
Using MATLAB’s Parallel Processing Toolbox for Multi-CPU and

Multi-GPU Accelerated FDTD Simulations

Alec J. Weiss 1, Atef Z. Elsherbeni 1, Veysel Demir 2, and Mohammed F. Hadi 1

1 Department of Electrical Engineering

Colorado School of Mines, Golden, Colorado 80401, United States of America

aweiss@mines.edu, aelsherb@mines.edu, mhadi@mines.edu

2 Department of Electrical Engineering

Northern Illinois University, DeKalb, Illinois 60115, United States of America

vdemir@niu.edu

Abstract ─ MATLAB is a good testbed for prototyping

new FDTD techniques as it provides quick programming,

debugging and visualization capabilities compared to

lower level languages such as C or FORTRAN. However,

the major disadvantage of using MATLAB is its slow

execution. For faster simulations, one should use other

programming languages like Fortran or C with CUDA

when utilizing graphics processing units. Development

of simulation codes using these other programming

languages is not as easy as when using MATLAB. Thus

the main objective of this paper is to investigate ways to

increase the throughput of a fully functional finite

difference time domain method coded in MATLAB to

be able to simulate practical problems with visualization

capabilities in reasonable time. We present simple ways

to improve the efficiency of MATLAB simulations using

the parallel toolbox along with the multi-core central

processing units (CPUs) or the multiple graphics

processing units (GPUs). Native and simple MATLAB

constructs with no external dependencies or libraries and

no expensive or complicated hardware acceleration units

are used in the present development.

Index Terms ─ FDTD, MATLAB, multi-cores, multi-

GPUs, parallel computing.

I. INTRODUCTION
The finite difference time domain (FDTD) method

provides wide bandwidth simulations using time domain

techniques to provide accurate, full wave electromagnetic

simulations. The equations for the updating of field

components can be solved through the use of finite

difference approximations of Maxwell’s equations. This

method is inherently parallel as the update of field

components of each cell within the simulation grid relies

on field values all of which have been calculated at

previous time and are within the vicinity of the cell. In

their final form, the ease of parallelization becomes

apparent. As an example, consider the updating equation

for the x component the electric field:

𝐸𝑥
𝑛+1 = 𝐶𝑒𝑥𝑒(𝑖, 𝑗, 𝑘) × 𝐸𝑥

𝑛(𝑖, 𝑗, 𝑘)

+𝐶𝑒𝑥ℎ𝑧(𝑖, 𝑗, 𝑘) × (𝐻𝑧

𝑛+
1
2(𝑖, 𝑗, 𝑘) − 𝐻𝑧

𝑛+
1
2(𝑖, 𝑗 − 1, 𝑘))

+𝐶𝑒𝑥ℎ𝑦(𝑖, 𝑗, 𝑘) × (𝐻𝑦

𝑛+
1
2(𝑖, 𝑗, 𝑘) − 𝐻𝑦

𝑛+
1
2(𝑖, 𝑗, 𝑘 − 1))

+𝐶𝑒𝑥𝑗(𝑖, 𝑗, 𝑘) × 𝐽
𝑖𝑥

𝑛+
1
2(𝑖, 𝑗, 𝑘),

, (1)

which is given from [1]. In this equation, we update e-

fields using h-fields, currents, the previous value of the

e-field, and a set of coefficients denoted with the letter

‘C’. This equation demonstrates how each component

is only updated based on previously calculated values,

making it a prime candidate for relatively easy

parallelization.

While most previous work focuses on parallelization

of FDTD method in lower level programming languages

using various software and hardware acceleration

techniques such as in [2]–[6] (including extensive

research on GPU acceleration), only a small number have

researched parallelization using simpler languages such

as MATLAB [7], [8]. This paper explores the use of

MATLAB’s parallel computing toolbox to extend the

FDTD computation onto multiple cores of a central

processing unit (CPU). The increased throughput of the

simulation time observed on various systems using

parallelization across multiple CPU cores is investigated.

The research is then extended to look at the effectiveness

of utilizing multiple graphics processing units (GPUs)

for the same MATLAB based FDTD solver.

II. PARALLEL CPU COMPUTATION USING

MATLAB
The MATLAB environment has two types of

parallelization that can be utilized. These two types

ACES JOURNAL, Vol. 34, No. 5, May 2019

1054-4887 © ACES

Submitted On: April 29, 2019
Accepted On: May 31, 2019

724

are built-in parallelization, also known as implicit

parallelization, and parallelism using MATLAB workers,

also known as explicit parallelization [9], [10].

A. Implicit parallelization with MATLAB

Implicit parallelization in MATLAB takes place

without any extra work required from the programmer.

When performing operations such as elementwise

multiplication, as done in many FDTD codes, MATLAB

automatically will parallelize this to use multiple cores

on a CPU. This will occur any time MATLAB finds a

parallelizable operation of ample size that it thinks could

be sped up by use of multiple cores. This provides speed

increases for large and computationally dense problems.

Unfortunately, this method gives the user no control over

the parallelization of the code. It also is limited to a non-

distributed machine and is unable to take advantage of

capabilities of the GPU hardware. These locations where

implicit parallelization is limited are places where explicit

parallelization can be used better speed increases.

B. Explicit parallelization with MATLAB

Contrary to MATLAB’s implicit parallelization,

explicit parallelization does require extra work from

the programmer to tell the system how to parallelize

the code. This is done by first launching worker threads

using the parpool() command. The number of workers to

launch can be specified by putting a number as the first

argument to this function. Once a parallel pool has been

started in MATLAB, the single program multiple data

(SPMD) keyword can be used to directly address each of

the workers in the parallel pool. Once this keyword

has been used, each of the workers can be individually

addressed and communicate with one another using

constructs similar to the message passing interface (MPI).

We can access the index of each of the cores using the

labindex variable and get the total number of cores in the

pool with the numlabs variable.

III. EXPLICIT PARALLELIZATION OF

MATLAB BASED FDTD SOLVER FOR CPUs
The code created and tested in this paper is an edited

version of the code generated from [1]. Because of this,

the FDTD solver is written purely in MATLAB and has

many capabilities such as convolutional perfectly matched

layer (CPML) boundary conditions, the ability to set

material properties, and the capability to add lumped

elements, sources, and test ports for full S-parameter

simulations. Each of these capabilities is present in the

final code providing a simulation environment that can

be utilized for real world experiments. However at the

current stage, it does not provide the near to far field

capability.

Before parallelization could begin, some minor

changes were required to be performed on the original

code. This included changing all scripts (MATLAB m

files) that will be called within the SPMD environment

to be changed to functions. This is something that is

required by MATLAB for transparency but also makes

profiling and debugging in the SPMD environment

easier and more informative. All functions used within

the time marching loop along with some for data

distribution and gathering fit into this scenario.

A. Distribution of domain

For the parallelization of the FDTD algorithm, the

FDTD computational domain was split evenly amongst

each of the cores. To minimize communication time and

programming difficulty, the domain is only split along

the z-axis. Distribution across only the z-axis is optimal

because it reduces the number of block communications

to a maximum of 2 whereas distribution in x-, y-, and

z-axes would require up to 6 per core. The z-axis

was chosen to decrease the data transfer time. Like all

programming languages, MATLAB matrices are stored

linearly in memory. In MATLAB arrays are accessed

consecutively in memory first in x, then in y, and then

in the z direction. This means that data in an xy plane

is all accessed consecutively from memory therefore

communicating data in an xy plane across the z direction

is more efficient than communicating in other directions.

A visualization of the subdomains can be seen in Fig. 1.

Fig. 1. Distribution of FDTD domain for a microstrip

filter problem. The yellow planes represent the boundaries

across which the domain is split.

The distribution of these subdomains in MATLAB

is performed by first generating a list of z indices that

each core must update. The problem domains are split up

into subdomains evenly in the z direction. Each core

will then calculate the E- and H-fields for one of these

subdomains. These arrays of indices are then prepended

or appended to provide memory for the transfer regions

which will be discussed in a later section. Using these

indices, the field components Ex, Ey, Ez, Hx, Hy, Hz and

all of their updating coefficient arrays are distributed

across multiple cores within our SPMD environment.

WEISS, ELSHERBENI, DEMIR, HADI: MULTI-CPU AND MULTI-GPU ACCELERATED FDTD SIMULATIONS 725

To ensure that the smallest amount of data is

transferred across each of these boundaries, the original

simulation space of this problem from [1] is rotated such

that the largest dimension of the domain is along the

z-axis. This rotation ensures that the boundaries along

which the domain is split are the smallest possible. This

is important because data must be communicated across

these boundaries.

B. Distribution of sources, samples, and lumped

elements

With the domain split across cores, the sources,

sampling locations, and lumped elements in the

simulation must also be distributed.

The lumped elements are simply contained as

coefficients in the FDTD as formulated in [1]. This

means that they are precalculated before the simulation

time marching begins and are distributed with the rest of

the domain. Because of this no further work is required

to distribute them past the distribution of the domain

coefficients as described in the previous section.

The sources and sampling locations are not

precalculated as part of the updating coefficients. The

sources are added as currents described in our updating

equations (e.g., 𝐽
𝑖𝑥

𝑛+
1

2 for 𝐸𝑥
𝑛). The sampled values are

calculated from averages of our field components at

given indices within the grid. Two steps must be taken to

distribute the sources and samples. These steps are first

to flag the core or cores on which the source or sample

lies. This is done by comparing the z location of the

source or sample to the 𝑧𝑖𝑑𝑥 values on each of the cores.

If at least part of the source or sample resides on that core

a flag is set. Each core which contains part of this source

or sample then has the currents that it must update

transferred to it. Once we have the required updating data

on each of the cores containing parts of the sources or

samples, each of the indices of these sources and samples

are mapped to the local indices of the local matrices

holding the field values on each core. This mapping

allows these sources and samples to be updated in the

same manner they typically are on a single core system.

Once the end of the time marching loop is reached,

one final step must be taken to gather the sampled

domain parameters back to the host CPU from which

post-processing steps can be performed in the same way

as a non-multicore implementation. For each sample,

this is performed by looping through each core, checking

if they have the flag set of containing that specific

sample, and if they have copied the sampled data back to

a single core. Once the data has been gathered from each

core that contained part of the sample, the total sample

can be reconstructed. After gathering and reconstruction,

these samples can be postprocessed in the same way as

data that was created from a single core implementation.

C. Transfer of domain boundaries

As previously mentioned, the domain is split evenly

among cores along the z-axis. For continuity of the

domain, field values must be transferred across these

boundaries. For this implementation an approach like

that implemented in [11] was taken. In this

communication scheme a single xy-plane slice of the H-

fields would be transferred up to the core containing the

next section of the domain, and a single xy-plane of

the E-fields would be transferred down providing full

continuity across the boundary.

Because our domain is only split along the z-axis,

the transfers are only required for our Ex, Ey, Hx, and

Hy components. A figure of this transfer can be seen

in Fig. 2. This highlights the H fields that must be

transferred up and the E fields that must be transferred

down. Taking a look specifically at one of the field

updates we can see why this transfer is needed. In order

to update the field Ex(i,j,k+1) we must first calculate

the finite difference approximation from the fields

Hz(i,j,k+1), Hz(i,j-1,k+1), Hy(i,j,k+1), and Hy(i,j,k).

Looking at the figure, it can be seen that all of the

required fields are available on core 2 except Hy(i,j,k)

which must be transferred from core 1. This same concept

applies when updating our Ey, Hx, and Hy fields.

Fig. 2. Figure showing the transfer of E- and H-fields

across a Z-axis split boundary. The red line denotes where

the domain is split. H-field components that need to be

transferred are in yellow and E-fields requiring transfer

are in orange.

Each of these transfers in MATLAB can be

performed using the labSend() and labReceive()

commands. The syntax of these commands is very similar

to mpiSend() and mpiRecv() commands when using MPI.

Each of these transferred xy planes are held in memory

buffers appended to the beginning and end of the e-field

and h-field data on each core. It is also important to note

that the field arrays were distributed such that the H-

fields transferred up and E-fields transferred down were

stored on the receiving core at the beginning and end of

the field arrays respectively. This means that the original

single core updating equations could be utilized with

ACES JOURNAL, Vol. 34, No. 5, May 2019726

only minor edits to work with the new multi-CPU code.

IV. EXTENSION TO MULTI-GPU
Up to this point, we have discussed running

FDTD simulation on multiple CPUs. Luckily MATLAB

provides a simple interface to extend this multi-CPU

code to multiple GPUs.

A. Utilizing multiple GPUs in MATLAB

Running code on a single GPU in MATLAB simply

requires declaring a variable (scalar value or matrix)

within the gpuArray() command. Once that has been

completed, all arithmetic operations and even most built-

in MATLAB commands performed on the data will be

done on the GPU. For example declaring two variables

a=gpuArray(magic(100)); and b=gpuArray(magic(100));

and performing elementwise multiplication c=a.*b will

accelerate the elementwise multiplication using the GPU.

This same process can then be extended to multiple GPUs

by declaring gpuArray() variables within an SPMD loop.

When a parallel pool is created with parpool() MATLAB

automatically maps each GPU device to a worker in the

parallel pool (if there is enough hardware available).

From here all GPU commands run within a SPMD loop

from a parallel pool with labindex n will be run on the

corresponding GPU n.

B. Extending FDTD simulation to multiple GPUs

Because the multi-CPU code was built to run on any

number of cores n, the extension to using any given

number of GPUs was simple. First a parallel pool is

created with the number of workers equal to the number

of GPUs we want to run on. If we were to say run on

4 GPUs, this would be parpool(4). Once the parallel

pool has started, each of the 4 parallel workers will

automatically be mapped to a unique GPU device. This

unique mapping gives us direct control over each of the

GPUs. A figure to describe the mapping from the FDTD

grid to the GPUs and then to the threads can be seen in

Fig. 3.

Fig. 3. Figure showing the mapping of our FDTD grid

to n GPUs, and the mapping of those n GPUs to their

corresponding parallel pool workers

With each of our workers mapped to a GPU, each of

the field components and their updating coefficients, any

arrays for updating sources, and any sampling arrays that

typically reside on a CPU core are transferred to the GPU

using a command such as Hx=gpuArray(Hx); because

the typical CPU arrays are simply overwritten by our GPU

arrays, no change in the code for updating or sampling is

required. Once the simulation has finished, the code to

gather the data also can stay the same. This is a result of

the fact that MATLABs gather() command is overloaded

to work both with distributed data on the CPU and on the

GPU.

V. SIMULATION RESULTS
With the multicore code completed, correct operation

was ensured by directly comparing voltage, current, and

S-Parameter results of a microstrip filter problem seen in

Fig. 1 (as first described on pages 171-177 in [1]) from

the multi-CPU and multi-GPU codes to a verified single

CPU code. This problem proved the simulation capability

and correct operation of the new multi-CPU code. The

comparison of the multi-GPU/CPU results can be seen

in Fig. 4.

Fig. 4. Comparison of filter results obtained using a

single CPU, a multi-CPU, and a multi-GPU FDTD

implementation. This simulation was performed with

about 1.4 million cells and 3000 time steps.

For the throughput testing of the codes, the air gap

between the filter and the CPML region was incrementally

increased evenly in all dimensions. This was done to

prevent from impartially favoring grids with very large

z dimensions, but with very small x and y dimensions.

Increasing just the z dimension would provide the

optimal throughput because it would provide the highest

possible compute to data transfer ratio. Simulations with

extremely large z dimensions are very uncommon and

unrealistic for most simulation scenarios so they were

avoided in the results shown here.

WEISS, ELSHERBENI, DEMIR, HADI: MULTI-CPU AND MULTI-GPU ACCELERATED FDTD SIMULATIONS 727

A. Multi-CPU results

The throughput of the multi-CPU code was timed on

various computers with a varying number of cores. Tests

were also performed to look at increases in throughput

when moving from a single physical processor to 2

processors on the same motherboard, and when moving

from physical cores to logical (hyperthreaded) cores.

This timing was also performed using the non-multicore

code and compared. The results from each of these

computers can be seen in Figs. 5 through 7.

Fig. 5. Throughput in million cells per second (MCPS)

vs grid size with various core counts when running

an FDTD filter simulation. These simulations were

performed on two Intel Xeon E5-2680 CPUs with 20MB

of cache and 256GB of RAM. Each processor has 8

physical cores for a total of 16 physical cores and 32

virtual cores.

Fig. 6. Throughput in million cells per second (MCPS)

vs grid size with various core counts when running

an FDTD filter simulation. These simulations were

performed on an Intel AMD Ryzen 2990WX and 128GB

of RAM. This system has 32 physical cores on a single

processor with hyperthreading for a total of 64 logical

cores.

Fig. 7. Throughput in million cells per second (MCPS)

vs grid size with various core counts when running

an FDTD filter simulation. These simulations were

performed on an Intel i7-5280 with 15MB of cache and

32GB of RAM. This system has 6 physical cores on a

single processor with hyperthreading for a total of 12

logical cores.

When comparing the throughput of a single core

without using SPMD (i.e., the original non-multicore

code), it can be noticed that on every machine the non-

multicore code outperformed the multicore code when

using a single core. Again, this is due to the implicit

parallelization MATLAB performs. Once the multicore

code begins utilizing more than a single core, the benefits

of explicit parallelization in MATLAB quickly surpass

the throughput of implicit parallelization. The results of

the speedup can be seen in Table 1 when the domain size

is 20 million cells.

It should also be noticed that on each system there

exists a region of higher throughputs when the grid size

is sufficiently small. The size of the grid that this bump

exists at is relative to the size of the system cache. This

is shown clearly on the systems with multiple processors.

The length of the bump can clearly be seen to extend

when moving from utilizing a single processor to

multiple processors (e.g., in Fig. 6 when moving from 8

cores to greater than 8 cores).

The final important trend to be observed is how the

throughput is affected when a system moves from using

only physical cores to using both physical and logical

cores. Once the requested core count extends past the

number of physical cores the system begins using logical

hyperthreaded cores. Because this requires a lot of

resource sharing within a core, in most cases we see little

or no speedup by adding logical cores. The only case

where this does not hold true is for the system used in

Fig. 4 where substantial gains can be seen by utilizing

both physical and logical cores.

ACES JOURNAL, Vol. 34, No. 5, May 2019728

Table 1: Speedups of a multicore implementation for

various processors with SPMD over a standard single

core MATLAB implementation

No. of Cores

(Physical /

Logical)

i7-5280

(6/12)

Xeon

E5-2680

(16/32)

Ryzen

2990WX

(32/64)

1 0.85 0.86 0.83

2 1.52 1.59 1.44

4 2.54 2.54 2.38

6 3.03 3.32 3.11

8 3.33 3.96 3.91

12 3.57 4.66 4.94

16 N/A 4.51 5.46

32 N/A 4.54 5.83

48 N/A N/A 5.79

64 N/A N/A 5.57

B. Multi-GPU results

The same code was then run on two computers with

two different GPUs configurations. The first run was on

a system with 2 discrete RTX 2080 GPUs and the second

was on a system with 4 Titan-Z GPUs with each PCIe

slot containing 2 GPUs. These results can be seen in Fig.

8 and Fig. 9.

As expected, GPU results are an order of magnitude

faster than their CPU counterpart. The topic of single

GPU acceleration of FDTD with MATLAB was described

in depth in [7]. It can be seen from the current multi-GPU

results that for low cell counts, the addition of multiple

GPUs provides little to no speedup regardless of the

system or how many GPUs are added. It is worth noting

though that while it does not provide an increased

throughput, it also does not seem to slow the simulation

down. This similar throughput is caused by a low

computation to data transfer time. It is worth noting

also that compared to the CPU implementation, the

data transfer between GPUs is very slow in MATLAB

because data transfer between GPUs is done through the

host. As we move to larger grid sizes, we can see that the

larger number of GPUs provides a great increase in

throughput over lower numbers of GPUs. Because of

this, using multiple GPUs in almost all scenarios would

be beneficial.

Each GPU throughput typically dropped a relatively

drastic amount as grid sizes were increased. The exact

cause of this while using MATLAB is unknown but it

can be seen that this effect can be moved to much larger

grid sizes by increasing the number of GPUs. This

behavior was not observed while performing FDTD

simulations using C/CUDA development [2]. When the

FDTD formulation in [1] is programmed using C/CUDA

for a single GPU, the performance on the RTX2080

GPU is on the order of 4 billion cells per second as

demonstrated using the CEMS package [12].

Fig. 8. Throughput in million cells per second (MCPS)

vs. grid size for a FDTD filter problem on 2 RTX-2080

GPUs. Each of the 2 GPUs has 8GB of memory.

Fig. 9. Throughput in million cells per second (MCPS)

vs. grid size for a FDTD filter problem on 4 Titan-Z

GPUs. Each of the 4 GPUs has 6GB of memory.

VI. CONCLUSION
This paper described some of the methods used

for developing a multi-CPU and multi-GPU FDTD

simulation code using explicit MATLAB parallelization.

After running on multiple computers, it was shown that

utilizing explicit parallelization on CPUs always provided

speed increases in the FDTD code over using MATLAB’s

built-in implicit parallelization. In some cases, speedups

of 5x were attained by utilizing explicit parallelization.

It was also shown that while parallelizing to physical

cores on a system provided speed increases, extending

this into hyperthreaded cores provided little to no benefit

and in some cases can even decrease throughput.

With the multi-GPU implementation we saw similar or

increased performance of that on a single GPU.

It is expected that the implementation of a similar

solver in a lower level language such as C or FORTRAN

would drastically increase the throughput and efficiency

WEISS, ELSHERBENI, DEMIR, HADI: MULTI-CPU AND MULTI-GPU ACCELERATED FDTD SIMULATIONS 729

of moving to multiple devices. The use of exclusively

MATLAB here though shows that relatively easy edits

made to an FDTD solver in a higher level language can

provide reasonable speedups over a single GPU or CPU

implementation.

ACKNOWLEDGEMENT
This work was partially supported by a gift from

Futurewei Technologies, Inc. to ARC Research Group at

Colorado School of Mines.

REFERENCES
[1] A. Z. Elsherbeni and V. Demir, The Finite-

Difference Time-Domain Method for Electromag-

netics with MATLAB® Simulations. 2nd edition,

Edison, NJ: Scitech Publishing, 2015.

[2] M. J. Inman, A. Z. Elsherbeni, J. G. Maloney, and

B. N. Baker, “GPU based FDTD solver with

CPML boundaries,” in 2007 IEEE Antennas and

Propagation Society International Symposium, pp.

5255-5258, 2007.

[3] K. Hayakawa and R. Yamano, “Multi-core FPGA

execution for electromagnetic simulation by

FDTD,” in 2015 2nd International Conference on

Information Science and Control Engineering, pp.

829-833, 2015.

[4] X.-M. Guo, Q.-X. Guo, W. Zhao, and W. Yu,

“Parallel FDTD simulation using NUMA accel-

eration technique,” Progress In Electromagnetics

Research Letters, vol. 28, pp. 1-8, 2012.

[5] T. Nagaoka and S. Watanabe, “Multi-GPU

accelerated three-dimensional FDTD method for

electromagnetic simulation,” in 2011 Annual

International Conference of the IEEE Engineering

in Medicine and Biology Society, pp. 401-404,

2011.

[6] M. R. Zunoubi, J. Payne, and M. Knight, “FDTD

multi-GPU implementation of Maxwell’s equations

in dispersive media,” presented at the Optical

Interactions with Tissue and Cells XXII, vol. 7897,

p. 78971S, 2011.

[7] J. E. Diener and A. Z. Elsherbeni, “FDTD

acceleration using MATLAB parallel computing

toolbox and GPU,” vol. 32, p. 6, 2017.

[8] W. Shao and W. McCollough, “Multiple-GPU-

based frequency-dependent finite-difference time

domain formulation using MATLAB parallel

computing toolbox,” Progress In Electromagnetics

Research M, vol. 60, pp. 93-100, 2017.

[9] “MATLAB multicore,” [Online]. Available: https://

www.mathworks.com/discovery/matlab-multicore.

html. [Accessed: 10-Jan-2019].

[10] “Parallel MATLAB: Multiple processors and

multiple cores,” [Online]. Available: https://www.

mathworks.com/company/newsletters/articles/paral

lel-matlab-multiple-processors-and-multiple-cores.

html. [Accessed: 10-Jan-2019].

[11] P. F. Baumeister, T. Hater, J. Kraus, D. Pleiter,

and P. Wahl, “A performance model for GPU-

accelerated FDTD applications,” in 2015 IEEE

22nd International Conference on High Perfor-

mance Computing (HiPC), pp. 185-193, 2015.

[12] V. Demir and A. Elsherbeni, Computational

Electromagnetics Simulator (CEMS) Software

Package. 2010.

ACES JOURNAL, Vol. 34, No. 5, May 2019730

	ACES May 2019 all with numbers.pdf
	09_ACES_Journal_20170526_SL_AZE header.pdf
	I. INTRODUCTION
	II. SIX-PORT NETWORK DESIGN
	The layout of the power divider with equal power division and 0 phase difference (in-phase) between its output ports that used in the construction of the six-port network and its fabricated prototype are depicted in the respective Figs. 3 and 4. The ...

	III. THE FABRICATED SIX-PORT NETWORK AND ITS PERFORMANCE
	IV. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

