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Abstract ─ In this paper, the precision loss problem in 

calculation of EM wave propagation in the extreme reentry 

plasma sheath environment is analyzed. Furthermore, we 

propose a numerical calculation method with controllable 

precision to deal with this problem. The simulation 

results show the effect of computational precision loss 

on EM wave propagation in reentry plasma sheath and 

also illustrate the validity of the controllable precision 

calculation method.  

 

Index Terms ─ Controllable precision, EM wave 

propagation, numerical calculation, precision loss, reentry 

plasma sheath. 

 

I. INTRODUCTION 
It has generated increasing concern about the 

interactions of electromagnetic (EM) wave with plasma 

in recent decade years [1-6], which refers to several 

applications, such as, analysis of reentry plasma sheath, 

plasma stealth, nuclear fusion control, etc. The reentry 

plasma sheath, as a special type of plasma, has several 

distinct characteristics, such as, extreme electron density 

and time variation, which severely influence the 

communication with the reentry object and the radar 

detection of the object. The extreme parameters 

(especially for the electron density) will cause precision 

loss in calculation of EM wave propagation, further 

causing computational error or even misdirection in EM 

calculation and simulation. The extreme characteristics 

mainly occur at the head location of a plasma-covered 

object. For the electron density, it has reached 
19 310 / m

 
or even 

20 310 / m
 
at the head location in a reentry flight 

[7,8]. However, the researchers [1-3, 9-11] studying the 

interaction between EM wave and reentry plasma sheath 

mainly focus on the side or tail locations of the object, 

where the plasma is far less extreme than that at the head 

location. Certainly, due to this reason, the computational 

error in their studies is trivial and can be ignored. 

Whereas, the plasma influence with extreme parameters 

(especially for the head location of object) cannot be 

ignored. This will inevitably give rise to the precision 

loss problem. 

In our previous work [12], we have pointed out  

that the precision loss problem in calculation of EM 

wave propagation in plasma sheath lies in the limited 

numerical calculation precision of computer (usually it 

is double precision). In this paper, we will give further 

qualitative and quantitative analysis on the precision loss 

problem. Then, we propose a computing method with 

controllable precision based on python platform. By this 

method, the EM wave propagation in plasma sheath can 

be computed in a much higher precision by a controllable 

number of digits, eliminating the precision loss problem. 

In the simulation, the effect of computational precision 

loss on EM wave propagation is presented, and the 

validity of the controllable precision calculation method 

is illustrated. 

The remainder of the paper is organized as follows. 

Sec. II presents the background of EM wave propagation 

in plasma. The precision loss analysis and its solution in 

calculation of EM wave propagation in plasma sheath  

are shown in Sec. III. Section IV shows the simulation 

results. The conclusions are finally given in Sec. V. 
 

II. BACKGROUND OF EM WAVE 

PROPAGATION IN PLASMA 
A typical stratification model [4,13] for EM wave 

propagating in plasma environment is presented in Fig. 

1. As can be seen in Fig. 1, an EM plane wave (with its 

electric part labeled by iE ) is transmitted along x-axis 

into a nonuniform plasma slab. In each sub-slab (or layer), 

the plasma is thought to be uniform. The layers are 

labeled by 0 1, ,..., pl l l  from front-layer (where the EM 

wave enters into the plasma) to bottom-layer (usually 
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corresponding to the metallic surface of an object), 

respectively. The thickness of layer ml  is represented  

by 1 ,m md d  {0,1,2,..., }m p (note: d1=d0=0), and B 

denotes the background magnetic field in the plasma 

environment.  

 

 
 
Fig. 1 Stratification model of nonuniform plasma. 

 

The total electric field in layer ml  can be expressed 

as the following form: 
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where 0E  is the input electric field at location x=0, ( )m
xk  

is the complex propagation coefficient in layer ml , and 

mB  and mC  are the transmission coefficient and the 

reflection coefficient at the interface between layers 1ml   

and ml , respectively. The detailed expression of 
( )m
xk  

can be found in Appendix Section. 

There are two important parameters: the total reflection 

coefficient 0C  and the total transmission coefficient pB , 

which reflect the EM reflection and transmission properties 

of the whole plasma, respectively. These two parameters 

can be obtained by iteratively solving the equations of 

boundary conditions [4,14]: 
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For conveniently analysis in next section, the Equation 

(2) is expressed as a matrix form by: 
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where mS
 
is called scattering matrix, expressed by: 
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The iterative description of (3) containing the 

coefficients 0C
 
and pB

 
can be expressed by: 
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 m gS S , (5) 

where 
1

m p

 g mS S

 

is the cascaded scattering matrix. The 

coefficients 0C  and pB  can then be obtained by solving 

(5).  
 

III. PRECISION LOSS AND ITS SOLUTION 

IN CALCULATION OF EM WAVE 

PROPAGATION IN PLASMA SHEATH 

A. Analysis of precision loss 

The extreme plasma environment almost always 

occurs in the reentry flight of a reentry vehicle, especially 

for the head portion of the vehicle, accompanied by 

extreme plasma parameters [8]. Among those parameters 

shown in Sec. II, ( )m
xk  is a key one, since it is included in 

the exponent part of the term exp( ) . A larger ( )| |m
xk  will 

lead to a much higher rate of increase or decrease of the 

term | exp( ) | . This will produce a quasi-singular form of 

the scattering matrix mS . In detail, it is due to the coexist 

of the term ( 1)

1exp( ( ))m

x m mjk d d

   and its reverse form 

( 1)

1exp( ( ))m

x m mjk d d


 
in matrix mS  as shown in (4). 

The quasi-singular expression of (4) is adverse to the 

iterative solution of coefficients and may cause the 

precision loss. For simplifying description below, let: 

 ( 1)

( 1) 1exp( ( ))m

m x m mjk d d 

    

 and 1 ( 1)

( 1) 1exp( ( ))m

m x m mjk d d  

    . 

It is not difficult to find that the iterative calculation 

of (3) and (4) can be divided into the four basic 

operations: add, subtraction, multiplication, and division. 

For the case of extreme parameters, the precision loss is 

possible to occur in the operation of the subtraction of 

two large quantities with the same sign or approximate 

argument. Specifically, when the two large numbers are 

numerically approximate, the precision loss is highly 

probable to occur. Putting the quasi-singular expression 

of (4) into consideration, we find that the subtraction 

operations of two large numbers with numerically 

approximation occur in a high probability in the iterative 

calculation of coefficients. It should be noted that the 
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number of valid digits of a double-precision number 

(adopted by most computers) is only 16. Whereas, the 

digits of the term ( 1)| |m   
in (4) may be significantly 

larger than 16 for the extreme plasma sheath. If this case 

occurs, the subtraction of two big numbers in calculation 

of (4) will result in obvious or even huge precision loss. 

The exact estimation of the digits of ( 1)| |m  , however, 

is intractable, which relates to a complicated interaction 

of several parameters as shown in Appendix Section. As 

an available way, the numerical estimation on digits and 

on precision loss under selected reasonable parameters 

will be workable.  

Before the presentation of numerical estimation, the 

computational error of the total reflection coefficient 0C  

and that of the total transmission coefficient pB  caused 

by the precision loss should be analyzed. Based on our 

analysis, we find that the precision loss is not applied 

equally to 0C  and pB , but most of it is applied to pB . 

This can be explained by exploring the equation form of 

(5). For clear description, the Equation (5) is rewritten as 

the following form: 

 
11 12

021 22

1

0

g gp

g g

S SB

CS S

    
            

, (6) 

where 11 12 21 22,  ,  ,  g g g gS S S S
 
are the four elements of 

matrix gS . Suppose we have had the prior knowledge 

that the elements of gS

 

are large numbers. Then, one can 

find that the solution of 0C
 
relates to the division of 21gS  

by 22gS , which will generate little or trivial precision 

loss. Whereas, the solution of pB
 
refers to the add (or 

subtraction) of two large numbers 11gS
 
and 12 0gS C , 

which will generate obvious precision loss. 

 
Table 1: Calculated plasma parameters

 
for three selected 

electron densities 

Calculated 

Parameters 

Electron Density en  (m-3) 

1018 1019 1020 

(1)| |  21.87 10  
221.24 10  

745.03 10  

0C  0.19 0.18 j  0.62 0.56 j   0.92 0.22 j   

pB  
6

6

3.98 10

1.71 10 j





 


 55.24 10 j  

573.14 10 j  

Abs. Err. of 

0C  
161.00 10  0 

163.38 10  

Abs. Err. of 

pB  
154.25 10  55.24 10  

573.14 10  

 
To show the precision loss as well as the number of  

digits in a numerical view, we give an example of the 

absolute calculation errors for three selected electron 

densities as shown in Table 1. The main selected constant 

parameters in Table 1 are shown below: number of layers 

p=2, plasma thickness dp=0.1m, collision frequency 

5GHzvf  , incident frequency of EM wave 10GHzf  , 

material of floor media: titanium alloy with conductivity 
62.3 10 S/m   .  

The calculated parameters (1)| | , 0C , and pB  in 

Table 1 are computed in double precision based on  

the algorithm in Sec. II. For the true coefficients 0C
  

and pB
 
(not the calculated ones in Table 1), they are 

obtained in an analytic way that is only possible for the 

ideal plasma case with 2 layers in Table 1 but almost 

impossible for realistic case. The detailed relation between 

the electron density en
 
and the complex propagation 

coefficient 
( )m
xk

 
can be found in Appendix for interested 

readers.  

As shown in Table 1, the calculated parameters for 

the three electron densities en
 
are very different. Only the 

case for 
18 310 / men 

 
generates no or trivial calculation 

errors. Whereas, with the increase of en , the parameter 

(1)| |
 
changes quite rapidly and generates large calculation 

errors. But, coinciding with our analysis, only the 

calculation of pB
 
generates large errors but that of 0C

 
 

nearly produces no error. 
 

B. Solution of precision loss 

The precision loss in the calculation of EM wave 

propagation can be traced to the shortage of precision in 

numerical calculation of computer. The commonly used 

data representation format in most computer systems is 

double precision with 64-bit. This data format shows 

limitation when it is used to calculate the EM wave 

propagation in the extreme environment of reentry 

plasma sheath. One solution is to increase the numerical 

calculation precision. There are two ways which can be 

used to implement it. 1) increasing the float representation 

bits, such as, 128-bit, 256-bit; 2) converting to integer 

representation. Considering the complexity and availability, 

we use the second way.  

A matrix calculation technique with controllable 

precision is put forward here to deal with the precision 

loss problem. It can be found that the matrix computation 

procedure shown in Sec. II can be decomposed into the 

four fundamental arithmetic operations of the elements 

of the matrixes. To carry out the high-precision 

calculation, each element of the matrixes is expressed by 

an integer form (including real part and imaginary part) 

with fixed digitals. Then, the whole EM wave calculations 

can be implemented in integer arithmetic operations.  
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For any a complex element number real imagj    , its 

integer form can be expressed by: 

 
INT 10 10n n

real imagj         
, (7) 

where ‘    ’ denotes the ‘round down’ operation, and n 

is the fixed digital number. The add or subtraction of two 

numbers 
(1)

 
and 

(2)
 
is simple and not shown here. For 

the multiplication of the two numbers, it is implemented 

by: 

 
(1) (2)

(1) (2) INT INTmul( , )  
10n

def
 

 


, (8) 

where ‘mul( ) ’ denotes the integer multiplication operation, 

and 
(1)

INT
 
and 

(2)

INT
 
are the integer expressions of the 

numbers 
(1)

 
and 

(2) , respectively. The division of the 

two numbers is implemented by: 

 
(1) (2)*

(1) (2) INT INT

2
(2)

INT

10
div( , )  

n

def
 

 


 
, (9) 

where ‘ ( )div  ’ denotes the integer division of 
(1)  by

 
(2) , 

and 
(2)*

INT  is the conjugation of 
(2)

INT . 

Complying with the above operations, one can 

calculate the total reflection and transmission coefficients 

0C  and pB  in a high accuracy. Clearly, the more digitals 

n is set, the more accuracy in calculation one gains. Here, 

we suggest this technique is implemented by Python, in 

which the setting of digital numbers has no limit.  

Finally, we talk about the computational complexity 

of the algorithm. The stratification algorithm shown in 

Sec. II has the complexity of ( )fO pN
 
(with p: number of 

layers, and Nf: samples of incident frequency for analysis). 

When the controllable-precision method is put into 

consideration, the complexity becomes to be ( )fO npN , 

where n is the digital number. 

 

IV. SIMULATIONS 
The EM wave propagation in reentry plasma sheath 

with extreme parameters is simulated by both the 

commonly used double precision and the proposed 

controllable-precision method. The Python (Version 2.7.6) 

is utilized to implement the calculation with controllable 

precision. The digit number for controllable-precision 

calculation is set as n=80 (referring to Table 1). The 

incident frequency f ranges from 1MHz to 30GHz (creating 

50 frequency samples). The collision frequency of plasma 

is set to be a constant 5GHz. The number of plasma layer 

is set as p=13. 

Figure 2 shows the simulation results of magnitudes 

of total transmission coefficient pB . Figure 2 (a) and 

Fig. 2 (c) are the results calculated by double precision,  

and Fig. 2 (b) and Fig. 2 (d) are the results calculated by 

controllable-precision method. In Fig. 2 (a) and Fig. 2 (b), 

the electron density is set to be 
19 310 / m . In Fig. 2 (c) 

and Fig. 2 (d), the electron density en  ranges from 

18 310 / m  to 
20 310 / m , generating 50 samples of en . It 

should be noted that the setting of parameters above is 

reasonable and complies with the realistic case. The 

results of total reflection coefficient 0C  are not presented 

here due to the weaker comparison effect. 

It can be found from Fig. 2 (a) that the precision 

losses or calculation errors by double precision are 

prevalent for most of the tested incident frequency f (see 

the error regions), whereas the correct points or regions 

occupy a small range of f. This wrong result is severe 

which even gives a misleading wrong trend. Further 

considering the variation of electron density en  in Fig. 

2 (c), one can find clearly that the precision loss changes 

toward larger and wider directions with the increase of

en . Whereas, the controllable-precision method shows 

accurate results for all the tested incident frequencies f 

and electron densities en
 
as shown in Figs. 2 (b) and (d).  

For the time consumption, it is 0.24s for the 

controllable-precision method (Fig. 2 (b)) and 0.11s for 

the commonly used double precision case (Fig. 2 (a)) for 

the 1-D figures. For the 2-D figures, it is 10.91s for the 

controllable-precision method (Fig. 2 (d)) and 2.67s for 

the double precision case (Fig. 2 (c)). Based on the 

complexity analysis in Sec. III-B, the complexity of the 

algorithm combined by the controllable-precision method 

is a multiple of that of the original algorithm with double 

precision. According to the simulation result and 

theoretical analysis, this multiple is estimated to be in the 

range 0.02n~0.06n (n is the digital number). Although 

there is some time-consuming increase of the controllable-

precision method, it is acceptable compared to its gain in 

precision improvement.  

 

 
 (a) 
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 (b) 

 
 (c) 

 
 (d) 
 

Fig. 2. Magnitude of transmission coefficient | |pB  

calculated by double-precision method and that by 

controllable-precision method. (a) | |pB
 
vs. f by double 

precision with fixing 
19 310 /en m , (b) | |pB

 
vs. f by 

controllable-precision method with fixing 
19 310 /en m , 

(c) | |pB
 
vs. f and en

 
by double precision, and (d) | |pB

 
vs. f and en

 
by controllable-precision method. 

V. CONCLUSION 
The precision loss problem in calculation of EM 

wave propagating in reentry plasma sheath is analyzed 

in this paper, and then a solution by numerical 

calculation with controllable precision is put forward to 

deal with it. The simulation shows the effect of the 

precision loss clearly. Also, the proposed controllable-

precision calculation method is illustrated to be effective 

in solving the precision loss problem. 
 

APPENDIX 

Relation of propagation coefficient ( )m
xk , relative 

complex permittivity 
( )m
r , and electron density en  [4,15]. 

The propagation coefficient ( )m
xk

 
of the nonuniform 

plasma in layer ml  is an important parameter related to 

the EM wave propagation in plasma as described in (1). 
( )m
xk

 
can be expressed by: 

 ( ) ( )m m
x rk

c


 ,    {0,1,2,..., }m p , (A1) 

where c is the light speed in vacuum, 2 f   is the 

radian frequency of incident EM wave, and 
( )m
r  

is the 

relative complex permittivity. 
( )m
r  

is related to the 

electric characteristics of a medium. For the plasma 

medium with layer ml  
as shown in Fig. 1, 

( )m
r  can be 

expressed by: 

 

2 2
,( )

2 2

2 2
,

/
1

/
1

1 / /

p mm
r

m ce

p m m

v
j

jv

 


 

   

 

 
 

, 

 {0,1,2,..., }m p , (A2) 

where ,p m  and mv  are the plasma frequency and the 

collision frequency in m-th layer, respectively, ce  is 

the cyclotron frequency of background magnetic field, 

and all the above symbols are with unit of rad/s. The 

plasma frequency ,p m
 
is expressed by: 

 

2
,

,
0

e m
p m

e

n e

m



 ,    {0,1,2,..., }m p , (A3) 

where ,e mn  is the electronic density in plasma layer ml , 

0  is the permittivity of vacuum, e  and 
em  are the 

electronic quantity and the mass of an electron, 

respectively. 

All the detailed deduction of the above equations 

(A1~A3) can be found from [15].  
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