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Abstract ─ MATLAB is a good testbed for prototyping 

new FDTD techniques as it provides quick programming, 

debugging and visualization capabilities compared to 

lower level languages such as C or FORTRAN. However, 

the major disadvantage of using MATLAB is its slow 

execution. For faster simulations, one should use other 

programming languages like Fortran or C with CUDA 

when utilizing graphics processing units. Development 

of simulation codes using these other programming 

languages is not as easy as when using MATLAB. Thus 

the main objective of this paper is to investigate ways to 

increase the throughput of a fully functional finite 

difference time domain method coded in MATLAB to 

be able to simulate practical problems with visualization 

capabilities in reasonable time. We present simple ways 

to improve the efficiency of MATLAB simulations using 

the parallel toolbox along with the multi-core central 

processing units (CPUs) or the multiple graphics 

processing units (GPUs). Native and simple MATLAB 

constructs with no external dependencies or libraries and 

no expensive or complicated hardware acceleration units 

are used in the present development. 

Index Terms ─ FDTD, MATLAB, multi-cores, multi-

GPUs, parallel computing. 

I. INTRODUCTION
The finite difference time domain (FDTD) method 

provides wide bandwidth simulations using time domain 

techniques to provide accurate, full wave electromagnetic 

simulations. The equations for the updating of field 

components can be solved through the use of finite 

difference approximations of Maxwell’s equations. This 

method is inherently parallel as the update of field 

components of each cell within the simulation grid relies 

on field values all of which have been calculated at 

previous time and are within the vicinity of the cell. In 

their final form, the ease of parallelization becomes 

apparent. As an example, consider the updating equation 

for the x component the electric field: 

𝐸𝑥
𝑛+1 =  𝐶𝑒𝑥𝑒(𝑖, 𝑗, 𝑘) × 𝐸𝑥

𝑛(𝑖, 𝑗, 𝑘)

+𝐶𝑒𝑥ℎ𝑧(𝑖, 𝑗, 𝑘) × (𝐻𝑧

𝑛+
1
2(𝑖, 𝑗, 𝑘) − 𝐻𝑧

𝑛+
1
2(𝑖, 𝑗 − 1, 𝑘))

+𝐶𝑒𝑥ℎ𝑦(𝑖, 𝑗, 𝑘) × (𝐻𝑦

𝑛+
1
2(𝑖, 𝑗, 𝑘) − 𝐻𝑦

𝑛+
1
2(𝑖, 𝑗, 𝑘 − 1))

+𝐶𝑒𝑥𝑗(𝑖, 𝑗, 𝑘) × 𝐽
𝑖𝑥

𝑛+
1
2(𝑖, 𝑗, 𝑘),

, (1) 

which is given from [1]. In this equation, we update e-

fields using h-fields, currents, the previous value of the 

e-field, and a set of coefficients denoted with the letter

‘C’. This equation demonstrates how each component

is only updated based on previously calculated values,

making it a prime candidate for relatively easy

parallelization.

While most previous work focuses on parallelization 

of FDTD method in lower level programming languages 

using various software and hardware acceleration 

techniques such as in [2]–[6] (including extensive 

research on GPU acceleration), only a small number have 

researched parallelization using simpler languages such 

as MATLAB [7], [8]. This paper explores the use of 

MATLAB’s parallel computing toolbox to extend the 

FDTD computation onto multiple cores of a central 

processing unit (CPU). The increased throughput of the 

simulation time observed on various systems using 

parallelization across multiple CPU cores is investigated. 

The research is then extended to look at the effectiveness 

of utilizing multiple graphics processing units (GPUs) 

for the same MATLAB based FDTD solver. 

II. PARALLEL CPU COMPUTATION USING

MATLAB 
The MATLAB environment has two types of 

parallelization that can be utilized. These two types 
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are built-in parallelization, also known as implicit 

parallelization, and parallelism using MATLAB workers, 

also known as explicit parallelization [9], [10]. 

A. Implicit parallelization with MATLAB

Implicit parallelization in MATLAB takes place

without any extra work required from the programmer. 

When performing operations such as elementwise 

multiplication, as done in many FDTD codes, MATLAB 

automatically will parallelize this to use multiple cores 

on a CPU. This will occur any time MATLAB finds a 

parallelizable operation of ample size that it thinks could 

be sped up by use of multiple cores. This provides speed 

increases for large and computationally dense problems. 

Unfortunately, this method gives the user no control over 

the parallelization of the code. It also is limited to a non-

distributed machine and is unable to take advantage of 

capabilities of the GPU hardware. These locations where 

implicit parallelization is limited are places where explicit 

parallelization can be used better speed increases. 

B. Explicit parallelization with MATLAB

Contrary to MATLAB’s implicit parallelization,

explicit parallelization does require extra work from 

the programmer to tell the system how to parallelize 

the code. This is done by first launching worker threads 

using the parpool() command. The number of workers to 

launch can be specified by putting a number as the first 

argument to this function. Once a parallel pool has been 

started in MATLAB, the single program multiple data 

(SPMD) keyword can be used to directly address each of 

the workers in the parallel pool. Once this keyword 

has been used, each of the workers can be individually 

addressed and communicate with one another using 

constructs similar to the message passing interface (MPI). 

We can access the index of each of the cores using the 

labindex variable and get the total number of cores in the 

pool with the numlabs variable. 

III. EXPLICIT PARALLELIZATION OF

MATLAB BASED FDTD SOLVER FOR CPUs 
The code created and tested in this paper is an edited 

version of the code generated from [1]. Because of this, 

the FDTD solver is written purely in MATLAB and has 

many capabilities such as convolutional perfectly matched 

layer (CPML) boundary conditions, the ability to set 

material properties, and the capability to add lumped 

elements, sources, and test ports for full S-parameter 

simulations. Each of these capabilities is present in the 

final code providing a simulation environment that can 

be utilized for real world experiments. However at the 

current stage, it does not provide the near to far field 

capability. 

Before parallelization could begin, some minor 

changes were required to be performed on the original 

code. This included changing all scripts (MATLAB m 

files) that will be called within the SPMD environment 

to be changed to functions. This is something that is 

required by MATLAB for transparency but also makes 

profiling and debugging in the SPMD environment 

easier and more informative. All functions used within 

the time marching loop along with some for data 

distribution and gathering fit into this scenario. 

A. Distribution of domain

For the parallelization of the FDTD algorithm, the

FDTD computational domain was split evenly amongst 

each of the cores. To minimize communication time and 

programming difficulty, the domain is only split along 

the z-axis. Distribution across only the z-axis is optimal 

because it reduces the number of block communications 

to a maximum of 2 whereas distribution in x-, y-, and 

z-axes would require up to 6 per core. The z-axis

was chosen to decrease the data transfer time. Like all

programming languages, MATLAB matrices are stored

linearly in memory. In MATLAB arrays are accessed

consecutively in memory first in x, then in y, and then

in the z direction. This means that data in an xy plane

is all accessed consecutively from memory therefore

communicating data in an xy plane across the z direction

is more efficient than communicating in other directions.

A visualization of the subdomains can be seen in Fig. 1.

Fig. 1. Distribution of FDTD domain for a microstrip 

filter problem. The yellow planes represent the boundaries 

across which the domain is split. 

The distribution of these subdomains in MATLAB 

is performed by first generating a list of z indices that 

each core must update. The problem domains are split up 

into subdomains evenly in the z direction. Each core 

will then calculate the E- and H-fields for one of these 

subdomains. These arrays of indices are then prepended 

or appended to provide memory for the transfer regions 

which will be discussed in a later section. Using these 

indices, the field components Ex, Ey, Ez, Hx, Hy, Hz and 

all of their updating coefficient arrays are distributed 

across multiple cores within our SPMD environment. 
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To ensure that the smallest amount of data is 

transferred across each of these boundaries, the original 

simulation space of this problem from [1] is rotated such 

that the largest dimension of the domain is along the 

z-axis. This rotation ensures that the boundaries along

which the domain is split are the smallest possible. This

is important because data must be communicated across

these boundaries.

B. Distribution of sources, samples, and lumped

elements

With the domain split across cores, the sources, 

sampling locations, and lumped elements in the 

simulation must also be distributed. 

The lumped elements are simply contained as 

coefficients in the FDTD as formulated in [1]. This 

means that they are precalculated before the simulation 

time marching begins and are distributed with the rest of 

the domain. Because of this no further work is required 

to distribute them past the distribution of the domain 

coefficients as described in the previous section. 

The sources and sampling locations are not 

precalculated as part of the updating coefficients. The 

sources are added as currents described in our updating 

equations (e.g., 𝐽
𝑖𝑥

𝑛+
1

2 for 𝐸𝑥
𝑛). The sampled values are

calculated from averages of our field components at 

given indices within the grid. Two steps must be taken to 

distribute the sources and samples. These steps are first 

to flag the core or cores on which the source or sample 

lies. This is done by comparing the z location of the 

source or sample to the 𝑧𝑖𝑑𝑥 values on each of the cores.

If at least part of the source or sample resides on that core 

a flag is set. Each core which contains part of this source 

or sample then has the currents that it must update 

transferred to it. Once we have the required updating data 

on each of the cores containing parts of the sources or 

samples, each of the indices of these sources and samples 

are mapped to the local indices of the local matrices 

holding the field values on each core. This mapping 

allows these sources and samples to be updated in the 

same manner they typically are on a single core system. 

Once the end of the time marching loop is reached, 

one final step must be taken to gather the sampled 

domain parameters back to the host CPU from which 

post-processing steps can be performed in the same way 

as a non-multicore implementation. For each sample, 

this is performed by looping through each core, checking 

if they have the flag set of containing that specific 

sample, and if they have copied the sampled data back to 

a single core. Once the data has been gathered from each 

core that contained part of the sample, the total sample 

can be reconstructed. After gathering and reconstruction, 

these samples can be postprocessed in the same way as 

data that was created from a single core implementation. 

C. Transfer of domain boundaries

As previously mentioned, the domain is split evenly

among cores along the z-axis. For continuity of the 

domain, field values must be transferred across these 

boundaries. For this implementation an approach like 

that implemented in [11] was taken. In this 

communication scheme a single xy-plane slice of the H-

fields would be transferred up to the core containing the 

next section of the domain, and a single xy-plane of 

the E-fields would be transferred down providing full 

continuity across the boundary.  

Because our domain is only split along the z-axis, 

the transfers are only required for our Ex, Ey, Hx, and 

Hy components. A figure of this transfer can be seen 

in Fig. 2. This highlights the H fields that must be 

transferred up and the E fields that must be transferred 

down. Taking a look specifically at one of the field 

updates we can see why this transfer is needed. In order 

to update the field Ex(i,j,k+1) we must first calculate 

the finite difference approximation from the fields 

Hz(i,j,k+1), Hz(i,j-1,k+1), Hy(i,j,k+1), and Hy(i,j,k). 

Looking at the figure, it can be seen that all of the 

required fields are available on core 2 except Hy(i,j,k) 

which must be transferred from core 1. This same concept 

applies when updating our Ey, Hx, and Hy fields. 

Fig. 2. Figure showing the transfer of E- and H-fields 

across a Z-axis split boundary. The red line denotes where 

the domain is split. H-field components that need to be 

transferred are in yellow and E-fields requiring transfer 

are in orange. 

Each of these transfers in MATLAB can be 

performed using the labSend() and labReceive() 

commands. The syntax of these commands is very similar 

to mpiSend() and mpiRecv() commands when using MPI. 

Each of these transferred xy planes are held in memory 

buffers appended to the beginning and end of the e-field 

and h-field data on each core. It is also important to note 

that the field arrays were distributed such that the H-

fields transferred up and E-fields transferred down were 

stored on the receiving core at the beginning and end of 

the field arrays respectively. This means that the original 

single core updating equations could be utilized with 

ACES JOURNAL, Vol. 34, No. 5, May 2019726



only minor edits to work with the new multi-CPU code. 

IV. EXTENSION TO MULTI-GPU
Up to this point, we have discussed running 

FDTD simulation on multiple CPUs. Luckily MATLAB 

provides a simple interface to extend this multi-CPU 

code to multiple GPUs. 

A. Utilizing multiple GPUs in MATLAB

Running code on a single GPU in MATLAB simply

requires declaring a variable (scalar value or matrix) 

within the gpuArray() command. Once that has been 

completed, all arithmetic operations and even most built-

in MATLAB commands performed on the data will be 

done on the GPU. For example declaring two variables 

a=gpuArray(magic(100)); and b=gpuArray(magic(100)); 

and performing elementwise multiplication c=a.*b will 

accelerate the elementwise multiplication using the GPU. 

This same process can then be extended to multiple GPUs 

by declaring gpuArray() variables within an SPMD loop. 

When a parallel pool is created with parpool() MATLAB 

automatically maps each GPU device to a worker in the 

parallel pool (if there is enough hardware available). 

From here all GPU commands run within a SPMD loop 

from a parallel pool with labindex n will be run on the 

corresponding GPU n. 

B. Extending FDTD simulation to multiple GPUs

Because the multi-CPU code was built to run on any

number of cores n, the extension to using any given 

number of GPUs was simple. First a parallel pool is 

created with the number of workers equal to the number 

of GPUs we want to run on. If we were to say run on 

4 GPUs, this would be parpool(4). Once the parallel 

pool has started, each of the 4 parallel workers will 

automatically be mapped to a unique GPU device. This 

unique mapping gives us direct control over each of the 

GPUs. A figure to describe the mapping from the FDTD 

grid to the GPUs and then to the threads can be seen in 

Fig. 3.  

Fig. 3. Figure showing the mapping of our FDTD grid 

to n GPUs, and the mapping of those n GPUs to their 

corresponding parallel pool workers 

With each of our workers mapped to a GPU, each of 

the field components and their updating coefficients, any 

arrays for updating sources, and any sampling arrays that 

typically reside on a CPU core are transferred to the GPU 

using a command such as Hx=gpuArray(Hx); because 

the typical CPU arrays are simply overwritten by our GPU 

arrays, no change in the code for updating or sampling is 

required. Once the simulation has finished, the code to 

gather the data also can stay the same. This is a result of 

the fact that MATLABs gather() command is overloaded 

to work both with distributed data on the CPU and on the 

GPU. 

V. SIMULATION RESULTS
With the multicore code completed, correct operation 

was ensured by directly comparing voltage, current, and 

S-Parameter results of a microstrip filter problem seen in

Fig. 1 (as first described on pages 171-177 in [1]) from

the multi-CPU and multi-GPU codes to a verified single

CPU code. This problem proved the simulation capability

and correct operation of the new multi-CPU code. The

comparison of the multi-GPU/CPU results can be seen

in Fig. 4.

Fig. 4. Comparison of filter results obtained using a 

single CPU, a multi-CPU, and a multi-GPU FDTD 

implementation. This simulation was performed with 

about 1.4 million cells and 3000 time steps. 

For the throughput testing of the codes, the air gap 

between the filter and the CPML region was incrementally 

increased evenly in all dimensions. This was done to 

prevent from impartially favoring grids with very large 

z dimensions, but with very small x and y dimensions. 

Increasing just the z dimension would provide the 

optimal throughput because it would provide the highest 

possible compute to data transfer ratio. Simulations with 

extremely large z dimensions are very uncommon and 

unrealistic for most simulation scenarios so they were 

avoided in the results shown here. 
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A. Multi-CPU results

The throughput of the multi-CPU code was timed on

various computers with a varying number of cores. Tests 

were also performed to look at increases in throughput 

when moving from a single physical processor to 2 

processors on the same motherboard, and when moving 

from physical cores to logical (hyperthreaded) cores. 

This timing was also performed using the non-multicore 

code and compared. The results from each of these 

computers can be seen in Figs. 5 through 7. 

Fig. 5. Throughput in million cells per second (MCPS) 

vs grid size with various core counts when running 

an FDTD filter simulation. These simulations were 

performed on two Intel Xeon E5-2680 CPUs with 20MB 

of cache and 256GB of RAM. Each processor has 8 

physical cores for a total of 16 physical cores and 32 

virtual cores. 

Fig. 6. Throughput in million cells per second (MCPS) 

vs grid size with various core counts when running 

an FDTD filter simulation. These simulations were 

performed on an Intel AMD Ryzen 2990WX and 128GB 

of RAM. This system has 32 physical cores on a single 

processor with hyperthreading for a total of 64 logical 

cores. 

Fig. 7. Throughput in million cells per second (MCPS) 

vs grid size with various core counts when running 

an FDTD filter simulation. These simulations were 

performed on an Intel i7-5280 with 15MB of cache and 

32GB of RAM. This system has 6 physical cores on a 

single processor with hyperthreading for a total of 12 

logical cores. 

When comparing the throughput of a single core 

without using SPMD (i.e., the original non-multicore 

code), it can be noticed that on every machine the non-

multicore code outperformed the multicore code when 

using a single core. Again, this is due to the implicit 

parallelization MATLAB performs. Once the multicore 

code begins utilizing more than a single core, the benefits 

of explicit parallelization in MATLAB quickly surpass 

the throughput of implicit parallelization. The results of 

the speedup can be seen in Table 1 when the domain size 

is 20 million cells. 

It should also be noticed that on each system there 

exists a region of higher throughputs when the grid size 

is sufficiently small. The size of the grid that this bump 

exists at is relative to the size of the system cache. This 

is shown clearly on the systems with multiple processors. 

The length of the bump can clearly be seen to extend 

when moving from utilizing a single processor to 

multiple processors (e.g., in Fig. 6 when moving from 8 

cores to greater than 8 cores). 

The final important trend to be observed is how the 

throughput is affected when a system moves from using 

only physical cores to using both physical and logical 

cores. Once the requested core count extends past the 

number of physical cores the system begins using logical 

hyperthreaded cores. Because this requires a lot of 

resource sharing within a core, in most cases we see little 

or no speedup by adding logical cores. The only case 

where this does not hold true is for the system used in 

Fig. 4 where substantial gains can be seen by utilizing 

both physical and logical cores. 
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Table 1: Speedups of a multicore implementation for 

various processors with SPMD over a standard single 

core MATLAB implementation 

No. of Cores 

(Physical / 

Logical) 

i7-5280 

(6/12) 

Xeon 

E5-2680 

(16/32) 

Ryzen 

2990WX 

(32/64) 

1 0.85 0.86 0.83 

2 1.52 1.59 1.44 

4 2.54 2.54 2.38 

6 3.03 3.32 3.11 

8 3.33 3.96 3.91 

12 3.57 4.66 4.94 

16 N/A 4.51 5.46 

32 N/A 4.54 5.83 

48 N/A N/A 5.79 

64 N/A N/A 5.57 

B. Multi-GPU results

The same code was then run on two computers with

two different GPUs configurations. The first run was on 

a system with 2 discrete RTX 2080 GPUs and the second 

was on a system with 4 Titan-Z GPUs with each PCIe 

slot containing 2 GPUs. These results can be seen in Fig. 

8 and Fig. 9. 

As expected, GPU results are an order of magnitude 

faster than their CPU counterpart. The topic of single 

GPU acceleration of FDTD with MATLAB was described 

in depth in [7]. It can be seen from the current multi-GPU 

results that for low cell counts, the addition of multiple 

GPUs provides little to no speedup regardless of the 

system or how many GPUs are added. It is worth noting 

though that while it does not provide an increased 

throughput, it also does not seem to slow the simulation 

down. This similar throughput is caused by a low 

computation to data transfer time. It is worth noting 

also that compared to the CPU implementation, the 

data transfer between GPUs is very slow in MATLAB 

because data transfer between GPUs is done through the 

host. As we move to larger grid sizes, we can see that the 

larger number of GPUs provides a great increase in 

throughput over lower numbers of GPUs. Because of 

this, using multiple GPUs in almost all scenarios would 

be beneficial. 

Each GPU throughput typically dropped a relatively 

drastic amount as grid sizes were increased. The exact 

cause of this while using MATLAB is unknown but it 

can be seen that this effect can be moved to much larger 

grid sizes by increasing the number of GPUs. This 

behavior was not observed while performing FDTD 

simulations using C/CUDA development [2]. When the 

FDTD formulation in [1] is programmed using C/CUDA 

for a single GPU, the performance on the RTX2080 

GPU is on the order of 4 billion cells per second as 

demonstrated using the CEMS package [12]. 

Fig. 8. Throughput in million cells per second (MCPS) 

vs. grid size for a FDTD filter problem on 2 RTX-2080 

GPUs. Each of the 2 GPUs has 8GB of memory. 

Fig. 9. Throughput in million cells per second (MCPS) 

vs. grid size for a FDTD filter problem on 4 Titan-Z 

GPUs. Each of the 4 GPUs has 6GB of memory. 

VI. CONCLUSION
This paper described some of the methods used 

for developing a multi-CPU and multi-GPU FDTD 

simulation code using explicit MATLAB parallelization. 

After running on multiple computers, it was shown that 

utilizing explicit parallelization on CPUs always provided 

speed increases in the FDTD code over using MATLAB’s 

built-in implicit parallelization. In some cases, speedups 

of 5x were attained by utilizing explicit parallelization. 

It was also shown that while parallelizing to physical 

cores on a system provided speed increases, extending 

this into hyperthreaded cores provided little to no benefit 

and in some cases can even decrease throughput. 

With the multi-GPU implementation we saw similar or 

increased performance of that on a single GPU.  

It is expected that the implementation of a similar 

solver in a lower level language such as C or FORTRAN 

would drastically increase the throughput and efficiency 
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of moving to multiple devices. The use of exclusively 

MATLAB here though shows that relatively easy edits 

made to an FDTD solver in a higher level language can 

provide reasonable speedups over a single GPU or CPU 

implementation. 
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