case of 

wavefront distortion. 
 

 
 

Fig. 7. Output SINRs versus the number of snapshots in 

the case of wavefront distortion. 
 

It can be observed from the Fig. 6 that the 

beamformer of [18] lacks robustness against the 

wavefront distortion, and the SDP-RAB method suffers 

performance degradation when the 10dB SNR 30dB.   

The IPN-RAB method outperforms the proposed method 

at high SNRs, but significantly more complicated. The 

proposed method is superior to the beamformer of  

[19] without increasing the calculation load. In particular, 

we can find from Fig. 7 that the output SINR of the 

proposed method exceeds the beamformer of [19]  

1.15 dB when K=150. From the discussions mentioned 

above, the performance of our proposed method has little 

deterioration in small number of snapshots due to the 

inaccurate estimation of the SOI component. 

D. Simulation Example 4: Effect of the error in the 

knowledge of the array geometry 

In this simulation, the effect of the element position 

errors on the performance of the tested beamformers is 

investigated. We assume the difference between the 

presumed and actual positions of each element is 

modelled as a uniform random variable distributed in  

the interval [ 0.075 ,0.075 ]  , where   represents the 

wavelength. The actual DOA of SOI is 5 , and hence, 

the DOA mismatch is 2 . 

Figure 8 shows the output SINR of the beamformers 

versus input SNR for K=100. It can be seen from the  

Fig. 8 that the IPN-RAB suffers serious performance 

degradation in low SNRs due to the inaccurate array 

manifold information. The proposed beamformer provides 

strong robustness in the presence of the element positions 

errors both at low and high SNRs. Figure 9 displays the 

output SINR performance of all the tested beamformer 

versus the number of training snapshots for SNR=20 dB. 

As is shown in the picture, we can see clearly that the 

proposed method enjoys the best performance when 

60K  . 
 

 
 

Fig. 8. Output SINR of beamformers versus input SNR 

for the case of element position errors. 
 

 
 

Fig. 9. Output SINR versus the number of snapshots for 

the case of element position errors. 
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E. Simulation Example 5: Mismatch due to arbitrary 

ASV errors 

In this simulation, we study the performance of the 

proposed beamformer when arbitrary ASV errors are 

considered. Here, the ASV mismatch is comprehensive 

and arbitrary-type, which may be caused by direction 

errors, calibration errors, gain and phase perturbations, 

and so on. The actual ASVs of can be modelled as [17]: 

 ˆ( ) ( ) ,a a e    (19) 

where ( )a   denoted the presumed ASVs, ê
 
is a zero-

mean complex random vector with the variance 2

e . In 

this example, all the array imperfections are generated as 

Gaussian variables with the given variance, 2 2.e   

The output SINR of the beamformers versus input 

SNR for K=100 is displayed in Fig. 10. We can notice 

that the proposed method can improve the output  

SINR of the beamformer efficiently, and fit to be used  

in complex environment. This means the proposed 

beamformer is effective in the presence of the arbitrary 

ASV errors. Figure 11 displays the output SINR 

performance of all the tested beamformer versus the 

number of training snapshots for SNR=20 dB. Obviously, 

the proposed beamformer has the best output SINR 

among all the tested beamformers when 60K  . 
 

 
 

Fig. 10. Output SINR of beamformers versus input SNR 

with arbitrary ASV errors. 
 

 
 

Fig. 11. Output SINR of beamformers versus snapshots 

with arbitrary ASV errors. 

V. CONCLUSION 
In this paper, a robust adaptive beamforming 

method with low complexity has been proposed and  

its performance has been investigated. The proposed 

beamformer is realized based on variable diagonal loading 

method, and the diagonal loading factor is selected 

according to the input SNR. The expression of the 

weighting vector in a closed-form has been provided. 

The proposed method has a low complexity and 

possesses good operability and excellent performance. 

The simulation results demonstrated that the proposed 

beamformer can provide superior performance against 

unknown arbitrary-type mismatches compared to the 

existing popular methods.  
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