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Abstract ─ With the increasing operation frequency, it is 

essential to take into account the parasitic parameters of 

transistor for high efficiency microwave power amplifier 

design. In this paper, a class E power amplifier with 

finite dc-feed inductance and series inductance network 

is analyzed including the parasitic inductance of transistor. 

The analytical design expressions are derived. And  

the effects of series inductance on the load network 

parameter are obtained. The results suggest that this new 

topology can be used in broadband power amplifiers 

design by making full use of transistor’s output parasitic 

inductance. A GaN HEMT power amplifier is designed 

with the proposed topology for validation purpose. 

Experimental results show that the amplifier can realize 

from 2.5 GHz to 3.5 GHz (33.3%) with measured drain 

efficiency larger than 60% and output power larger  

than 34 dBm. The measured performance shows good 

agreement with the theoretical performance predicted by 

the equations. 

 

Index Terms ─ Broadband, class E power amplifier, 

finite dc-feed inductance, parasitic inductance. 
 

I. INTRODUCTION 
One of the most important features of RF power 

amplifier (PA) is power efficiency. By increasing the 

efficiency, PA will consume less supply power and 

requires less heat sinking. This allows a reduction of 

battery size and an increase in battery life. The switch 

mode class E PA [1] is a good candidate for high 

efficiency PA due to its design simplicity. 

The class E PA with finite dc-feed inductance [2, 3] 

is one important topology of the class E PA. It has 

smaller inductance than the RF-choke and thus has  

lower loss [4] due to a smaller electrical series resistance 

(ESR). It can obtain greater power capability than other 

class E topology. And the larger load resistance  

makes the design of the matching network easier. These 

advantages make this topology widely attracted. In [5], 

the effects of dc-feed inductance, the quality factor (QL) 

of the series-tuned circuit, and the switching-device on 

resistance have been analyzed. In [6], the maximum 

frequency of the class E PA with finite dc-feed 

inductance is discussed. In [7], an arbitrary duty-cycle 

and finite dc-feed inductance is discussed. In [8], the 

power dissipation in each component is calculated. In 

[9], load transformation networks for wideband operation 

is investigated. In [10], the analytical expression of the 

switch peak voltage is presented. With the increasing 

operation frequency, it is essential to take into account 

all the device parasitic parameters [11, 12]. In [13, 14], 

the normalized optimum load network parameters versus 

normalized bond-wire inductance for parallel-circuit 

class E PA are presented. But the parallel-circuit class E 

PA is only one kind of the class E power amplifier with 

finite dc-feed inductance. To get the general results, it is 

necessary to further study the effect of the device output 

series inductance on the load network parameters of the 

class E power amplifier with finite dc-feed inductance. 

In this paper, a theoretical description of the class E 

PA with finite dc-feed inductance and series inductance 

network is presented. The analysis takes into account  

the transistor’s output parasitic inductance on the load 

network parameters of the class E PA with finite dc-feed 

inductance. Thus, the analysis can provide useful and 

accurate design to the class E PA in higher operation 

frequency. Finally, a design case is constructed in the 

laboratory in order to verify the theoretical predictions 

for demonstration purpose. 

 

II. CIRCUIT DESCRIPTION 

The class E power amplifier with finite dc-feed 

inductance and series inductance is shown in the Fig. 1. 

The load network consists of the shunt capacitance 
0

C , 

a series inductance seriesL , a parallel inductance 0L , a 
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series reactive element ,jX  and a load R. The shunt 

capacitance 
0

C  represents the intrinsic device output 

capacitance. The series inductance 
seriesL  can be 

considered as an adjustment parameter which include  

the bond-wire inductance and lead inductance. A parallel 

inductance 
0L  represents the finite DC-feed inductance 

and the series reactive element jX can be positive 

(inductance) or negative (capacitance) or zero. The 

active device is considered to be an ideal switch.  
 

 
 

Fig. 1. Circuit of the class E power amplifier with finite 

dc-feed inductance and series inductance network. 
 

To simplify analysis of the class E power amplifier 

with finite dc-feed inductance and series inductance, 

several assumptions are introduced in [13, 14]. For an 

idealized theoretical analysis, the moments of the switch-

on is 0t   and switch-off is t   with period of 

repeatability of the input driving signal 2 .T   Nominal 

conditions for voltage across the switch prior to the start 

of switch–on at the moment 2t   are: 
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The output current flowing through the load R is 

written as sinusoidal by: 

 ( ) sin( ),R Ri t I t     (3) 

where RI  is the load current amplitude and   is the 

initial phase shift. 

When the switch is turned on for 0 ,t    the 

voltage on the switch is zero. The current flowing 

through the switch can be written as: 
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where 
0 .seriesL L   

When switch is off for 2 ,t     the current 

( ) 0i t   and the current 
0 0
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flowing the capacitance 0C  can be rewritten as: 
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Differentiating both sides of (5), the second-order 

differential equation becomes: 
2
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Under the initial off-state conditions, 

 ( ) 0,    (7) 

The current 
0
( )Li   flowing through the finite 

inductance 
0L  is: 
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The current flowing through the capacitance 
0C  is: 
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where 
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where   is the normalized frequency. With the initial 

off-state conditions (7) and (11), the general solution of 

(6) can be obtained in the normalized forms: 
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Applying nominal conditions of (1) and (2), the 

optimum parameters   and p as functions of Q  are: 
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where Q  is a function of   and .  Figure 2 shows the 

initial phase shift   versus   and .  With the 

increasing of ,  the initial phase shift   decreases. 

With the increasing of ,  the initial phase shift   

decreases and the gradient of the initial phase shift   is 

slow in broadband. Thus, it is easy to match for load 

network. 
 

 
 

Fig. 2. Initial phase shift   versus   and .  

 

The normalized load-network parameters inductance

0L , capacitance 
0C , and resistance R are presented as 

functions of parameters , , ,p Q  , as below:  
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From the viewpoint of mathematics, they are only 

functions of parameters   and .  Figure 3 shows the 

parameter 
0L R  versus   and .  With the increasing 

of ,  the parameter 
0L R  increases. With the 

increasing of ,  the parameter 
0L R  increases.  

Figure 4 shows the parameter 
0C R  versus   and 

.  The parameter 
0C R  has maximum of 0.7021 when 

0.681   and 0.   Then the maximum frequency of 

the class E power amplifier with finite dc-feed inductance 

and series inductance is 
max 00.7021 (2 ).f C R  With 

the increasing of ,  the parameter 
0C R  decreases. 

 

 
 

Fig. 3. 
0L R  versus   and .  

 

 
 

Fig. 4. 
0C R  versus   and .  

 

Figure 5 shows the parameter 2

out ccRP V  versus   

and .  The parameter 2

out ccRP V  has maximum of 

1.3633 when 0.709   and 0.   Then the maximum 

load resistance of the class E power amplifier with  

finite dc-feed inductance and series inductance is 
2

max 1.3633 / .cc outR V P  With the increasing of ,  the 

parameter 2

out ccRP V  decreases.  

The Equations (22) through (25) below present the 

analytical expressions of the voltage across the reactance 

X. The Equations (26) through (29) below present the 

analytical expressions of the voltage across the resistance 

R. 
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Fig. 5. 2

out ccRP V
 
versus   and .  

 

Figure 6 shows the parameter X R  versus   and 

.  The X R  is equal to zero when 0.708   and 

0,   which is the parallel-circuit class E PA. When 

0.708   and 0,   the reactance X is positive 

(inductive reactance). When 0.708   and 0,   the 

reactance X is negative (capacitive reactance). When 

0.708,   with the increasing of ,  the parameter 

X R  decreases, even below zero. When 0.708,   

with the increasing of ,  the parameter X R  increases. 

In Table 1, the optimized load-network parameters 

of the different class E modes include class E with shunt 

filter and the class E with finite dc-feed inductance and 

series inductance are shown in a normalized form. As 

can be seen, the class E with finite dc-feed inductance 

and series inductance offers the larger value of the power 

output capability 
Pc  and the load R, which is 3.18 times 

higher than that for class E with shunt capacitance. 
 

 
 

Fig. 6. X R  versus   and .  

 

Table 1: Load network parameters for different class E 

modes 

Normalized 

Load-Network 

Parameter 

Class E with Shunt 

Capacitance and 

Shunt Filter[15] 

Class E with Finite 

DC-Feed Inductance 

and Series Inductance 

X
R  1.4836 

0 

( 0,  0.708)   

CR  0.261 
0.7021 

( 0,  0.681)   

2

out

CC

P R

V  0.4281 
1.3633 

( 0,  0.681)   

2
max out CC

out

f C V

P  
0.097 

0.1505 

( 0,  0.693)   

Pc  0.09825 
0.1049 

( 0,  0.6689)   

 

III. DESIGN CONSIDERATION 
For broadband PA design [15], the susceptance of 

the network is an important parameter. Figure 7 shows 

the susceptance 
2[ ( ) ]cc net outImag V Y P  of the class E PA 

with finite dc-feed inductance and series inductance.  

0.50.60.70.80.9 1 1.11.21.31.41.5
0

0.3

0.6

0.9

1.2

1.5

 Normalized Frequency    

 R
P

o
u

t/V
2 c

c

 from 0.0 to 1.0,step:0.1 from 0.0 to 1.0,step:0.1 from 0.0 to 1.0,step:0.1 from 0.0 to 1.0,step:0.1 from 0.0 to 1.0,step:0.1 from 0.0 to 1.0,step:0.1 from 0.0 to 1.0,step:0.1 from 0.0 to 1.0,step:0.1 from 0.0 to 1.0,step:0.1 from 0.0 to 1.0,step:0.1 from 0.0 to 1.0,step:0.1

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
-30

-20

-10

0

10

 Normalized Frequency    

X
/R

 from 0.0 to 1.0,step:0.1 from 0.0 to 1.0,step:0.1 from 0.0 to 1.0,step:0.1 from 0.0 to 1.0,step:0.1 from 0.0 to 1.0,step:0.1 from 0.0 to 1.0,step:0.1 from 0.0 to 1.0,step:0.1 from 0.0 to 1.0,step:0.1 from 0.0 to 1.0,step:0.1 from 0.0 to 1.0,step:0.1 from 0.0 to 1.0,step:0.1

RONG, LIU, XU, XU, XIA: ANALYSIS AND DESIGN OF CLASS E POWER AMPLIFIER 458



The 
 
when   increase from 0.0 to 1.0 by step 0.1. 

When 0,   the difference of susceptance is 0.2389  

in the frequency range (0.5 1.5).   When 1,   the 

difference of susceptance is 0.0381 in the frequency 

range (0.5 1.5).   The parameter   can be used  

to control the difference of susceptance over a wide 

frequency range. 

 

 
 

Fig. 7. Susceptance 2[ ( ) ]cc net outImag V Y P  versus   and 

.  
 

Figure 8 shows the conductance 2Re [ ( ) ]cc net outal V Y P

of class E PA with finite dc-feed inductance and series 

inductance versus   when   increase from 0.0 to 1.0 

by step 0.1. When 0,   the difference of conductance 

is 0.0239 in the frequency range (0.5 1.5).   When 

1,   the difference of conductance is 0.01 in the 

frequency range (0.5 1.5).   The parameter   can 

be used to control the difference of conductance over a 

wide frequency range. 

 

 
 

Fig. 8. Conductance 2Re [ ( ) ]cc net outal V Y P versus   and 

.  

Figure 9 shows load phase angle of class E PA with 

finite dc-feed inductance and series inductance versus 

  when   increase from 0.0 to 1.0 by step 0.1. When 

0,   the difference of load phase angle is 13.42o in  

the frequency range (0.5 1.5).   When 1,   the 

difference of load phase angle is 1.65o in the frequency 

range (0.5 1.5).   The parameter   can be used to 

control the difference of load phase angle over a wide 

frequency range. 

In a word, by proper choice of the series inductance 

0 ,L  which produces a zero total variation of the 

susceptance, the conductance and the load phase angle 

are controllable over a wide frequency range. 

 

 
 

Fig. 9. Load phase angle versus   and .  
 

IV. SIMULATION AND IMPLEMENTATION 
A complete circuit schematic of class E PA with 

finite dc-feed inductance and series inductance is shown 

in Fig. 10. A 0.25μm gate length GaN HEMT with 1.25 mm 

total gate-width ( 0.254 )dsC pF  is used to design a 

Class E PA with finite dc-feed inductance and series 

inductance. The simulation of amplifier is realized by 

combing Ansys HFSS and Keysight ADS. The HFSS is 

used to simulate passive part of matching network. A 

large signal model is established to simulate the large 

signal performance of amplifier with HB simulation tool 

[16]. The total inductance 
1series para wireL L L L   , where 

paraL  is the output parasitic inductance of transistor, 

wireL  is the inductance induced by bonding wire for 

hybrid amplifier, and 1L  is the adjustive inductance.  

The parasitic output capacitance outC  of the transistor,

2,seriesL L , and the reactance 3C  constitute the double L-

type network. The inductance 
1L  and 

2L  is realized by 

the high impedance transmission line. 

Typically, class E PA achieve high efficiency when 

the output power gain at 3 dB or 4 dB compression point 
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[17, 18]. So it is necessary to suppress the second and 

third harmonic to improve efficiency. Low pass match 

was used in operation frequency and suppress the 

harmonics both in the input and output network [19, 20]. 

Shunt resistance 
1R  and capacitance 

2C  in the input 

network was used to improve the low frequency stability. 

The photo of the class E PA with finite dc-feed 

inductance and series inductance is shown in Fig. 11. 
 

 
 

Fig. 10. The circuit schematic of the class E PA with 

finite dc-feed inductance and series inductance. 

 

Bondwire

Lseries
 

 

Fig. 11. Photo of fabricated class E PA with finite dc-

feed inductance and series inductance. 

 

Figure 12 shows the measured drain efficiency 

(DE), power added efficiency (PAE), output power, and 

gain at input power (CW) at 3.1 GHz. The maximum 

PAE is 63.4% when the input power is 28 dBm. 

Figure 13 shows the measured behavior of DE, PAE 

[25], output power, and output power gain at the input 

power of 27 dBm. It can be seen that, the output power 

gain is large than 8.2 dB, while the output power is more 

than 35.2 dBm between 2.5 GHz and 3.5 GHz (33.3% 

fractional band width (FBW)). 

Figure 14 shows the simulated and the measured 

power second harmonic over the bandwidth. The 

maximum power of second harmonic in this frequency 

band is -22 dBc at 2.5 GHz and the minimum is -55 dBc 

at 3.0 GHz. Most of the second harmonics power is below 

-30 dBc. 
 

 
 

Fig. 12. Simulated and measured DE, PAE, output power 

and gain versus input power at 3.1 GHz continuous input 

signal. 
 

 
 

Fig. 13. Simulated and measured frequency dependence 

of DE, PAE, and Gain characteristics performance. 

 

 
 

Fig. 14. Simulated and measured second harmonic power. 

 

The measured performance of the proposed PA is 

compared with other state-of-the-art class E Pas. The 

results show that the proposed PA can achieve more than 
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60% DE in such high frequency as summarized in Table 

2. The amplifier shows competitive drain efficiency and 

bandwidth in higher operation frequency. Because of the 

small gate-width device applied in the present PA, the 

output power is not very large. However, this report has 

the highest operation frequency. We can acquire higher 

output power through increasing the gate-width. 

 
Table 2: Comparison of state of the art GaN PAs 

 (GHz)/FBW (%) DE (%) Pout 

2010 [21] 1.9-2.9 (42%) >63 45.8 dBm 

2011 [22] 2.15-2.5 (15%) >60 >23 dBm 

2011 [23] 0.9-2.2 (84%) >63 >10 W 

2014 [24] 2.52-2.64 (4.6%) >60 >39 dBm 

2015 [25] 1.7-2.8 (48.8%) >60.3 >19.5 W 

2016 [15] 1.4-2.7 (63.4%) >63 >39.7 dBm 

This work 2.5-3.5 (33.3%) >60 >35.2 dBm 

 

V. CONCLUSION 
The class E power amplifier with finite dc-feed 

inductance and series inductance is analyzed in time 

domain. Analytical expressions of optimum parameters 

of the load network are derived. It suggests that the 

topology can be used in higher operation frequency and 

broadband PA design with competitive efficiency. A 

GaN HEMT class E PA with finite dc-feed inductance 

and series inductance is fabricated and measured. The 

experimental data and theoretical predictions are found 

in good agreements. The proposed structure may be 

useful in the coming 5G communication systems. 
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